Search results for: dose optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4446

Search results for: dose optimization

3996 Optimization of the Dam Management to Satisfy the Irrigation Demand: A Case Study in Algeria

Authors: Merouane Boudjerda, Bénina Touaibia, Mustapha K Mihoubi

Abstract:

In Algeria, water resources play a crucial role in economic development. But over the last decades, they are relatively limited and gradually decreasing to the detriment of agriculture. The agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Boukerdane dam’s reservoir system in North of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 34% to 60%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.

Keywords: water management, agricultural demand, Boukerdane dam, dynamic programming, artificial neural network

Procedia PDF Downloads 107
3995 Aerodynamic Design an UAV and Stability Analysis with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.

Abstract:

We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB", "ANSYS FLUENT", "XFoil" package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi-objective problems can be helpful for future developments. Also we developed method for Stability Analysis (Lateral-Directional and Longitudinal).

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, longitudinal stability, lateral-directional stability

Procedia PDF Downloads 569
3994 An Open-Label Phase I Clinical Study: Safety, Tolerability and Pharmacodynamics of Mutant Collagenase Injection in Adults for Localized Fat Reduction

Authors: Yong Cang

Abstract:

RJV001 is a subcutaneous injection containing mutated recombinant Collagenase H (ColH), leading to disruption of collagen matrix in adipose tissue and programmed cell death of adipocytes. Here we reported our clinical investigation of the safety, tolerance and pharmacodynamics of localized RJV001 injection into healthy human abdominal fat tissues (NCT04821648, Arizona Research Center). Investigate the safety, tolerance and clinical pharmacodynamics of subcutaneous RJV001 in humans. In the dose-escalating study, 18 subjects completed the study, 100% female, 78% white, with a mean age of 42[±9.9]. All three tested dose (0.05, 0.075 and 0.15 mg/injection), up to 30 injections, were safe and well-tolerated. Bruising and tenderness to palpation, mild to moderate, were the most frequent local skin reactions but nearly all resolved within 30 days. Additionally, physician-monitored ultrasound measurement showed that a reduction in abdominal fat tissue thickness was consistently observed in Cohort C (0.075, 0.15 mg/injection, 30injections), with a mean reduction of 7.37 [± 2.020] mm. Based on this clinical study, RJV001 has been advanced to phase II clinical studies. In the dose-escalating study, subcutaneously administered RJV001 was safe and well-tolerated in healthy adults up to 0.15 mg/injection, 30 injections. Fat reduction and adipocytolysis were observed by ultrasound measurements and histological analysis for exploratory purposes.

Keywords: fat reduction, mutant collagenase, clinical trial, subcutaneous injection

Procedia PDF Downloads 83
3993 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen

Abstract:

In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence

Procedia PDF Downloads 627
3992 Design Optimization of a Compact Quadrupole Electromagnet for CLS 2.0

Authors: Md. Armin Islam, Les Dallin, Mark Boland, W. J. Zhang

Abstract:

This paper reports a study on the optimal magnetic design of a compact quadrupole electromagnet for the Canadian Light Source (CLS 2.0). The nature of the design is to determine a quadrupole with low relative higher order harmonics and better field quality. The design problem was formulated as an optimization model, in which the objective function is the higher order harmonics (multipole errors) and the variable to be optimized is the material distribution on the pole. The higher order harmonics arose in the quadrupole due to truncating the ideal hyperbola at a certain point to make the pole. In this project, the arisen harmonics have been optimized both transversely and longitudinally by adjusting material on the poles in a controlled way. For optimization, finite element analysis (FEA) has been conducted. A better higher order harmonics amplitudes and field quality have been achieved through the optimization. On the basis of the optimized magnetic design, electrical and cooling calculation has been performed for the magnet.

Keywords: drift, electrical, and cooling calculation, integrated field, magnetic field gradient, multipole errors, quadrupole

Procedia PDF Downloads 118
3991 Direct Torque Control of Induction Motor Employing Teaching Learning Based Optimization

Authors: Anam Gopi

Abstract:

The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this Teaching Learning Based Optimization (TLBO) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion. The TLBO based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.

Keywords: teaching learning based optimization, direct torque control, PI controller

Procedia PDF Downloads 560
3990 Parallel Gripper Modelling and Design Optimization Using Multi-Objective Grey Wolf Optimizer

Authors: Golak Bihari Mahanta, Bibhuti Bhusan Biswal, B. B. V. L. Deepak, Amruta Rout, Gunji Balamurali

Abstract:

Robots are widely used in the manufacturing industry for rapid production with higher accuracy and precision. With the help of End-of-Arm Tools (EOATs), robots are interacting with the environment. Robotic grippers are such EOATs which help to grasp the object in an automation system for improving the efficiency. As the robotic gripper directly influence the quality of the product due to the contact between the gripper surface and the object to be grasped, it is necessary to design and optimize the gripper mechanism configuration. In this study, geometric and kinematic modeling of the parallel gripper is proposed. Grey wolf optimizer algorithm is introduced for solving the proposed multiobjective gripper optimization problem. Two objective functions developed from the geometric and kinematic modeling along with several nonlinear constraints of the proposed gripper mechanism is used to optimize the design variables of the systems. Finally, the proposed methodology compared with a previously proposed method such as Teaching Learning Based Optimization (TLBO) algorithm, NSGA II, MODE and it was seen that the proposed method is more efficient compared to the earlier proposed methodology.

Keywords: gripper optimization, metaheuristics, , teaching learning based algorithm, multi-objective optimization, optimal gripper design

Procedia PDF Downloads 163
3989 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function

Procedia PDF Downloads 118
3988 Hepatoprotective Assessment of L-Ascorbate 1-(2-Hydroxyethyl)-4,6-Dimethyl-1, 2-Dihydropyrimidine-2-on in Toxic Liver Damage Test

Authors: Vladimir Zobov, Nail Nazarov, Alexandra Vyshtakalyuk, Vyacheslav Semenov, Irina Galyametdinova, Vladimir Reznik

Abstract:

The aim of this study was to investigate hepatoprotective properties of the Xymedon derivative L-ascorbate 1- (2-hydroxyethyl)-4,6-dimethyl-1,2-dihydropyrimidine-2-one (XD), which exhibits high efficiency as actoprotector. The study was carried out on 68 male albino rats weighing 250-400 g using preventive exposure to the test preparation. Effectiveness of XD win comparison with effectiveness of Xymedon (original substance) after administration of the compounds in identical doses. Maximum dose was 20 mg/kg. The animals orally received Xymedon or its derivative in doses of 10 and 20 mg/kg over 4 days. In 1-1.5 h after drug administration, CCl4 in vegetable oil (1:1) in a dose of 2 ml/kg. Controls received CCl4 but without hepatoprotectors. Intact control group consisted of rats, not receiving CCl4 or other compounds. The next day after the last administration of CCl4 and compounds under study animals were dehematized under ether anesthesia, blood and liver samples were taken for biochemical and histological analysis. Xymedon and XD administered according to the preventice scheme, exerted hepatoprotective effects: Xymedon — in the dose of 20 mg/kg, XD — in doses of 10 and 20 mg/kg. The drugs under study had different effects on liver condition, affected by induction with CCl4. Xymedon had a more pronounced effect both on the ALT level, which can be elevated not only due to destructive changes in hepatocytes, but also as a cholestasis manifestation, and on the serum total protein level, which reflects protein synthesis in liver. XD had a more pronounced effect on AST level, which is one of the markers of hepatocyte damage. Lower effective dose of XD — 10 mg/kg, compared to Xymedon effective according to, and its pronounced effect on AST, the hepatocyte cytolysis marker, is indicative of its higher preventive effectiveness, compared to Xymedon. This work was performed with the financial support of Russian Science Foundation (grant No: 14-50-00014).

Keywords: hepatoprotectors, pyrimidine derivatives, toxic liver damage, xymedon

Procedia PDF Downloads 277
3987 Environmental Impact Assessment of Ceramic Tile Materials Used in Jordan on Indoor Radon Level

Authors: Mefleh Hamideen

Abstract:

In this investigation, the activity concentrations of ²²⁶Ra, ²³²Th, and ⁴⁰K, of some ceramic tile materials used in the local market of Jordan for interior decoration were determined by making use of High Purity Germanium (HPGe) detector. Twenty samples of the different countries of origin and sizes used in Jordan were analyzed. The concentration values of the last-mentioned radionuclides ranged from 30 Bq.kg⁻¹ (Sample from Jordan) to 98 Bq.kg⁻¹ (Sample from China) for ²²⁶Ra, 31 Bq.kg⁻¹ (Sample from Italy) to 98 Bq.kg⁻¹ (Sample from China) for ²³²Th, and 129 Bq.kg⁻¹ (Sample from Spain) to 679 Bq.kg⁻¹ (Sample from Italy) for ⁴⁰K. Based on the calculated activity concentrations, some radiological parameters have been calculated to test the radiation hazards in the ceramic tiles. In this work, the following parameters: Total absorbed dose rate (DR), Annual effective dose rate (HR), Radium equivalent activity (Raeq), Radon emanation coefficient F (%) and Radon mass exhalation rate (Em) were calculated for all ceramic tiles and listed in the body of the work. Fortunately, the average calculated values of all parameters are less than the recommended values for each parameter. Consequently, almost all the examined ceramic materials appear to have low radon emanation coefficients. As a result of that investigation, no problems on people can appear by using those ceramic tiles in Jordan.

Keywords: radon emanation coefficient, radon mass exhalation rate, total annual effective dose, radon level

Procedia PDF Downloads 161
3986 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting

Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun

Abstract:

In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution

Keywords: multi-objective optimization, random drift particle swarm optimization, crowding distance sorting, pareto optimal solution

Procedia PDF Downloads 231
3985 Developing Model for Fuel Consumption Optimization in Aviation Industry

Authors: Somesh Kumar Sharma, Sunanad Gupta

Abstract:

The contribution of aviation to society and economy is undisputedly significant. The aviation industry drives economic and social progress by contributing prominently to tourism, commerce and improved quality of life. Identifying the amount of fuel consumed by an aircraft while moving in both airspace and ground networks is critical to air transport economics. Aviation fuel is a major operating cost parameter of the aviation industry and at the same time it is prone to various constraints. This article aims to develop a model for fuel consumption of aviation product. The paper tailors the information for the fuel consumption optimization in terms of information development, information evaluation and information refinement. The information is evaluated and refined using statistical package R and Factor Analysis which is further validated with neural networking. The study explores three primary dimensions which are finally summarized into 23 influencing variables in contrast to 96 variables available in literature. The 23 variables explored in this study should be considered as highly influencing variables for fuel consumption which will contribute significantly towards fuel optimization.

Keywords: fuel consumption, civil aviation industry, neural networking, optimization

Procedia PDF Downloads 309
3984 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment

Procedia PDF Downloads 359
3983 Directionally-Sensitive Personal Wearable Radiation Dosimeter

Authors: Hai Huu Le, Paul Junor, Moshi Geso, Graeme O’Keefe

Abstract:

In this paper, the authors propose a personal wearable directionally-sensitive radiation dosimeter using multiple semiconductor CdZnTe detectors. The proposed dosimeter not only measures the real-time dose rate but also provide the direction of the radioactive source. A linear relationship between radioactive source direction and the radiation intensity measured by each detectors is established and an equation to determine the source direction is derived by the authors. The efficiency and accuracy of the proposed dosimeter is verified by simulation using Geant4 package. Results have indicated that in a measurement duration of about 7 seconds, the proposed dosimeter was able to estimate the direction of a 10μCi 137/55Cs radioactive source to within 2 degrees.

Keywords: dose rate, Geant4 package, radiation dosimeter, radioactive source direction

Procedia PDF Downloads 300
3982 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: composite material, crashworthiness, finite element analysis, optimization

Procedia PDF Downloads 234
3981 Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory

Authors: V. S. S. Kumar, B. Vikram

Abstract:

The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project.

Keywords: fuzzy sets, uncertainty, optimization, time cost trade off problems

Procedia PDF Downloads 330
3980 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example

Authors: Yue Huang, Yiheng Feng

Abstract:

Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.

Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing

Procedia PDF Downloads 63
3979 Route Planning for Optimization Approach PSO_GA Sharing System (Scooter Sharing-Public Transportation) with Hybrid Optimization Approach PSO_GA

Authors: Mohammad Ali Farrokhpour

Abstract:

In the current decade and sustainable transportation systems, scooter sharing has attracted widespread attention as an environmentally-friendly means of public transportation which can help develop public transportation. The combination of scooters and subway in the area of sustainable transportation systems can provide a great many opportunities for developing access to public transportation. Of the challenges which have arisen and initiated discussions of interest about the implementation of a scooter-subway system to replace personal vehicles is the issue of routing in the aforementioned system. This has been chosen as the main subject of the present paper. Thus, the present paper provides an account for routing in this system. Because the issue of routing includes multiple factors such as time, costs, traffic, green spaces, etc., the above-mentioned problem is considered to be a multi-objective NP-hard optimization problem. For this purpose, the hybrid optimization approach of PSO-GA has been put forward in the present paper for the provided answers to be of higher accuracy and validity than those of normal optimization methods. The results obtained from modeling and problem solving for the case study in the MATLAB software are indicative of the efficiency and desirability of the model and the proposed approach for solving the model

Keywords: route planning, scooter sharing, public transportation, sharing system

Procedia PDF Downloads 59
3978 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks

Authors: Younghyun Jeon, Seungjoo Maeng

Abstract:

In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.

Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power

Procedia PDF Downloads 366
3977 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads

Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza

Abstract:

This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.

Keywords: divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver

Procedia PDF Downloads 442
3976 Assessment of Reproductive Toxicity of Diazinon Pesticide in Male Wistar Rats

Authors: Mohammad Alfaifi

Abstract:

Organophosphates are among the most widely used synthetic insect pesticides. The widespread use of organophosphates has stimulated research into the possible existence of effects related with their reproductive toxic activity. The present study aimed to assess the effects of diazinon (DIZ) on male reproductive system. DIZ at the dose levels of 1.5, 3.0 and 9.0 mg/kg b. wt./day was administered orally to male rats of Wistar strain for 30 days to evaluate the toxic alterations in testicular histology, biochemistry, sperm dynamics, and testosterone levels. The body weight of animals did not show any significant changes, however, a significant reduction was observed in testes weight. DIZ also brought about marked reduction in epididymal and testicular sperm counts in exposed males and a decrease in serum testosterone concentration. Histopathological examination of testes showed mild to severe degenerative changes in seminiferous tubules at various dose levels. Fertility test showed 79% negative results. All these toxic effects are moderate at low doses and become severe at higher dose levels. From the results of the present study it is concluded that DIZ induces severe testicular damage and results in reduction in sperm count and thus affect fertility. Small changes in sperm counts are known to have adverse affects on human fertility. Therefore, application of such insecticide should be limited to a designed programme.

Keywords: reproductive toxicity, fertility, diazinon, sperm count

Procedia PDF Downloads 300
3975 Synthesis of Bismuth-Hyaluronic Acid Nanoparticles Containing Melittin Coated with Chitosan for Treating Eye Cancer Cells with Radiotherapy

Authors: Akbar Esmaeili, Fateme Dadashi

Abstract:

Bismuth can increase radiation and reduce the dose of radiotherapy. On the other hand, hyaluronic acid plays a role in healing damaged cells, and melittin has been used to destroy cancer cells. This research aims to destroy eye cancer cells and accelerate the recovery of damaged healthy cells during treatment. In this research, we used this nanoparticle, the sol-gel method. According to the optimization process that was carried out, we obtained the optimal value of the desired variables for the manufacture of nanoparticles. The advantage of doing this is reducing the amount of medicine used, as a result of reducing the number of side effects during the treatment and using melittin as an anti-eye cancer drug and the presence of hyaluronic acid to accelerate the recovery of cells, as well as coating the bismuth nanoparticle with chitosan to increase the half-life of the nanoparticle and prevent its adhesion.

Keywords: synthesis, nanoparticles, coated, cancer

Procedia PDF Downloads 14
3974 Verification of Dosimetric Commissioning Accuracy of Flattening Filter Free Intensity Modulated Radiation Therapy and Volumetric Modulated Therapy Delivery Using Task Group 119 Guidelines

Authors: Arunai Nambi Raj N., Kaviarasu Karunakaran, Krishnamurthy K.

Abstract:

The purpose of this study was to create American Association of Physicist in Medicine (AAPM) Task Group 119 (TG 119) benchmark plans for flattening filter free beam (FFF) deliveries of intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT) in the Eclipse treatment planning system. The planning data were compared with the flattening filter (FF) IMRT & VMAT plan data to verify the dosimetric commissioning accuracy of FFF deliveries. AAPM TG 119 proposed a set of test cases called multi-target, mock prostate, mock head and neck, and C-shape to ascertain the overall accuracy of IMRT planning, measurement, and analysis. We used these test cases to investigate the performance of the Eclipse Treatment planning system for the flattening filter free beam deliveries. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two arc VMAT technique for both the beam deliveries (6 MV FF, 6MV FFF, 10 MV FF and 10 MV FFF). The planning objectives and dose were set as described in TG 119. The dose prescriptions for multi-target, mock prostate, mock head and neck, and C-shape were taken as 50, 75.6, 50 and 50 Gy, respectively. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC‑13) ion chamber. The composite planar dose and per-field gamma analysis were measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). FFF beam deliveries of IMRT and VMAT plans were comparable to flattening filter beam deliveries. Our planning and quality assurance results matched with TG 119 data. AAPM TG 119 test cases are useful to generate FFF benchmark plans. From the obtained data in this study, we conclude that the commissioning of FFF IMRT and FFF VMAT delivery were found within the limits of TG-119 and the performance of the Eclipse treatment planning system for FFF plans were found satisfactorily.

Keywords: flattening filter free beams, intensity modulated radiation therapy, task group 119, volumetric modulated arc therapy

Procedia PDF Downloads 124
3973 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method

Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari

Abstract:

The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.

Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization

Procedia PDF Downloads 340
3972 Parametric Optimization of Wire Electric Discharge Machining (WEDM) for Aluminium Metal Matrix Composites

Authors: G. Rajyalakhmi, C. Karthik, Gerson Desouza, Rimmie Duraisamy

Abstract:

In this present work, metal matrix composites with combination of aluminium with (Sic/Al2O3) were fabricated using stir casting technique. The objective of the present work is to optimize the process parameters of Wire Electric Discharge Machining (WEDM) composites. Pulse ON Time, Pulse OFF Time, wire feed and sensitivity are considered as input process parameters with responses Material Removal Rate (MRR), Surface Roughness (SR) for optimization of WEDM process. Taguchi L18 Orthogonal Array (OA) is used for experimentation. Grey Relational Analysis (GRA) is coupled with Taguchi technique for multiple process parameters optimization. ANOVA (Analysis of Variance) is used for finding the impact of process parameters individually. Finally confirmation experiments were carried out to validate the predicted results.

Keywords: parametric optimization, particulate reinforced metal matrix composites, Taguchi-grey relational analysis, WEDM

Procedia PDF Downloads 550
3971 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy

Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon

Abstract:

Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).

Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect

Procedia PDF Downloads 158
3970 Evaluation of Reproductive Toxicity of Diazinon Pesticide in Male Wistar Rats

Authors: Mohammad Alfaifi, Mohammed Alshehri

Abstract:

Organophosphates are among the most widely used synthetic insect pesticides. The widespread use of organophosphates has stimulated research into the possible existence of effects related with their reproductive toxic activity. The present study aimed to assess the effects of diazinon (DIZ) on male reproductive system. DIZ at the dose levels of 1.5, 3.0 and 9.0 mg/kg b. wt./day was administered orally to male rats of Wistar strain for 30 days to evaluate the toxic alterations in testicular histology, biochemistry, sperm dynamics and testosterone levels. The body weight of animals did not show any significant changes; however, a significant reduction was observed in testes weight. DIZ also brought about a marked reduction in epididymal and testicular sperm counts in exposed males and a decrease in serum testosterone concentration. Histopathological examination of testes showed mild to severe degenerative changes in seminiferous tubules at various dose levels. Fertility test showed 79% negative results. All these toxic effects are moderate at low doses and become severe at higher dose levels. From the results of the present study, it is concluded that DIZ induces severe testicular damage and results in a reduction in sperm count and thus affect fertility. Small changes in sperm counts are known to have adverse effects on human fertility. Therefore, application of such insecticide should be limited to a designed programme.

Keywords: organophosphates, reproductive toxicity, diazinon, fertility

Procedia PDF Downloads 390
3969 An Improved Many Worlds Quantum Genetic Algorithm

Authors: Li Dan, Zhao Junsuo, Zhang Wenjun

Abstract:

Aiming at the shortcomings of the Quantum Genetic Algorithm such as the multimodal function optimization problems easily falling into the local optimum, and vulnerable to premature convergence due to no closely relationship between individuals, the paper presents an Improved Many Worlds Quantum Genetic Algorithm (IMWQGA). The paper using the concept of Many Worlds; using the derivative way of parallel worlds’ parallel evolution; putting forward the thought which updating the population according to the main body; adopting the transition methods such as parallel transition, backtracking, travel forth. In addition, the algorithm in the paper also proposes the quantum training operator and the combinatorial optimization operator as new operators of quantum genetic algorithm.

Keywords: quantum genetic algorithm, many worlds, quantum training operator, combinatorial optimization operator

Procedia PDF Downloads 714
3968 Preliminary Study of Standardization and Validation of Micronuclei Technique to Assess the DNA Damages Cause for the X-Rays

Authors: L. J. Díaz, M. A. Hernández, A. K. Molina, A. Bermúdez, C. Crane, V. M. Pabón

Abstract:

One of the most important biological indicators that show the exposure to the radiation is the micronuclei (MN). This technique is using to determinate the radiation effects in blood cultures as a biological control and a complement to the physics dosimetry. In Colombia the necessity to apply this analysis has emerged due to the current biological indicator most used is the chromosomal aberrations (CA), that is why it is essential the MN technique’s standardization and validation to have enough tools to improve the radioprotection topic in the country. Besides, this technique will be applied on the construction of a dose-response curve, that allow measure an approximately dose to irradiated people according to MN frequency found. Inside the steps that carried out to accomplish the standardization and validation is the statistic analysis from the lectures of “in vitro” peripheral blood cultures with different analysts, also it was determinate the best culture medium and conditions for the MN can be detected easily.

Keywords: micronuclei, radioprotection, standardization, validation

Procedia PDF Downloads 472
3967 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: building envelope, machine learning, perforated metal, multi-factor optimization, façade

Procedia PDF Downloads 196