Search results for: double skin roof
2054 Photoreflectance Anisotropy Spectroscopy of Coupled Quantum Wells
Authors: J. V. Gonzalez Fernandez, T. Mozume, S. Gozu, A. Lastras Martinez, L. F. Lastras Martinez, J. Ortega Gallegos, R. E. Balderas Navarro
Abstract:
We report on a theoretical-experimental study of photoreflectance anisotropy (PRA) spectroscopy of coupled double quantum wells. By probing the in-plane interfacial optical anisotropies, we demonstrate that PRA spectroscopy has the capacity to detect and distinguish layers with quantum dimensions. In order to account for the experimental PRA spectra, we have used a theoretical model at k=0 based on a linear electro-optic effect through a piezoelectric shear strain.Keywords: coupled double quantum well (CDQW), linear electro-optic (LEO) effect, photoreflectance anisotropy (PRA), piezoelectric shear strain
Procedia PDF Downloads 6942053 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer
Authors: Partha Sarathi Majee, S. Bhattacharyya
Abstract:
Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle
Procedia PDF Downloads 3452052 First Principle Studies on the Structural, Electronic and Magnetic Properties of Some BaMn-Based Double Perovskites
Authors: Amel Souidi, S. Bentata, B. Bouadjemi, T. Lantri, Z. Aziz
Abstract:
Perovskite materials which include magnetic elements have relevance due to the technological perspectives in the spintronics industry. In this work, we have investigated the structural, electronic and magnetic properties of double perovskites Ba2MnXO6 with X= Mo and W by using the full-potential linearized augmented plane wave (FP-LAPW) method based on Density Functional Theory (DFT) [1, 2] as implemented in the WIEN2K [3] code. The interchange-correlation potential was included through the generalized gradient approximation (GGA) [4] as well as taking into account the on-site coulomb repulsive interaction in (GGA+U) approach. We have analyzed the structural parameters, charge and spin densities, total and partial densities of states. The results show that the materials crystallize in the 225 space group (Fm-3m) and have a lattice parameter of about 7.97 Å and 7.95 Å for Ba2MnMoO6 and Ba2MnWO6, respectively. The band structures reveal a metallic ferromagnetic (FM) ground state in Ba2MnMoO6 and half-metallic (HM) ferromagnetic (FM) ground state in the Ba2MnWO6 compound, with total magnetic moment equal 2.9951μB (Ba2MnMoO6 ) and 4.0001μB (Ba2MnWO6 ). The GGA+U calculations predict an energy gap in the spin-up bands in Ba2MnWO6. So we estimate that this material with HM-FM nature implies a promising application in spin-electronics technology.Keywords: double perovskites, electronic structure, first-principles, semiconductors
Procedia PDF Downloads 3682051 Investigation of Long-Term Thermal Insulation Performance of Vacuum Insulation Panels with Various Enveloping Methods
Authors: Inseok Yeo, Tae-Ho Song
Abstract:
To practically apply vacuum insulation panels (VIPs) to buildings or home appliances, VIPs have demanded long-term lifespan with outstanding insulation performance. Service lives of VIPs enveloped with Al-foil and three-layer Al-metallized envelope are calculated. For Al-foil envelope, the service life is longer but edge conduction is too large compared with the Al metallized envelope. To increase service life even more, the proposed double enveloping method and metal-barrier-added enveloping method are further analyzed. The service lives of the VIP to employ two enveloping methods are calculated. Also, pressure increase and thermal insulation performance characteristics are investigated. For the metal- barrier-added enveloping method, effective thermal conductivity increase with time is close to that of Al-foil envelope, especially, for getter-inserted VIPs. For the double enveloping method, if water vapor is perfectly adsorbed, the effect of service life enhancement becomes much greater. From these methods, the VIP can be guaranteed for the service life of more than 20 years.Keywords: vacuum insulation panels, service life, double enveloping, metal-barrier-added enveloping, edge conduction
Procedia PDF Downloads 4332050 Study of Storms on the Javits Center Green Roof
Authors: Alexander Cho, Harsho Sanyal, Joseph Cataldo
Abstract:
A quantitative analysis of the different variables on both the South and North green roofs of the Jacob K. Javits Convention Center was taken to find mathematical relationships between net radiation and evapotranspiration (ET), average outside temperature, and the lysimeter weight. Groups of datasets were analyzed, and the relationships were plotted on linear and semi-log graphs to find consistent relationships. Antecedent conditions for each rainstorm were also recorded and plotted against the volumetric water difference within the lysimeter. The first relation was the inverse parabolic relationship between the lysimeter weight and the net radiation and ET. The peaks and valleys of the lysimeter weight corresponded to valleys and peaks in the net radiation and ET respectively, with the 8/22/15 and 1/22/16 datasets showing this trend. The U-shaped and inverse U-shaped plots of the two variables coincided, indicating an inverse relationship between the two variables. Cross variable relationships were examined through graphs with lysimeter weight as the dependent variable on the y-axis. 10 out of 16 of the plots of lysimeter weight vs. outside temperature plots had R² values > 0.9. Antecedent conditions were also recorded for rainstorms, categorized by the amount of precipitation accumulating during the storm. Plotted against the change in the volumetric water weight difference within the lysimeter, a logarithmic regression was found with large R² values. The datasets were compared using the Mann Whitney U-test to see if the datasets were statistically different, using a significance level of 5%; all datasets compared showed a U test statistic value, proving the null hypothesis of the datasets being different from being true.Keywords: green roof, green infrastructure, Javits Center, evapotranspiration, net radiation, lysimeter
Procedia PDF Downloads 1142049 Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices
Authors: Kaan Yamanturk, Cihan Dogruoz
Abstract:
Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones.Keywords: maximum considered earthquake, moment resisting frame, seismic isolator, seismic design
Procedia PDF Downloads 1542048 Enhanced Energy Powers via Composites of Piezoelectric CH₃NH₃PbI₃ and Flexoelectric Zn-Al:Layered Double Hydroxides (LDH) Nanosheets
Authors: Soon-Gil Yoon, Min-Ju Choi, Sung-Ho Shin, Junghyo Nah, Jin-Seok Choi, Hyun-A Song, Goeun Choi, Jin-Ho Choy
Abstract:
Layered double hydroxides (LDHs) with positively charged brucite-like layers and negatively charged interlayer anions are considered a critical nanoscale building block with potential for application in catalysts, biological sensors, and optical, electrical, and magnetic devices. LDHs also have a great potential as an energy conversion device, a key component in common modern electronics. Although LDHs are theoretically predicted to be centrosymmetric, we report here the first observations of the flexoelectric nature of LDHs and demonstrate their potential as an effective energy conversion material. We clearly show a linear energy conversion relationship between the output powers and curvature radius via bending with both the LDH nanosheets and thin films, revealing a direct evidence for flexoelectric effects. These findings potentially open up avenues to incorporate a flexoelectric coupling phenomenon into centrosymmetric materials such as LDHs and to harvest high-power energy using LDH nanosheets. In the present study, for enhancement of the output power, Zn-Al:LDH nanosheets were composited with piezoelectric CH3NH3PbI3 (MAPbI3) dye films and their enhanced energy harvesting was demonstrated in detail.Keywords: layered double hydroxides, flexoelectric, piezoelectric, energy harvesting
Procedia PDF Downloads 4912047 Structural, Magnetic and Thermodynamic Investigation of Iridium Double Perovskites with Ir⁵⁺
Authors: Mihai I. Sturza, Laura T. Corredor, Kaustuv Manna, Gizem A. Cansever, Tushar Dey, Andrey Maljuk, Olga Kataeva, Sabine Wurmehl, Anja Wolter, Bernd Buchner
Abstract:
Recently, the iridate double perovskite Sr₂YIrO₆ has attracted considerable attention due to the report of unexpected magnetism in this Ir⁵⁺ material, in which according to the Jeff model, a non-magnetic ground state is expected. Structural, magnetic and thermodynamic investigations of Sr₂YIrO₆ and Ba2YIrO6 single crystals, with emphasis on the temperature and magnetic field dependence of the specific heat will be presented. The single crystals were grown by using SrCl₂ and BaCl₂ as flux. Single-crystal X-ray diffraction measurements performed on several crystals from different preparation batches showed a high quality of the crystals, proven by the good internal consistency of the data collected using the full-sphere mode and an extremely low R factor. In agreement with the expected non-magnetic ground state of Ir⁵⁺ (5d4) in these iridates, no magnetic transition is observed down to 430 mK. Moreover, our results suggest that the low-temperature anomaly observed in the specific heat is not related to the onset of long-range magnetic order. Instead, it is identified as a Schottky anomaly caused by paramagnetic impurities present in the sample, of the order ofKeywords: double perovskites, iridates, self-flux grown synthesis, spin-orbit coupling
Procedia PDF Downloads 3302046 Pixel Façade: An Idea for Programmable Building Skin
Authors: H. Jamili, S. Shakiba
Abstract:
Today, one of the main concerns of human beings is facing the unpleasant changes of the environment. Buildings are responsible for a significant amount of natural resources consumption and carbon emissions production. In such a situation, this thought comes to mind that changing each building into a phenomenon of benefit to the environment. A change in a way that each building functions as an element that supports the environment, and construction, in addition to answering the need of humans, is encouraged, the way planting a tree is, and it is no longer seen as a threat to alive beings and the planet. Prospect: Today, different ideas of developing materials that can smartly function are realizing. For instance, Programmable Materials, which in different conditions, can respond appropriately to the situation and have features of modification in shape, size, physical properties and restoration, and repair quality. Studies are to progress having this purpose to plan for these materials in a way that they are easily available, and to meet this aim, there is no need to use expensive materials and high technologies. In these cases, physical attributes of materials undertake the role of sensors, wires and actuators then materials will become into robots itself. In fact, we experience robotics without robots. In recent decades, AI and technology advances have dramatically improving the performance of materials. These achievements are a combination of software optimizations and physical productions such as multi-materials 3D printing. These capabilities enable us to program materials in order to change shape, appearance, and physical properties to interact with different situations. nIt is expected that further achievements like Memory Materials and Self-learning Materials are also added to the Smart Materials family, which are affordable, available, and of use for a variety of applications and industries. From the architectural standpoint, the building skin is significantly considered in this research, concerning the noticeable surface area the buildings skin have in urban space. The purpose of this research would be finding a way that the programmable materials be used in building skin with the aim of having an effective and positive interaction. A Pixel Façade would be a solution for programming a building skin. The Pixel Facadeincludes components that contain a series of attributes that help buildings for their needs upon their environmental criteria. A PIXEL contains series of smart materials and digital controllers together. It not only benefits its physical properties, such as control the amount of sunlight and heat, but it enhances building performance by providing a list of features, depending on situation criteria. The features will vary depending on locations and have a different function during the daytime and different seasons. The primary role of a PIXEL FAÇADE can be defined as filtering pollutions (for inside and outside of the buildings) and providing clean energy as well as interacting with other PIXEL FACADES to estimate better reactions.Keywords: building skin, environmental crisis, pixel facade, programmable materials, smart materials
Procedia PDF Downloads 882045 Overview and Pathophysiology of Radiation-Induced Breast Changes as a Consequence of Radiotherapy Toxicity
Authors: Monika Rezacova
Abstract:
Radiation-induced breast changes are a consequence of radiotherapy toxicity over the breast tissues either related to targeted breast cancer treatment or other thoracic malignancies (eg. lung cancer). This study has created an overview of different changes and their pathophysiology. The main conditions included were skin thickening, interstitial oedema, fat necrosis, dystrophic calcifications, skin retractions, glandular atrophy, breast fibrosis and radiation induced breast cancer. This study has performed focused literature search through multiple databases including pubmed, medline and embase. The study has reviewed English as well as non English publications. As a result of the literature the study provides comprehensive overview of radiation-induced breast changes and their pathophysiology with small focus on new development and prevention.Keywords: radiotherapy toxicity, breast tissue changes, breast cancer treatment, radiation-induced breast changes
Procedia PDF Downloads 1592044 Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry
Authors: A. Ja, J. Belabid, A. Cheddadi
Abstract:
This paper reports the numerical simulation of double diffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation.Keywords: natural convection, double-diffusion, porous medium, annular geometry, finite differences
Procedia PDF Downloads 3422043 Analysis of Arthroscopic Rotator Cuff Repair
Authors: Prakash Karrun, M. Manoj Deepak, Mathivanan, K. Venkatachalam
Abstract:
Our study aims to evaluate the rates of healing and the efficacy of the arthroscopic repair of the rotator cuff tears. 40 patients who had rotator cuff tears were taken up for the study and arthroscopic repair was done with double row technique.They were evaluated and followed up for a minimum of 2 years minimum.The functional status,range of motion and healing rates were compared post operatively. All the patients were followed up with serial questionnaires and MRI at the end of 2 years. There was significant improvement in the functional status of the patient. The MRI showed better rates of healing in these patients.Thus our study effectively proves the efficacy of our operating technique.Keywords: rotator cuff tear, arthroscopic repair, double stich, healing
Procedia PDF Downloads 3472042 Comparison Between Partial Thickness Skin Graft Harvesting From Scalp and Lower Limb for Scalp Defect
Authors: Mehrdad Taghipour, Mina Rostami, Mahdi Eskandarlou
Abstract:
Partial-thickness skin graft is the cornerstone for scalp defect repair. Given the potential side effects following harvesting from these sites, this study aimed to compare the outcomes of graft harvesting from scalp and lower limb. This clinical trial was conducted among a sample number of 40 partial thickness graft candidates (20 case and 20 control group) with scalp defect presenting to Plastic Surgery Clinic at Besat Hospital, Hamadan, Iran during 2018-2019. Sampling was done by simple randomization using random digit table. The donor site in case group and control group was scalp and lower limb respectively. Overall, 28 patients (70%) were male and 12 (30%) were female. Basal cell carcinoma (BCC) and trauma were the most common etiology for the defects. There was a statistically meaningful relationship between two groups regarding the etiology of defect (P=0.02). The mean diameter of defect was 24.28±45.37 mm for all of the patients. The difference between diameters of defect in both groups were statistically meaningful while no such difference between graft diameters was seen. The graft “Take” was completely successful in both groups according to evaluations. The level of postoperative pain was lower in the case group compared to the control according to VAS scale and the satisfaction was higher in them per Likert scale. Scalp can safely be used as donor site for skin graft to be used for scalp defects associated with better results and lower complication rates compared to other donor sites.Keywords: donor site, graft, scalp, partial thickness
Procedia PDF Downloads 902041 Design and Implementation of a 94 GHz CMOS Double-Balanced Up-Conversion Mixer for 94 GHz Imaging Radar Sensors
Authors: Yo-Sheng Lin, Run-Chi Liu, Chien-Chu Ji, Chih-Chung Chen, Chien-Chin Wang
Abstract:
A W-band double-balanced mixer for direct up-conversion using standard 90 nm CMOS technology is reported. The mixer comprises an enhanced double-balanced Gilbert cell with PMOS negative resistance compensation for conversion gain (CG) enhancement and current injection for power consumption reduction and linearity improvement, a Marchand balun for converting the single LO input signal to differential signal, another Marchand balun for converting the differential RF output signal to single signal, and an output buffer amplifier for loading effect suppression, power consumption reduction and CG enhancement. The mixer consumes low power of 6.9 mW and achieves LO-port input reflection coefficient of -17.8~ -38.7 dB and RF-port input reflection coefficient of -16.8~ -27.9 dB for frequencies of 90~100 GHz. The mixer achieves maximum CG of 3.6 dB at 95 GHz, and CG of 2.1±1.5 dB for frequencies of 91.9~99.4 GHz. That is, the corresponding 3 dB CG bandwidth is 7.5 GHz. In addition, the mixer achieves LO-RF isolation of 36.8 dB at 94 GHz. To the authors’ knowledge, the CG, LO-RF isolation and power dissipation results are the best data ever reported for a 94 GHz CMOS/BiCMOS up-conversion mixer.Keywords: CMOS, W-band, up-conversion mixer, conversion gain, negative resistance compensation, output buffer amplifier
Procedia PDF Downloads 5302040 Phase Synchronization of Skin Blood Flow Oscillations under Deep Controlled Breathing in Human
Authors: Arina V. Tankanag, Gennady V. Krasnikov, Nikolai K. Chemeris
Abstract:
The development of respiration-dependent oscillations in the peripheral blood flow may occur by at least two mechanisms. The first mechanism is related to the change of venous pressure due to mechanical activity of lungs. This phenomenon is known as ‘respiratory pump’ and is one of the mechanisms of venous return of blood from the peripheral vessels to the heart. The second mechanism is related to the vasomotor reflexes controlled by the respiratory modulation of the activity of centers of the vegetative nervous system. Early high phase synchronization of respiration-dependent blood flow oscillations of left and right forearm skin in healthy volunteers at rest was shown. The aim of the work was to study the effect of deep controlled breathing on the phase synchronization of skin blood flow oscillations. 29 normotensive non-smoking young women (18-25 years old) of the normal constitution without diagnosed pathologies of skin, cardiovascular and respiratory systems participated in the study. For each of the participants six recording sessions were carried out: first, at the spontaneous breathing rate; and the next five, in the regimes of controlled breathing with fixed breathing depth and different rates of enforced breathing regime. The following rates of controlled breathing regime were used: 0.25, 0.16, 0.10, 0.07 and 0.05 Hz. The breathing depth amounted to 40% of the maximal chest excursion. Blood perfusion was registered by laser flowmeter LAKK-02 (LAZMA, Russia) with two identical channels (wavelength 0.63 µm; emission power, 0.5 mW). The first probe was fastened to the palmar surface of the distal phalanx of left forefinger; the second probe was attached to the external surface of the left forearm near the wrist joint. These skin zones were chosen as zones with different dominant mechanisms of vascular tonus regulation. The degree of phase synchronization of the registered signals was estimated from the value of the wavelet phase coherence. The duration of all recording was 5 min. The sampling frequency of the signals was 16 Hz. The increasing of synchronization of the respiratory-dependent skin blood flow oscillations for all controlled breathing regimes was obtained. Since the formation of respiration-dependent oscillations in the peripheral blood flow is mainly caused by the respiratory modulation of system blood pressure, the observed effects are most likely dependent on the breathing depth. It should be noted that with spontaneous breathing depth does not exceed 15% of the maximal chest excursion, while in the present study the breathing depth was 40%. Therefore it has been suggested that the observed significant increase of the phase synchronization of blood flow oscillations in our conditions is primarily due to an increase of breathing depth. This is due to the enhancement of both potential mechanisms of respiratory oscillation generation: venous pressure and sympathetic modulation of vascular tone.Keywords: deep controlled breathing, peripheral blood flow oscillations, phase synchronization, wavelet phase coherence
Procedia PDF Downloads 2132039 Ways of Innovative Sustainable Agriculture in India
Authors: Shailja Thakur
Abstract:
In this paper it is shown that how farmers are suffering from all sides including vagaries of weather then price fluctuations, demand supply constraints, poor soil health etc. Also the ICT can prove to be of great help if incorporated rightly into Indian agriculture. Some innovative ways to reward farmers and distribution of subsidies to them can improve the current scenario.Keywords: cost of farming, information and communication technology, innovative steps, roof gardening, vermicomposting
Procedia PDF Downloads 3082038 Dinitrotoluene and Trinitrotoluene Measuring in Double-Base Solid Propellants
Authors: Z. H. Safari, M. Anbia, G. H. Kouzegari, R. Amirkhani
Abstract:
Toluene and Nitro derivatives are widely used in industry particularly in various defense applications. Tri-nitro-toluene derivative is a powerful basic explosive material that is a basis upon which to compare equivalent explosive power of similar materials. The aim of this paper is to measure the explosive power of these hazardous substances in fuels having different shelf-life and therefore optimizing their storage and maintenance. The methodology involves measuring the amounts of di- nitro- toluene and tri-nitro-toluene in the aged samples at 90 ° C by gas chromatography. Results show no significant difference in the concentration of the TNT compound over a given time while there was a significant difference in DNT compound over the same period. The underlying reason is attributed to the simultaneous production of the material with destruction of stabilizer.Keywords: dinitrotoluene, trinitrotoluene, double-base solid propellants, artificial aging
Procedia PDF Downloads 4032037 Associated Factors of Hypercholesterolemia, Hyperuricemia and Double Burden of Hypercuricémia-Hypercholesterolemia in Gout Patients: Hospital Based Study
Authors: Pierre Mintom, Armel Assiene Agamou, Leslie Toukem, William Dakam, Christine Fernande Nyangono Biyegue
Abstract:
Context: Hyperuricemia, the presence of high levels of uric acid in the blood, is a known precursor to the development of gout. Recent studies have suggested a strong association between hyperuricemia and disorders of lipoprotein metabolism, specifically hypercholesterolemia. Understanding the factors associated with these conditions in gout patients is essential for effective treatment and management. Research Aim: The objective of this study was to determine the prevalence of hyperuricemia, hypercholesterolemia, and the double burden of hyperuricemia-hypercholesterolemia in the gouty population. Additionally, the study aimed to identify the factors associated with these conditions. Methodology: The study utilized a database from a survey of 150 gouty patients recruited at the Laquintinie Hospital in Douala between August 2017 and February 2018. The database contained information on anthropometric parameters, biochemical markers, and the food and drugs consumed by the patients. Hyperuricemia and hypercholesterolemia were defined based on specific serum uric acid and total cholesterol thresholds, and the double burden was defined as the co-occurrence of hyperuricemia and hypercholesterolemia. Findings: The study found that the prevalence rates for hyperuricemia, hypercholesterolemia, and the double burden were 61.3%, 76%, and 50.7% respectively. Factors associated with these conditions included hypertriglyceridemia, atherogenicity index TC/HDL ratio, atherogenicity index LDL/HDL ratio, family history, and the consumption of specific foods and drinks. Theoretical Importance: The study highlights the strong association between hyperuricemia and dyslipidemia, providing important insights for guiding treatment strategies in gout patients. Additionally, it emphasizes the significance of nutritional education in managing these metabolic disorders, suggesting the need to address eating habits in gout patients. Data Collection and Analysis Procedures: Data was collected through surveys and medical records of gouty patients. Information on anthropometric parameters, biochemical markers, and dietary habits was recorded. Prevalence rates and associated factors were determined through statistical analysis, employing odds ratios to assess the risks. Question Addressed: The study aimed to address the prevalence rates and associated factors of hyperuricemia, hypercholesterolemia, and the double burden in gouty patients. It sought to understand the relationships between these conditions and determine their implications for treatment and nutritional education. Conclusion: Findings show that it’s exists an association between hyperuricemia and hypercholesterolemia in gout patients, thus creating a double burden. The findings underscore the importance of considering family history and eating habits in addressing the double burden of hyperuricemia-hypercholesterolemia. This study provides valuable insights for guiding treatment approaches and emphasizes the need for nutritional education in gout patients. This study specifically focussed on the sick population. A case–control study between gouty and non-gouty populations would be interesting to better compare and explain the results observed.Keywords: gout, hyperuricemia, hypercholesterolemia, double burden
Procedia PDF Downloads 612036 Research on Ecological Space Improvement Strategy from the Perspective of Urban Double Reform
Authors: Sisi Xia, Dezhuan Tao
Abstract:
Urban Double Reform is an effective means to improve the quality of ecological space, based on improving the living environment and urban functions and promoting the organic integration of the city and nature. This paper takes the design of Qinyang Wetland Park in Jiaozuo, Henan Province, as an example, attempting to closely link the ecological restoration of wetland with the urban culture and to extend the urban spirit of the ancient county of Qinyang while purifying the ecological water system. This design uses ecological technology to repair underwater forests and underwater turf, rapidly improving the quality of urban water without biological side effects. The ecological grass slope is used to create multiple bank forms, combining with a number of hydrophilic platforms to provide a good view of the public. Through the placement of ecological education bases, urban cultural exhibition halls, and other means, the cultural value of wetland parks will be enhanced, and the citizens will return to nature and experience the ecology and appreciate the charm of urban culture in the ecological space. Repair the ecosystem, sculpt the urban culture, let the public return to nature, experience the ecology, and experience the charm of urban culture in the ecological space.Keywords: urban double reform, ecological space, improvement strategy, wetland park design
Procedia PDF Downloads 2382035 We Have Never Seen a Dermatologist. Reaching the Unreachable Through Teledermatology
Authors: Innocent Atuhe, Babra Nalwadda, Grace Mulyowa Kitunzi, Annabella Haninka Ejiri
Abstract:
Background: Atopic Dermatitis (AD) is one of the most prevalent and growing chronic inflammatory skin diseases in African prisons. AD care is limited in African due to lack of information about the disease amongst primary care workers, limited access to dermatologists, lack of proper training of healthcare workers, and shortage of appropriate treatments. We designed and implemented the Prisons Telederma project based on the recommendations of the International Society of Atopic Dermatitis. Our overall goal was to increase access to dermatologist-led care for prisoners with AD through teledermatology in Uganda. We aimed to; i) to increase awareness and understanding of teledermatology among prison health workers; and ii) to improve treatment outcomes of prisoners with atopic dermatitis through increased access to and utilization of consultant dermatologists through teledermatology in Uganda prisons: Approach: We used Store-and-forward Teledermatology (SAF-TD) to increase access to dermatologist-led care for prisoners and prisons staff with AD. We conducted a five days training for prison health workers using an adapted WHO training guide on recognizing neglected tropical diseases through changes on the skin together with an adapted American Academy of Dermatology (AAD) Childhood AD Basic Dermatology Curriculum designed to help trainees develop a clinical approach to the evaluation and initial management of patients with AD. This training was followed by blended e-learning, webinars facilitated by consultant Dermatologists with local knowledge of medication and local practices, apps adjusted for pigmented skin, WhatsApp group discussions, and sharing pigmented skin AD pictures and treatment via zoom meetings. We hired a team of Ugandan Senior Consultant dermatologists to draft an iconographic atlas of the main dermatoses in pigmented African skin and shared this atlas with prison health staff for use as a job aid. We had planned to use MySkinSelfie mobile phone application to take and share skin pictures of prisoners with AD with Consultant Dermatologists, who would review the pictures and prescribe appropriate treatment. Unfortunately, the National Health Service withdrew the app from the market due to technical issues. We monitored and evaluated treatment outcomes using the Patient Oriented Eczema Measure (POEM) tool. We held four advocacy meetings to persuade relevant stakeholders to increase supplies and availability of first-line AD treatments such as emollients in prison health facilities. Results: Draft iconographic atlas of the main dermatoses in pigmented African skin Increased proportion of prison health staff with adequate knowledge of AD and teledermatology from 20% to 80% Increased proportion of prisoners with AD reporting improvement in disease severity (POEM scores) from 25% to 35% in one year. Increased proportion of prisoners with AD seen by consultant dermatologist through teledermatology from 0% to 20% in one year. Increased the availability of AD recommended treatments in prisons health facilities from 5% to 10% in one yearKeywords: teledermatology, prisoners, reaching, un-reachable
Procedia PDF Downloads 1162034 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels
Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge
Abstract:
An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally, it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore, it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three-dimensional finite element models in assessing debonding damage in composite sandwich panelsKeywords: debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling
Procedia PDF Downloads 3152033 Transmission Dynamics of Lumpy Skin Disease in Ethiopia
Authors: Wassie Molla, Klaas Frankena, Mart De Jong
Abstract:
Lumpy skin disease (LSD) is a severe viral disease of cattle, which often occurs in epidemic form. It is caused by lumpy skin disease virus of the genus capripoxvirus of family poxviridae. Mathematical models play important role in the study of infectious diseases epidemiology. They help to explain the dynamics and understand the transmission of an infectious disease within a population. Understanding the transmission dynamics of lumpy skin disease between animals is important for the implementation of effective prevention and control measures against the disease. This study was carried out in central and north-western part of Ethiopia with the objectives to understand LSD outbreak dynamics, quantify the transmission between animals and herds, and estimate the disease reproduction ratio in dominantly crop-livestock mixed and commercial herd types. Field observation and follow-up study were undertaken, and the transmission parameters were estimated based on a SIR epidemic model in which individuals are susceptible (S), infected and infectious (I), and recovered and immune or dead (R) using the final size and generalized linear model methods. The result showed that a higher morbidity was recorded in infected crop-livestock (24.1%) mixed production system herds than infected commercial production (17.5%) system herds whereas mortality was higher in intensive (4.0%) than crop-livestock (1.5%) system and the differences were statistically significant. The transmission rate among animals and between herds were 0.75 and 0.68 per week, respectively in dominantly crop-livestock production system. The transmission study undertaken in dominantly crop-livestock production system highlighted the presence of statistically significant seasonal difference in LSD transmission among animals. The reproduction numbers of LSD in dominantly crop-livestock production system were 1.06 among animals and 1.28 between herds whereas it varies from 1.03 to 1.31 among animals in commercial production system. Though the R estimated for LSD in different production systems at different localities is greater than 1, its magnitude is low implying that the disease can be easily controlled by implementing the appropriate control measures.Keywords: commercial, crop-livestock, Ethiopia, LSD, reproduction number, transmission
Procedia PDF Downloads 2982032 Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment
Authors: U. Yerlikaya, R. T. Balkan
Abstract:
In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system.Keywords: A* algorithm, autonomous turrets, high-dimensional C-space, manifold C-space, point clouds
Procedia PDF Downloads 1392031 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran
Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad
Abstract:
The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.Keywords: natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings
Procedia PDF Downloads 3442030 Doping ZnO with Bi through Synthesis of Layered Double Hydroxide Application of Photo-Catalytic Degradation of Indigoid Dye in the Visible Light
Authors: I. Benyamina, B. Benalioua, M. Mansour, A. Bentouami
Abstract:
The aim of this study is to use a synthetic of the layered double hydroxide as a method of doping of zinc by transition metal. The choice of dopant metal being bismuth. The material has been heat treated at different temperatures then tested on the Photo discoloration of indigo carmine under visible irradiation. In contrast, the diffuse reflectance spectroscopic analysis of the UV-visible heat treated material exhibits an absorbance in the visible unlike ZnO and TiO2 P25. This property let the photocatalytic activity of Bi-ZnO under visible irradiation. Indeed, the photocatalytic effectiveness of Bi-ZnO in a visible light was proved by the total discoloration of indigo carmine solution with intial concentration of 16 mg/L after 90 minutes, whereas the TiO2 P25 and ZnO their discolorations are obtained after 120 minutes.Keywords: photo-catalysis, doping, AOP, ZnO
Procedia PDF Downloads 3702029 The Influence of Mycelium Species and Incubation Protocols on Heat and Moisture Transfer Properties of Mycelium-Based Composites
Authors: Daniel Monsalve, Takafumi Noguchi
Abstract:
Mycelium-based composites (MBC) are made by growing living mycelium on lignocellulosic fibres to create a porous composite material which can be lightweight, and biodegradable, making them suitable as a sustainable thermal insulation. Thus, they can help to reduce material extraction while improving the energy efficiency of buildings, especially when agricultural by-products are used. However, as MBC are hygroscopic materials, moisture can reduce their thermal insulation efficiency. It is known that surface growth, or “mycelium skin”, can form a natural coating due to the hydrophobic properties in the mycelium cell wall. Therefore, this research aims to biofabricate a homogeneous mycelium skin and measure its influence on the final composite material by testing material properties such as thermal conductivity, vapour permeability and water absorption by partial immersion over 24 hours. In addition, porosity, surface morphology and chemical composition were also analyzed. The white-rot fungi species Pleurotus ostreatus, Ganoderma lucidum, and Trametes versicolor were grown on 10 mm hemp fibres (Cannabis sativa), and three different biofabrication protocols were used during incubation, varying the time and surface treatment, including the addition of pre-colonised sawdust. The results indicate that density can be reduced by colonisation time, which will favourably impact thermal conductivity but will negatively affect vapour and liquid water control. Additionally, different fungi can exhibit different resistance to prolonged water absorption, and due to osmotic sensitivity, mycelium skin may also diminish moisture control. Finally, a collapse in the mycelium network after water immersion was observed through SEM, indicating how the microstructure is affected, which is also dependent on fungi species and the type of skin achieved. These results help to comprehend the differences and limitations of three of the most common species used for MBC fabrication and how precise engineering is needed to effectively control the material output.Keywords: mycelium, thermal conductivity, vapor permeability, water absorption
Procedia PDF Downloads 412028 Iontophoretic Drug Transport: An Non-Invasive Transdermal Approach
Authors: Ashish Jain, Shivam Tayal
Abstract:
There has been great interest in the field of Iontophoresis since few years due to its great applications in the field of controlled transdermal drug delivery system. It is an technique which is used to enhance the transdermal permeation of ionized high molecular weight molecules across the skin membrane especially Peptides & Proteins by the application of direct current of 1-4 mA for 20-40 minutes whereas chemical must be placed on electrodes with same charge. Iontophoresis enhanced the delivery of drug into the skin via pores like hair follicles, sweat gland ducts etc. rather than through stratum corneum. It has wide applications in the field of experimental, Therapeutic, Diagnostic, Dentistry etc. Medical science is using it to treat Hyperhidrosis (Excessive sweating) in hands and feet and to treat other ailments like hypertension, Migraine etc. Nowadays commercial transdermal iontophoretic patches are available in the market to treat different ailments. Researchers are keen to research in this field due to its vast applications and advantages.Keywords: iontophoresis, novel drug delivery, transdermal, permeation enhancer
Procedia PDF Downloads 2542027 Modelling High Strain Rate Tear Open Behavior of a Bilaminate Consisting of Foam and Plastic Skin Considering Tensile Failure and Compression
Authors: Laura Pytel, Georg Baumann, Gregor Gstrein, Corina Klug
Abstract:
Premium cars often coat the instrument panels with a bilaminate consisting of a soft foam and a plastic skin. The coating is torn open during the passenger airbag deployment under high strain rates. Characterizing and simulating the top coat layer is crucial for predicting the attenuation that delays the airbag deployment, effecting the design of the restrain system and to reduce the demand of simulation adjustments through expensive physical component testing.Up to now, bilaminates used within cars either have been modelled by using a two-dimensional shell formulation for the whole coating system as one which misses out the interaction of the two layers or by combining a three-dimensional formulation foam layer with a two-dimensional skin layer but omitting the foam in the significant parts like the expected tear line area and the hinge where high compression is expected. In both cases, the properties of the coating causing the attenuation are not considered. Further, at present, the availability of material information, as there are failure dependencies of the two layers, as well as the strain rate of up to 200 1/s, are insufficient. The velocity of the passenger airbag flap during an airbag shot has been measured with about 11.5 m/s during first ripping; the digital image correlation evaluation showed resulting strain rates of above 1500 1/s. This paper provides a high strain rate material characterization of a bilaminate consisting of a thin polypropylene foam and a thermoplasctic olefins (TPO) skin and the creation of validated material models. With the help of a Split Hopkinson tension bar, strain rates of 1500 1/s were within reach. The experimental data was used to calibrate and validate a more physical modelling approach of the forced ripping of the bilaminate. In the presented model, the three-dimensional foam layer is continuously tied to the two-dimensional skin layer, allowing failure in both layers at any possible position. The simulation results show a higher agreement in terms of the trajectory of the flaps and its velocity during ripping. The resulting attenuation of the airbag deployment measured by the contact force between airbag and flaps increases and serves usable data for dimensioning modules of an airbag system.Keywords: bilaminate ripping behavior, High strain rate material characterization and modelling, induced material failure, TPO and foam
Procedia PDF Downloads 692026 Study of Structural Styles and Hydrocarbon Potential of Rajan Pur Area, Middle Indus Basin, Pakistan
Authors: Zakiullah Kalwar, Shabeer Abbassi
Abstract:
This research encompasses the study of structural styles and evaluation of the hydrocarbon potential of Kotrum and Drigri anticlines located in Rajanpur Area, Midddle Indus Basin of Pakistan with the approach of geophysical data integration. The study area is situated between the Sulaiman Foldbelt on the west and Indus River in the east. It is an anticlinal fold, located to the southeast of Sakhi Sarwar anticline and separated from a prominent syncline. The structure has a narrow elongated crest, with the axis running in SSW-NNE direction. In the east, the structure is bounded by a gentle syncline. Structural Styles are trending East-West and perpendicular to tectonic transport and stress direction and the base of the structures gradually dipping Eastward beneath the deformation frontal part in Eastern Sulaiman Fold Belt. Middle Indus Basin can be divided into Foreland, Sulaiman fold belt and a broad foredeep. Sulaiman represents a blind thrust front, which suggests that all frontal folds of the fold belt are cored by blind thrust. The deformation of frontal part of Sulaiman Lobe represents the passive roof duplex stacked beneath the frontal passive roof thrust. The passive roof thrust, which has a back thrust sense of motion and extends into the interior of Fold belt. Left lateral Kingri Fault separates Eastern and Central Sulaiman fold belt. In Central Sulaiman fold belt the deformation front moved further towards fore deep as compared to Eastern Sulaiman. Two wells (Kotrum-01, Drigri-01) have been drilled in the study area with the objective to determine the potential of oil and gas in Habib Rahi Limestone of Eocene age, Dunghan Limestone of Paleocene age and Pab Sandstone of cretaceous age and role of structural styles in hydrocarbon potential of study area. Kotrum-01 well was drilled to its T.D of 4798m. Besides fishing and side tracking, tight whole conditions, high pressure, and losses of circulation were also encountered. During production, testing Pab sandstone were tested but abandoned found. Drigri-01 well was drilled to its T.D 3250 m. RFT was carried out at different points, but all points showed no pressure / seal failure and the well was plugged and declared abandoned.Keywords: hydrocarbon potential, structural style, reserve calculation, enhance production
Procedia PDF Downloads 4292025 Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis
Authors: Rawia M. Khalil, Ahmed A. Abd El Rahman, Mahfouz A. Kassem, Mohamed S. El Ridi, Mona M. Abou Samra, Ghada E. A. Awad, Soheir S. Mansy
Abstract:
Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection.Keywords: candida infections, hot homogenization, nystatin, solid lipid nanoparticles, stability, topical delivery
Procedia PDF Downloads 393