Search results for: early years
12845 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 14312844 Stressful Life Events and Their Influence on Childhood Obesity and Emotional Well-Being: Cross-Sectional Study
Authors: M. Rojo, M. Blanco, T. Lacruz, S. Solano, L. Beltran, M. Graell, A. R. Sepulveda.
Abstract:
There is an association between an early accumulation of Stressful Life Events (SLE) during childhood and various physical and psychological health complications. However, there are only a few studies on this topic in children and adolescents with overweight or obesity. The general aim of the study was to evaluate the accumulation and type of SLE in 200 children from 8 to 12 years old and analyze the relationship with their emotional well-being and weight status (obesity, overweight and normal weight). The children and their families completed an interview. The evaluated variables that are included in this study are sociodemographic measures, medical/psychological history, anthropometric measures (BMI, z-BMI), and psychological variables (children's clinical interview K-SADS-PL(Schedule for Affective Disorders and Schizophrenia for School-Age Children Present and Lifetime Version) and battery of questionnaires). Results: Children with overweight and obesity accumulate more stressful events from an early age and have a significantly higher percentage of psychiatric diagnoses, compared to their peers with normal weight. Presenting a child psychiatric disorder is related to greater z-BMI and the total number of SLE (p < 0.001). A higher z-BMI is also related to a greater number of stressful events during childhood. There is also a positive and significant relationship between the total number of SLE and worse emotional well-being (higher levels of anxious and depressive symptoms and low self-esteem of children) (p < 0.01). Conclusion: Children with overweight and obesity grow up in a family, school, and social context where more stressors are accumulated. This is also directly associated with worse emotional well-being. It is necessary to implement multidisciplinary prevention and intervention strategies in different changes (school, family, and health). This study is included in a project funded by the Ministry of Innovation and Science (PSI2011-23127).Keywords: childhood obesity, emotional well-being, psychopathology, stressful life events
Procedia PDF Downloads 12712843 Computation of Flood and Drought Years over the North-West Himalayan Region Using Indian Meteorological Department Rainfall Data
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
The climatic condition over Indian region is highly dependent on monsoon. India receives maximum amount of rainfall during southwest monsoon. Indian economy is highly dependent on agriculture. The presence of flood and drought years influenced the total cultivation system as well as the economy of the country as Indian agricultural systems is still highly dependent on the monsoon rainfall. The present study has been planned to investigate the flood and drought years for the north-west Himalayan region from 1951 to 2014 by using area average Indian Meteorological Department (IMD) rainfall data. For this investigation the Normalized index (NI) has been utilized to find out whether the particular year is drought or flood. The data have been extracted for the north-west Himalayan (NWH) region states namely Uttarakhand (UK), Himachal Pradesh (HP) and Jammu and Kashmir (J&K) to find out the rainy season average rainfall for each year, climatological mean and the standard deviation. After calculation it has been plotted by the diagrams (or graphs) to show the results- some of the years associated with drought years, some are flood years and rest are neutral. The flood and drought years can also relate with the large-scale phenomena El-Nino and La-Lina.Keywords: IMD, rainfall, normalized index, flood, drought, NWH
Procedia PDF Downloads 28912842 Developing Computational Thinking in Early Childhood Education
Authors: Kalliopi Kanaki, Michael Kalogiannakis
Abstract:
Nowadays, in the digital era, the early acquisition of basic programming skills and knowledge is encouraged, as it facilitates students’ exposure to computational thinking and empowers their creativity, problem-solving skills, and cognitive development. More and more researchers and educators investigate the introduction of computational thinking in K-12 since it is expected to be a fundamental skill for everyone by the middle of the 21st century, just like reading, writing and arithmetic are at the moment. In this paper, a doctoral research in the process is presented, which investigates the infusion of computational thinking into science curriculum in early childhood education. The whole attempt aims to develop young children’s computational thinking by introducing them to the fundamental concepts of object-oriented programming in an enjoyable, yet educational framework. The backbone of the research is the digital environment PhysGramming (an abbreviation of Physical Science Programming), which provides children the opportunity to create their own digital games, turning them from passive consumers to active creators of technology. PhysGramming deploys an innovative hybrid schema of visual and text-based programming techniques, with emphasis on object-orientation. Through PhysGramming, young students are familiarized with basic object-oriented programming concepts, such as classes, objects, and attributes, while, at the same time, get a view of object-oriented programming syntax. Nevertheless, the most noteworthy feature of PhysGramming is that children create their own digital games within the context of physical science courses, in a way that provides familiarization with the basic principles of object-oriented programming and computational thinking, even though no specific reference is made to these principles. Attuned to the ethical guidelines of educational research, interventions were conducted in two classes of second grade. The interventions were designed with respect to the thematic units of the curriculum of physical science courses, as a part of the learning activities of the class. PhysGramming was integrated into the classroom, after short introductory sessions. During the interventions, 6-7 years old children worked in pairs on computers and created their own digital games (group games, matching games, and puzzles). The authors participated in these interventions as observers in order to achieve a realistic evaluation of the proposed educational framework concerning its applicability in the classroom and its educational and pedagogical perspectives. To better examine if the objectives of the research are met, the investigation was focused on six criteria; the educational value of PhysGramming, its engaging and enjoyable characteristics, its child-friendliness, its appropriateness for the purpose that is proposed, its ability to monitor the user’s progress and its individualizing features. In this paper, the functionality of PhysGramming and the philosophy of its integration in the classroom are both described in detail. Information about the implemented interventions and the results obtained is also provided. Finally, several limitations of the research conducted that deserve attention are denoted.Keywords: computational thinking, early childhood education, object-oriented programming, physical science courses
Procedia PDF Downloads 12012841 Medial Temporal Tau Predicts Memory Decline in Cognitively Unimpaired Elderly
Authors: Angela T. H. Kwan, Saman Arfaie, Joseph Therriault, Zahra Azizi, Firoza Z. Lussier, Cecile Tissot, Mira Chamoun, Gleb Bezgin, Stijn Servaes, Jenna Stevenon, Nesrine Rahmouni, Vanessa Pallen, Serge Gauthier, Pedro Rosa-Neto
Abstract:
Alzheimer’s disease (AD) can be detected in living people using in vivo biomarkers of amyloid-β (Aβ) and tau, even in the absence of cognitive impairment during the preclinical phase. [¹⁸F]-MK-6420 is a high affinity positron emission tomography (PET) tracer that quantifies tau neurofibrillary tangles, but its ability to predict cognitive changes associated with early AD symptoms, such as memory decline, is unclear. Here, we assess the prognostic accuracy of baseline [18F]-MK-6420 tau PET for predicting longitudinal memory decline in asymptomatic elderly individuals. In a longitudinal observational study, we evaluated a cohort of cognitively normal elderly participants (n = 111) from the Translational Biomarkers in Aging and Dementia (TRIAD) study (data collected between October 2017 and July 2020, with a follow-up period of 12 months). All participants underwent tau PET with [¹⁸F]-MK-6420 and Aβ PET with [¹⁸F]-AZD-4694. The exclusion criteria included the presence of head trauma, stroke, or other neurological disorders. There were 111 eligible participants who were chosen based on the availability of Aβ PET, tau PET, magnetic resonance imaging (MRI), and APOEε4 genotyping. Among these participants, the mean (SD) age was 70.1 (8.6) years; 20 (18%) were tau PET positive, and 71 of 111 (63.9%) were women. A significant association between baseline Braak I-II [¹⁸F]-MK-6240 SUVR positivity and change in composite memory score was observed at the 12-month follow-up, after correcting for age, sex, and years of education (Logical Memory and RAVLT, standardized beta = -0.52 (-0.82-0.21), p < 0.001, for dichotomized tau PET and -1.22 (-1.84-(-0.61)), p < 0.0001, for continuous tau PET). Moderate cognitive decline was observed for A+T+ over the follow-up period, whereas no significant change was observed for A-T+, A+T-, and A-T-, though it should be noted that the A-T+ group was small.Our results indicate that baseline tau neurofibrillary tangle pathology is associated with longitudinal changes in memory function, supporting the use of [¹⁸F]-MK-6420 PET to predict the likelihood of asymptomatic elderly individuals experiencing future memory decline. Overall, [¹⁸F]-MK-6420 PET is a promising tool for predicting memory decline in older adults without cognitive impairment at baseline. This is of critical relevance as the field is shifting towards a biological model of AD defined by the aggregation of pathologic tau. Therefore, early detection of tau pathology using [¹⁸F]-MK-6420 PET provides us with the hope that living patients with AD may be diagnosed during the preclinical phase before it is too late.Keywords: alzheimer’s disease, braak I-II, in vivo biomarkers, memory, PET, tau
Procedia PDF Downloads 7812840 Phonological Processing and Its Role in Pseudo-Word Decoding in Children Learning to Read Kannada Language between 5.6 to 8.6 Years
Authors: Vangmayee. V. Subban, Somashekara H. S, Shwetha Prabhu, Jayashree S. Bhat
Abstract:
Introduction and Need: Phonological processing is critical in learning to read alphabetical and non-alphabetical languages. However, its role in learning to read Kannada an alphasyllabary is equivocal. The literature has focused on the developmental role of phonological awareness on reading. To the best of authors knowledge, the role of phonological memory and phonological naming has not been addressed in alphasyllabary Kannada language. Therefore, there is a need to evaluate the comprehensive role of the phonological processing skills in Kannada on word decoding skills during the early years of schooling. Aim and Objectives: The present study aimed to explore the phonological processing abilities and their role in learning to decode pseudowords in children learning to read the Kannada language during initial years of formal schooling between 5.6 to 8.6 years. Method: In this cross sectional study, 60 typically developing Kannada speaking children, 20 each from Grade I, Grade II, and Grade III between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. Phonological processing abilities were assessed using an assessment tool specifically developed to address the objectives of the present research. The assessment tool was content validated by subject experts and had good inter and intra-subject reliability. Phonological awareness was assessed at syllable level using syllable segmentation, blending, and syllable stripping at initial, medial and final position. Phonological memory was assessed using pseudoword repetition task and phonological naming was assessed using rapid automatized naming of objects. Both phonological awareneness and phonological memory measures were scored for the accuracy of the response, whereas Rapid Automatized Naming (RAN) was scored for total naming speed. Results: The mean scores comparison using one-way ANOVA revealed a significant difference (p ≤ 0.05) between the groups on all the measures of phonological awareness, pseudoword repetition, rapid automatized naming, and pseudoword reading. Subsequent post-hoc grade wise comparison using Bonferroni test revealed significant differences (p ≤ 0.05) between each of the grades for all the tasks except (p ≥ 0.05) for syllable blending, syllable stripping, and pseudoword repetition between Grade II and Grade III. The Pearson correlations revealed a highly significant positive correlation (p=0.000) between all the variables except phonological naming which had significant negative correlations. However, the correlation co-efficient was higher for phonological awareness measures compared to others. Hence, phonological awareness was chosen a first independent variable to enter in the hierarchical regression equation followed by rapid automatized naming and finally, pseudoword repetition. The regression analysis revealed syllable awareness as a single most significant predictor of pseudoword reading by explaining the unique variance of 74% and there was no significant change in R² when RAN and pseudoword repetition were added subsequently to the regression equation. Conclusion: Present study concluded that syllable awareness matures completely by Grade II, whereas the phonological memory and phonological naming continue to develop beyond Grade III. Amongst phonological processing skills, phonological awareness, especially syllable awareness is crucial for word decoding than phonological memory and naming during initial years of schooling.Keywords: phonological awareness, phonological memory, phonological naming, phonological processing, pseudo-word decoding
Procedia PDF Downloads 17512839 Type A Quadricuspid Aortic Valve; Rarer than a Four-Leaf Clover, an Example of Availability Heuristic
Authors: Frazer Kirk, Rohen Skiba, Pankaj Saxena
Abstract:
The natural history of the QAV is poorly understood due to the exceeding rarity of the condition. Incidence rates vary between 0.00028-1%. Classically patients present with Aortic Regurgitation (AR) between 40-60 years of age experiencing palpitations, chest pain, or heart failure. (1, 2) Echocardiography is the mainstay of diagnosis for this condition; however, given the rarity of this condition, it can easily be overlooked, as demonstrated here. The case report that follows serves as a reminder of the condition to reduce the innate cognitive bias to overlook the diagnosis due to the availability heuristic. Intraoperative photography, echocardiographic and magnetic resonance imaging from this case for reference to demonstrate that while the diagnosis of Aortic regurgitation was recognized early, the valve morphology was underappreciated.Keywords: quadricuspid aortic valve, cardiac surgery, echocardiography, congenital
Procedia PDF Downloads 16312838 The out of Proportion - Pulmonary Hypertension in Indians with Chronic Lung Disease
Authors: S. P. Chintan, A. M. Khoja, M. Modi, R. K. Chopra, S. Garde, D. Jain, O. Kajale
Abstract:
Pulmonary Hypertension is a rare but debilitating disease that affects individuals of all ages and walks of life. As recent as 15 years ago, a patient diagnosed with PH was given an average survival rate of 2.8 years. Recent advances in treatment options have allowed patients to improve quality o and quantity of life. Initial screening for PH is through echocardiography with final diagnosis confirmed through right heart catheterization. PH is now considered to have five major classifications with subgroups among each. The mild to moderate PH is common in chronic lung diseases like Chronic obstructive pulmonary diseases and Interstitial lung disease. But very severe PH is noted in few cases. In COPD patients, PH is associated with an increased risk of severe exacerbations and a reduced life expectancy. Similarly, in patients with ILD, the presence of PH correlates with a poor prognosis. Early diagnosis is essential to slow disease progression. We report here five cases of severe PH (Out of Proportion) of which four cases were of COPD and another one of IPF (UIP pattern). There echocardiography showed gross RA/RV dilatation, interventricular septum bulging to the left and mPAP of more than 100 mmHg in all the five cases. These patients were put on LTOT, pulmonary rehabilitation, combination pharmacotherapy of vasodilators and diuretics in continuation to the treatment of underlying disease. As these patients have grave prognosis close monitoring and follow up is required. Physicians associated with respiratory care and treating chronic lung disease should have knowledge in the diagnosis and management of patients with PH.Keywords: COPD, pulmonary hypertension, chronic lung disease, India
Procedia PDF Downloads 35712837 Ultrasonic Assessment of Corpora lutea and Plasma Progesterone Levels in Early Pregnant and Non Pregnant Cows
Authors: Abdurraouf O. Gaja, Salah Y. A. Al-Dahash, Guru Solmon Raju, Chikara Kubota
Abstract:
Corpus luteum cross sectional (by ultrasonography) and plasma progesterone (by DELFIA) were estimated in early pregnant and non pregnant cows on days 14th and 20th to 23rd post insemination. On day 14th, corpus luteum sectional area was 348.43 mm2 in pregnant and 387.84mm2 in non pregnant cows. Within days 20th to 23rd, corpus luteum sectional area ranged between 342.06 and 367.90 mm2 in pregnant and between 193.85 and 270.69 mm2 in non pregnant cows. Plasma progesterone level was 2.43 ng/ml in pregnant and 2.46 ng/ml in non pregnant cows on day 14th, while during days 20th to 23rd the level ranged between 2.47 and 2,84 ng/ml in pregnant and between 0.53 and 1.17 ng/ml in non pregnant cows. Results of both luteal tissue areas as well as plasma progesterone levels were highly significantly deferent (P<0.01) between pregnant and non pregnant cows during days 20th to 23rd, but there were no significant differences on day 14th. The correlation between CL cross-sectional area and plasma progesterone level was 0.4 in pregnant cows and 0.99 in non pregnant cow. It is clear, from this study, that ultrasonic assessment of corpora lutea is a viable alternative to determine plasma progesterone levels for early pregnancy diagnosis in cows.Keywords: progesterone, ultrasonography, corpus luteum, pregnancy diagnosis, cow
Procedia PDF Downloads 30812836 Efficacy of a Social-Emotional Learning Curriculum for Kindergarten and First Grade Students to Improve Social Adjustment within the School Culture
Authors: Ann P. Daunic, Nancy Corbett
Abstract:
Background and Significance: Researchers emphasize the role that motivation, self-esteem, and self-regulation play in children’s early adjustment to the school culture, including skills such as identifying their own feelings and understanding the feelings of others. As social-emotional growth, academic learning, and successful integration within culture and society are inextricably connected, the Social-Emotional Learning Foundations (SELF) curriculum was designed to integrate social-emotional learning (SEL) instruction within early literacy instruction (specifically, reading) for Kindergarten and first-grade students at risk for emotional and behavioral difficulties. Storybook reading is a typically occurring activity in the primary grades; thus SELF provides an intervention that is both theoretically and practically sound. Methodology: The researchers will report on findings from the first two years of a three-year study funded by the US Department of Education’s Institute of Education Sciences to evaluate the effects of the SELF curriculum versus “business as usual” (BAU). SELF promotes the development of self-regulation by incorporating instructional strategies that support children’s use of SEL related vocabulary, self-talk, and critical thinking. The curriculum consists of a carefully coordinated set of materials and pedagogy designed specifically for primary grade children at early risk for emotional and behavioral difficulties. SELF lessons (approximately 50 at each grade level) are organized around 17 SEL topics within five critical competencies. SELF combines whole-group (the first in each topic) and small-group lessons (the 2nd and 3rd in each topic) to maximize opportunities for teacher modeling and language interactions. The researchers hypothesize that SELF offers a feasible and substantial opportunity within the classroom setting to provide a small-group social-emotional learning intervention integrated with K-1 literacy-related instruction. Participating target students (N = 876) were identified by their teachers as potentially at risk for emotional or behavioral issues. These students were selected from 122 Kindergarten and 100 first grade classrooms across diverse school districts in a southern state in the US. To measure the effectiveness of the SELF intervention, the researchers asked teachers to complete assessments related to social-emotional learning and adjustment to the school culture. A social-emotional learning related vocabulary assessment was administered directly to target students receiving small-group instruction. Data were analyzed using a 3-level MANOVA model with full information maximum likelihood to estimate coefficients and test hypotheses. Major Findings: SELF had significant positive effects on vocabulary, knowledge, and skills associated with social-emotional competencies, as evidenced by results from the measures administered. Effect sizes ranged from 0.41 for group (SELF vs. BAU) differences in vocabulary development to 0.68 for group differences in SEL related knowledge. Conclusion: Findings from two years of data collection indicate that SELF improved outcomes related to social-emotional learning and adjustment to the school culture. This study thus supports the integration of SEL with literacy instruction as a feasible and effective strategy to improve outcomes for K-1 students at risk for emotional and behavioral difficulties.Keywords: Socio-cultural context for learning, social-emotional learning, social skills, vocabulary development
Procedia PDF Downloads 12812835 Demographic Characteristics of the Atlas Barbary Sheep in Amassine Nature Reserve, Atlas Range, Morocco: Implications For Conservation and Management
Authors: Hakim Bachiri, Mohammed Znari, Moulay Abdeljalil Ait Baamranne
Abstract:
Population characteristics of Atlas Barbary sheep (Ammotragus lervia lervia) were investigated 20 years following the 1999 introduction of 10 individuals into the fenced nature reserve of Amassine, High Atlas range, Morocco, for promoting wildlife watching and tourism. Population age-sex structure and density were determined in late winter-early spring during four consecutive years (2016-2019) by direct observation before the dispersal of the herd. In this latter case, the line transect distance sampling was successfully applied. Population size increased from 37 to 62 animals during the four-year study period; the maximal population size being 82 individuals recorded in 2006. An estimated population density ranged from 0.25 to 0.41 Barbary sheep/ha during the study period. The adult sex ratio varied from 91 to 67 per 100 females. The apparent birth rate was 14 to 73/100 females. Juveniles and subadults comprised 27-43% of the population, adult males 26-31% and adult females 29-45%. The survival rate from birth to 1 year of age approximated 35%, for adult males was estimated to average 69%/year. The obtained results would be helpful for developing sustainable population management and habitat restoration plan and assessing the feasibility of potential reintroduction/restocking in other areas of the Atlas range.Keywords: atlas mountains, barbary sheep, demography, management
Procedia PDF Downloads 46912834 Leading People in a Digital Era: A Theoretical Study of Challenges and Opportunities of Online Networking Platforms
Authors: Pawel Korzynski
Abstract:
Times where leaders communicate mainly while walking along the hallways have passed away. Currently, millennials, people that were born between the early 1980s and the early 2000s, extensively use applications based on Web 2.0 model that assumes content creation and edition by all Internet users in a collaborative fashion. Leaders who are willing to engage their subordinates in a digital era, increasingly often use above-mentioned applications. This paper discusses challenges and opportunities that are related to leaders’ online networking. First, online networking-related terms that appeared in literature are analyzed. Then, types of online networking platforms for leaders and ways how these platforms can be used are discussed. Finally, several trends in online networking studies and extrapolation of some findings to leadership are explained.Keywords: social media, digital era, leadership, online networking
Procedia PDF Downloads 29412833 Generic Early Warning Signals for Program Student Withdrawals: A Complexity Perspective Based on Critical Transitions and Fractals
Authors: Sami Houry
Abstract:
Complex systems exhibit universal characteristics as they near a tipping point. Among them are common generic early warning signals which precede critical transitions. These signals include: critical slowing down in which the rate of recovery from perturbations decreases over time; an increase in the variance of the state variable; an increase in the skewness of the state variable; an increase in the autocorrelations of the state variable; flickering between different states; and an increase in spatial correlations over time. The presence of the signals has management implications, as the identification of the signals near the tipping point could allow management to identify intervention points. Despite the applications of the generic early warning signals in various scientific fields, such as fisheries, ecology and finance, a review of literature did not identify any applications that address the program student withdrawal problem at the undergraduate distance universities. This area could benefit from the application of generic early warning signals as the program withdrawal rate amongst distance students is higher than the program withdrawal rate at face-to-face conventional universities. This research specifically assessed the generic early warning signals through an intensive case study of undergraduate program student withdrawal at a Canadian distance university. The university is non-cohort based due to its system of continuous course enrollment where students can enroll in a course at the beginning of every month. The assessment of the signals was achieved through the comparison of the incidences of generic early warning signals among students who withdrew or simply became inactive in their undergraduate program of study, the true positives, to the incidences of the generic early warning signals among graduates, the false positives. This was achieved through significance testing. Research findings showed support for the signal pertaining to the rise in flickering which is represented in the increase in the student’s non-pass rates prior to withdrawing from a program; moderate support for the signals of critical slowing down as reflected in the increase in the time a student spends in a course; and moderate support for the signals on increase in autocorrelation and increase in variance in the grade variable. The findings did not support the signal on the increase in skewness of the grade variable. The research also proposes a new signal based on the fractal-like characteristic of student behavior. The research also sought to extend knowledge by investigating whether the emergence of a program withdrawal status is self-similar or fractal-like at multiple levels of observation, specifically the program level and the course level. In other words, whether the act of withdrawal at the program level is also present at the course level. The findings moderately supported self-similarity as a potential signal. Overall, the assessment of the signals suggests that the signals, with the exception with the increase of skewness, could be utilized as a predictive management tool and potentially add one more tool, the fractal-like characteristic of withdrawal, as an additional signal in addressing the student program withdrawal problem.Keywords: critical transitions, fractals, generic early warning signals, program student withdrawal
Procedia PDF Downloads 18512832 A Dialectical Behavioral Therapy Adaptation in Reducing Depression, Anxiety, and Self-Harm in Older Adults
Authors: Valerie Alexander, Amanda Gutierrez, Veronica Campbell, Dara Schwartz, B. Charles Tatum
Abstract:
It has long been assumed that personality disorders (PD) originate in adolescence or early adulthood and that the maladaptive behaviors significantly attenuate over time. The Diagnostic and Statistical Manual of Mental Disorders-5 supports early onset of PD and views the pattern of behaviors as enduring and stable. The premise of this study is that PD may not always begin early in life, that behaviors may change over the lifespan, and that current treatment modalities may be beneficial in seniors. Self-injurious behaviors (SIB) exhibited earlier in life may, in older adults, be manifested in less overt high-risk behaviors but by refusal to take medication and get necessary medical treatment. Dialectical Behavioral Therapy is a well-known treatment modality for teaching emotional regulation and distress tolerance and thus reducing self-injurious behaviors yet very little has been studied about SIB and treatment in older adults. The population for this study was older adults, with a history of SIB, a PD, and depression and/or anxiety. Participants learned an adapted version of Dialectical Behavioral Therapy (DBT) as developed by DBT trained therapists. The results provided clinical potentials for the efficacy of DBT to reduce SIB, decrease depression and anxiety in the older adult population.Keywords: anxiety, depression, dialectical behavioral therapy, personality disorders, self-harm behavior, treatment in older adults
Procedia PDF Downloads 30412831 Achieving Process Stability through Automation and Process Optimization at H Blast Furnace Tata Steel, Jamshedpur
Authors: Krishnendu Mukhopadhyay, Subhashis Kundu, Mayank Tiwari, Sameeran Pani, Padmapal, Uttam Singh
Abstract:
Blast Furnace is a counter current process where burden descends from top and hot gases ascend from bottom and chemically reduce iron oxides into liquid hot metal. One of the major problems of blast furnace operation is the erratic burden descent inside furnace. Sometimes this problem is so acute that burden descent stops resulting in Hanging and instability of the furnace. This problem is very frequent in blast furnaces worldwide and results in huge production losses. This situation becomes more adverse when blast furnaces are operated at low coke rate and high coal injection rate with adverse raw materials like high alumina ore and high coke ash. For last three years, H-Blast Furnace Tata Steel was able to reduce coke rate from 450 kg/thm to 350 kg/thm with an increase in coal injection to 200 kg/thm which are close to world benchmarks and expand profitability. To sustain this regime, elimination of irregularities of blast furnace like hanging, channeling, and scaffolding is very essential. In this paper, sustaining of zero hanging spell for consecutive three years with low coke rate operation by improvement in burden characteristics, burden distribution, changes in slag regime, casting practices and adequate automation of the furnace operation has been illustrated. Models have been created to comprehend and upgrade the blast furnace process understanding. A model has been developed to predict the process of maintaining slag viscosity in desired range to attain proper burden permeability. A channeling prediction model has also been developed to understand channeling symptoms so that early actions can be initiated. The models have helped to a great extent in standardizing the control decisions of operators at H-Blast Furnace of Tata Steel, Jamshedpur and thus achieving process stability for last three years.Keywords: hanging, channelling, blast furnace, coke
Procedia PDF Downloads 19612830 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 7812829 Early Marriage and Women's Empowerment: The Case of Chil-bride in East Hararghe Zone of Oromia National Regional State, Ethiopia
Authors: Emad Mohammed Sani
Abstract:
Women encounter exclusion and discrimination in varying degrees, particularly those who marry as minors. The detrimental custom of getting married young is still prevalent worldwide and affects millions of people. It has been less common over time, although it is still widespread in underdeveloped nations. Oromia Regional State is the region in Ethiopia with the highest proportion of child brides. This study aimed at evaluating the effects of early marriage on its survivors’ life conditions – specifically, empowerment and household decision-making – in Eastern Hararghe Zone of Oromia Region. This study employed community-based cross-sectional study design. It adopted mixed method approach – survey, in-depth interview and focus group discussion (FGD) – to collect, analyses and interpret data on early marriage and its effects on household decision-making processes. Narratives and analytical descriptions were integrated to substantiate and/or explain observed quantitative results, or generate contextual themes. According to this study, married women who were married at or after the age of eighteen participated more in household decision-making than child brides. Child brides were more likely to be victims of violence and other types of spousal abuse in their marriages. These changes are mostly caused by an individual's age at first marriage. Delaying marriage had a large positive impact on women's empowerment at the household level, and age at first marriage had a considerable negative impact. In order to advance women's welfare and emancipation, we advise more research to concentrate on the relationship between the home and the social-structural forms that appear at the individual and communal levels.Keywords: child-bride, early marriage, women, ethiopia
Procedia PDF Downloads 6612828 Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase
Authors: W. M. Ng, O. B. Iskender, L. Simonini, J. M. Gonzalez
Abstract:
A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites.Keywords: attitude control, detumbling, small satellites, spacecraft autonomy, time optimal control
Procedia PDF Downloads 11712827 Morphology and Risk Factors for Blunt Aortic Trauma in Car Accidents: An Autopsy Study
Authors: Ticijana Prijon, Branko Ermenc
Abstract:
Background: Blunt aortic trauma (BAT) includes various morphological changes that occur during deceleration, acceleration and/or body compression in traffic accidents. The various forms of BAT, from limited laceration of the intima to complete transection of the aorta, depends on the force acting on the vessel wall and the tolerance of the aorta to injury. The force depends on the change in velocity, the dynamics of the accident and of the seating position in the car. Tolerance to aortic injury depends on the anatomy, histological structure and pathomorphological alterations due to aging or disease of the aortic wall.An overview of the literature and medical documentation reveals that different terms are used to describe certain forms of BAT, which can lead to misinterpretation of findings or diagnoses. We therefore, propose a classification that would enable uniform systematic screening of all forms of BAT. We have classified BAT into three morphologycal types: TYPE I (intramural), TYPE II (transmural) and TYPE III (multiple) aortic ruptures with appropriate subtypes. Methods: All car accident casualties examined at the Institute of Forensic Medicine from 2001 to 2009 were included in this retrospective study. Autopsy reports were used to determine the occurrence of each morphological type of BAT in deceased drivers, front seat passengers and other passengers in cars and to define the morphology of BAT in relation to the accident dynamics and the age of the fatalities. Results: A total of 391 fatalities in car accidents were included in the study. TYPE I, TYPE II and TYPE III BAT were observed in 10,9%, 55,6% and 33,5%, respectively. The incidence of BAT in drivers, front seat and other passengers was 36,7%, 43,1% and 28,6%, respectively. In frontal collisions, the incidence of BAT was 32,7%, in lateral collisions 54,2%, and in other traffic accidents 29,3%. The average age of fatalities with BAT was 42,8 years and of those without BAT 39,1 years. Conclusion: Identification and early recognition of the risk factors of BAT following a traffic accident is crucial for successful treatment of patients with BAT. Front seat passengers over 50 years of age who have been injured in a lateral collision are the most at risk of BAT.Keywords: aorta, blunt trauma, car accidents, morphology, risk factors
Procedia PDF Downloads 51312826 Platelet Volume Indices: Emerging Markers of Diabetic Thrombocytopathy
Authors: Mitakshara Sharma, S. K. Nema
Abstract:
Diabetes mellitus (DM) is metabolic disorder prevalent in pandemic proportions, incurring significant morbidity and mortality due to associated vascular angiopathies. Platelet related thrombogenesis plays key role in pathogenesis of these complications. Most patients with type II DM suffer from preventable vascular complications and early diagnosis can help manage these successfully. These complications are attributed to platelet activation which can be recognised by the increase in Platelet Volume Indices(PVI) viz. Mean Platelet Volume(MPV) and Platelet Distribution Width(PDW). This study was undertaken with the aim of finding a relationship between PVI and vascular complications of Diabetes mellitus, their importance as a causal factor in these complications and use as markers for early detection of impending vascular complications in patients with poor glycaemic status. This is a cross-sectional study conducted for 2 years with total 930 subjects. The subjects were segregated in 03 groups on basis of glycosylated haemoglobin (HbA1C) as: - (a) Diabetic, (b) Non-Diabetic and (c) Subjects with Impaired fasting glucose(IFG) with 300 individuals in IFG and non-diabetic group & 330 individuals in diabetic group. The diabetic group was further divided into two groups: - (a) Diabetic subjects with diabetes related vascular complications (b) Diabetic subjects without diabetes related vascular complications. Samples for HbA1C and platelet indices were collected using Ethylene diamine tetracetic acid(EDTA) as anticoagulant and processed on SYSMEX-XS-800i autoanalyser. The study revealed stepwise increase in PVI from non-diabetics to IFG to diabetics. MPV and PDW of diabetics, IFG and non diabetics were 17.60 ± 2.04, 11.76 ± 0.73, 9.93 ± 0.64 and 19.17 ± 1.48, 15.49 ± 0.67, 10.59 ± 0.67 respectively with a significant p value 0.00 and a significant positive correlation (MPV-HbA1c r = 0.951; PDW-HbA1c r = 0.875). However, significant negative correlation was found between glycaemic levels and total platelet count (PC- HbA1c r =-0.164). MPV & PDW of subjects with and without diabetes related complications were (15.14 ± 1.04) fl & (17.51±0.39) fl and (18.96 ± 0.83) fl & (20.09 ± 0.98) fl respectively with a significant p value 0.00.The current study demonstrates raised platelet indices & reduced platelet counts in association with rising glycaemic levels and diabetes related vascular complications across various study groups & showed that platelet morphology is altered with increasing glycaemic levels. These changes can be known by measurements of PVI which are important, simple, cost effective, effortless tool & indicators of impending vascular complications in patients with deranged glycaemic control. PVI should be researched and explored further as surrogate markers to develop a clinical tool for early recognition of vascular changes related to diabetes and thereby help prevent them. They can prove to be more useful in developing countries with limited resources. This study is multi-parameter, comprehensive with adequately powered study design and represents pioneering effort in India on account of the fact that both Platelet indices (MPV & PDW) along with platelet count have been evaluated together for the first time in Diabetics, non diabetics, patients with IFG and also in the diabetic patients with and without diabetes related vascular complications.Keywords: diabetes, HbA1C, IFG, MPV, PDW, PVI
Procedia PDF Downloads 24012825 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging
Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.Keywords: breast, machine learning, MRI, radiomics
Procedia PDF Downloads 26912824 Case Report: Complex Regional Pain Syndrome
Authors: Farah Al Zaabi, Sarah Amrani
Abstract:
Complex regional pain syndrome (CRPS) is a chronic pain condition that develops in an extremity following a fracture, soft tissue injury, or surgery. It is a neuropathic pain disorder that is accompanied by the characteristic skin manifestations that are needed for the diagnosis. We report the case of a 30 year old male, who has findings consistent with CRPS and has been followed for over two years by multiple specialties within the healthcare system without obtaining a diagnosis. The symptoms he presented with were treated based on the specialty he was seeing, rather than unified and recognized as a single disease process. Our case highlights the complexity of chronic pain, which can sometimes present with skin manifestations, and the importance of involving a pain specialist early for both the medical and physical recovery of CRPS patients.Keywords: complex regional pain syndrome, chronic pain, skin changes of CRPS, dermatological manifestions of CRPS
Procedia PDF Downloads 15412823 Genetic-Environment Influences on the Cognitive Abilities of 6-to-8 Years Old Twins
Authors: Annu Panghal, Bimla Dhanda
Abstract:
This research paper aims to determine the genetic-environment influences on the cognitive abilities of twins. Using the 100 pairs of twins from two districts, namely: Bhiwani (N = 90) and Hisar (N = 110) of Haryana State, genetic and environmental influences were assessed in twin study design. The cognitive abilities of twins were measured using the Wechsler Intelligence Scale for Children (WISC-R). Home Observation for Measurement of the Environment (HOME) Inventory was taken to examine the home environment of twins. Heritability estimate was used to analyze the genes contributing to shape the cognitive abilities of twins. The heritability estimates for cognitive abilities of 6-7 years old twins in Hisar district were 74% and in Bhiwani District 76%. Further the heritability estimates were 64% in the twins of Hisar district and 60 in Bhiwani district % in the age group of 7-8 years. The remaining variations in the cognitive abilities of twins were due to environmental factors namely: provision for Active Stimulation, paternal involvement, safe physical environment. The findings provide robust evidence that the cognitive abilities were more influenced by genes than the environmental factors and also revealed that the influence of genetic was more in the age group 6-7 years than the age group 7-8 years. The conclusion of the heritability estimates indicates that the genetic influence was more in the age group of 6-7 years than the age group of 7-8 years. As the age increases the genetic influence decreases and environment influence increases. Mother education was strongly associated with the cognitive abilities of twins.Keywords: genetics, heritability, twins, environment, cognitive abilities
Procedia PDF Downloads 13912822 Metachromatic Leukodystrophy: A Case Report
Authors: Mary Rose Eunice S. Gundayao, Manolo M. Fernandez
Abstract:
Metachromatic leukodystrophy (MLD) is a rare lysosomal storage disorder with an autosomal recessive inheritance pattern. Lysosomal storage disorders are often severe, follow a progressively neurodegenerative path, and may result in multi-organ failure, potentially leading to death within 5 to 6 years in cases of early-onset forms. There are limited data regarding cases of MLD in Filipino children. This is the case of a 2-year-old Filipino girl who presented with progressive neurological deterioration and was diagnosed with metachromatic leukodystrophy by molecular genetic testing. This case report aims to present this patient’s clinical history, neurological findings, diagnosis and novel genetic mutations causing MLD. A concise review of updated literature on MLD will be discussed.Keywords: metachromatic leukodystrophy, ARSA gene, peripheral neuropathy, case report, demyelinating disease
Procedia PDF Downloads 2012821 Improving Early Detection, Diagnosis And Intervention For Children With Autism Spectrum Disorder: A Cross-sectional Survey In China
Authors: Yushen Dai, Tao Deng, Miaoying Chen, Baoqin Huang, Yan Ji, Yongshen Feng, Shaofei Liu, Dongmei Zhong, Tao Zhang, Lifeng Zhang
Abstract:
Background: Detection and diagnosis are prerequisites for early interventions in the care of children with Autism Spectrum Disorder (ASD). However, few studies have focused on this topic. Aim: This study aims to characterize the timing from symptom detection to intervention in children with ASD and to identify the potential predictors of early detection, diagnosis, and intervention. Methods and procedures: A cross-sectional survey was conducted with 314 parents of children with ASD in Guangzhou, China. Outcomes and Results: This study found that most children (76.24%) were diagnosed within one year after detection, and 25.8% of them did not receive the intervention after diagnosis. Predictors to ASD diagnosis included ASD-related symptoms identified at a younger age, more serious symptoms, and initial symptoms with abnormal development and sensory anomalies. ASD-related symptoms observed at an older age, initial symptoms with the social deficit, sensory anomalies, and without language impairment, parents as the primary caregivers, family with lower income and less social support utilization increased the odds of the time lag between detection and diagnosis. Children whose fathers had a lower level of education were less likely to receive the intervention. Conclusions and Implications: The study described the time for detection, diagnosis, and interventions of children with ASD. Findings suggest that the ASD-related symptoms, the timing at which symptoms first become a concern, primary caregivers’ roles, father’s educational level, and the family economic status should be considered when offering support to improve early detection, diagnosis, and intervention. Helping children and their families take full advantage of support is also important.Keywords: autism spectrum disorder, child, detection, diagnosis, intervention, social support
Procedia PDF Downloads 9212820 Breast Cancer as a Response to Distress in Women with or without a History of Precancerous Breast Disease
Authors: Viacheslav Sushko, Viktor Sushko
Abstract:
Pre-cancerous breast diseases are pathological changes that precede the appearance of adenocarcinoma. The most common benign breast disease is mastopathy. We examined the life and disease history of 114 women aged 58-69 who were diagnosed with adenocarcinoma of the breast at different stages of development. They filled out the Reeder Scale to determine the level of stress. The results of the study revealed that 62 of them had mastopathy at the age of 30-45 years old. These women refused surgical treatment for mastopathy. Five to six years before their diagnosis of adenocarcinoma of the mammary gland, 84 women had experienced severe stress (death of a beloved close relative, torture accompanied by rape, prolonged stay in extreme conditions (under bombardment and bombardment). In the assessment of data from completed Reeder scales, 114 women had a high level of mental stress, with a score from 1-1.72. The 84 women who suffered from severe stress showed overeating or a significant decrease in food intake, insomnia, apathy, increased irritability and restlessness, loss of interest in sexual relationships, forgetfulness, difficulty in performing routine work, prolonged uncontrollable headaches, unexplained fatigue, heart pain, reduced capacity for work. In conclusion, it is important to provide psychotherapy for breast cancer patients as the diagnosis, and the different stages of treatment are very stressful. It is also advisable to see a psychiatrist at an early stage and prevent distress and treat precancerous breast disease.Keywords: breast cancer, distress, mastopathy, severe stress
Procedia PDF Downloads 13612819 An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace
Authors: Giuliano Raimondo, Jörg Wangemann, Peer Drechsel
Abstract:
In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities.Keywords: fuel cell, modelling, real time emulation, testing
Procedia PDF Downloads 33712818 A 10-Year In-Depth Follow-up of Post-lingual Hearing Loss Patients with Chinese Domestic Cochlear Implants
Authors: Jianan Li, Lusen Shi, Haiqiao Du, Wei Chen, Qian Wang, Shuoshuo Kang, Shiming Yang
Abstract:
Background: Follow-up of cochlear implant effectiveness is mainly focused on 3 years postoperatively, and studies with more than 5 years of observation are rare, especially for local Chinese brands. Objectives: Nurotron (Chinese domestic cochlear implant brand) CI recipients who participated in the clinical trial in 2009 were followed-up for 10 years prospectively, providing data to guide doctors and patients. Material and Methods: From December 2009 to April 2010, 57 subjects underwent Nurotron Venus CI surgery at multiple centers and were continued to be followed up and assessed at 1, 2, 3, 4, 5, and 10 years after switching on. Results: All recipients were successfully implanted with CIs with no difficulty in subsequent use, with one reported case of re-implantation 9 years after implantation. The aided hearing thresholds were significantly improved one month after switching on (p<0.0001) and remained stable afterward for 10 years. Speech recognition scores were significantly higher than pre-operative results (p<0.05) and continued to improve till 3 years after switching on. At 10 years of post-operation, most subjects had improved QOL scores in most sub-items. Conclusions and Significance: Nurotron Venus CI System provides long-term, stable results in hearing speech assistance capabilities and can improve the quality of life of CI recipients.Keywords: cochlear implantation, hearing loss, post lingual, follow up
Procedia PDF Downloads 1612817 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant melanoma, known simply as melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient's death. When detected early, melanoma is curable. In this paper, we propose a deep learning model (convolutional neural networks) in order to automatically classify skin lesion images as malignant or benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.Keywords: deep learning, skin cancer, image processing, melanoma
Procedia PDF Downloads 15012816 Early Childhood Developmental Delay in 63 Low- and Middle-Income Countries: Prevalence and Inequalities Estimated from National Health Surveys
Authors: Jesus D. Cortes Gil, Fernanda Ewerling, Leonardo Ferreira, Aluisio J. D. Barros
Abstract:
Background: The sustainable development goals call for inclusive, equitable, and quality learning opportunities for all. This is especially important for children, to ensure they all develop to their full potential. We studied the prevalence and inequalities of suspected delay in child development in 63 low- and middle-income countries. Methods and Findings: We used the early child development module from national health surveys, which covers four developmental domains (physical, social-emotional, learning, literacy-numeracy) and provides a combined indicator (early child development index, ECDI) of whether children are on track. We calculated the age-adjusted prevalence of suspected delay at the country level and stratifying by wealth, urban/rural residence, sex of the child, and maternal education. We also calculated measures of absolute and relative inequality. We studied 330.613 children from 63 countries. The prevalence of suspected delay for the ECDI ranged from 3% in Barbados to 67% in Chad. For all countries together, 25% of the children were suspected of developmental delay. At regional level, the prevalence of delay ranged from 10% in Europe and Central Asia to 42% in West and Central Africa. The literacy-numeracy domain was by far the most challenging, with the highest proportions of delay. We observed very large inequalities, and most markedly for the literacy-numeracy domain. Conclusions: To date, our study presents the most comprehensive analysis of child development using an instrument especially developed for national health surveys. With a quarter of the children globally suspected of developmental delay, we face an immense challenge. The multifactorial aspect of early child development and the large gaps we found only add to the challenge of not leaving these children behind.Keywords: child development, inequalities, global health, equity
Procedia PDF Downloads 120