Search results for: data databases
25043 Immunization-Data-Quality in Public Health Facilities in the Pastoralist Communities: A Comparative Study Evidence from Afar and Somali Regional States, Ethiopia
Authors: Melaku Tsehay
Abstract:
The Consortium of Christian Relief and Development Associations (CCRDA), and the CORE Group Polio Partners (CGPP) Secretariat have been working with Global Alliance for Vac-cines and Immunization (GAVI) to improve the immunization data quality in Afar and Somali Regional States. The main aim of this study was to compare the quality of immunization data before and after the above interventions in health facilities in the pastoralist communities in Ethiopia. To this end, a comparative-cross-sectional study was conducted on 51 health facilities. The baseline data was collected in May 2019, while the end line data in August 2021. The WHO data quality self-assessment tool (DQS) was used to collect data. A significant improvment was seen in the accuracy of the pentavalent vaccine (PT)1 (p = 0.012) data at the health posts (HP), while PT3 (p = 0.010), and Measles (p = 0.020) at the health centers (HC). Besides, a highly sig-nificant improvment was observed in the accuracy of tetanus toxoid (TT)2 data at HP (p < 0.001). The level of over- or under-reporting was found to be < 8%, at the HP, and < 10% at the HC for PT3. The data completeness was also increased from 72.09% to 88.89% at the HC. Nearly 74% of the health facilities timely reported their respective immunization data, which is much better than the baseline (7.1%) (p < 0.001). These findings may provide some hints for the policies and pro-grams targetting on improving immunization data qaulity in the pastoralist communities.Keywords: data quality, immunization, verification factor, pastoralist region
Procedia PDF Downloads 12325042 Identifying Critical Success Factors for Data Quality Management through a Delphi Study
Authors: Maria Paula Santos, Ana Lucas
Abstract:
Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.Keywords: critical success factors, data quality, data quality management, Delphi, Q-Sort
Procedia PDF Downloads 21725041 Overview and Pathophysiology of Radiation-Induced Breast Changes as a Consequence of Radiotherapy Toxicity
Authors: Monika Rezacova
Abstract:
Radiation-induced breast changes are a consequence of radiotherapy toxicity over the breast tissues either related to targeted breast cancer treatment or other thoracic malignancies (eg. lung cancer). This study has created an overview of different changes and their pathophysiology. The main conditions included were skin thickening, interstitial oedema, fat necrosis, dystrophic calcifications, skin retractions, glandular atrophy, breast fibrosis and radiation induced breast cancer. This study has performed focused literature search through multiple databases including pubmed, medline and embase. The study has reviewed English as well as non English publications. As a result of the literature the study provides comprehensive overview of radiation-induced breast changes and their pathophysiology with small focus on new development and prevention.Keywords: radiotherapy toxicity, breast tissue changes, breast cancer treatment, radiation-induced breast changes
Procedia PDF Downloads 15925040 The Effectiveness of Extracorporeal Shockwave Therapy on Pain and Motor Function in Subjects with Knee Osteoarthritis A Systematic Review and Meta-Analysis of Randomized Clinical Trial
Authors: Vu Hoang Thu Huong
Abstract:
Background and Purpose: The effects of Extracorporeal Shockwave Therapy (ESWT) in the participants with knee osteoarthritis (KOA) were unclear on physical performance although its effects on pain had been investiagted. This study aims to explore the effects of ESWT on pain relief and physical performance on KOA. Methods: The studies with the randomized controlled design to investigate the effects of ESWT on KOA were systematically searched using inclusion and exclusion criteria through seven electronic databases including Pubmed etc. between 1990 and Dec 2022. To summarize those data, visual analog scale (VAS) or pain scores were determined for measure of pain intensity. Range of knee motion, or the scores of physical activities including Lequesne index (LI), Knee Injury and Osteoarthritis Outcome Score (KOOS), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were determined for measure of physical performances. The first evaluate after treatment period was define as the effect of post-treatment period or immediately effect; and the last evaluate was defined as the effect of following period or the end effect in our study. Data analysis was performed using RevMan 5.4.1 software. A significant level was set at p<0.05. Results: Eight studies (number of participant= 499) reporting the ESWT effects on mild-to-moderate severity (Grades I to III Kellgren–Lawrence) of KOA were qualified for meta-analysis. Compared with sham or placebo group, the ESWT group had a significant decrease of VAS rest score (0.90[0.12~1.67] as mean difference [95% confidence interval]) and pain score WOMAC (2.49[1.22~3.76]), and a significant improvement of physical performance with a decrease of the scores of WOMAC activities (8.18[3.97~12.39]), LI (3.47[1.68~5.26]), and KOOS (5.87[1.73~ 10.00]) in the post-treatment period. There were also a significant decrease of WOMAC pain score (2.83[2.12~3.53]) and a significant decrease of the scores of WOMAC activities (9.47[7.65~11.28]) and LI (4.12[2.34 to 5.89]) in the following period. Besides, compared with other treatment groups, ESWT also displayed the improvement in pain and physical performance, but it is not significant. Conclusions: The ESWT was effective and valuable method in pain relief as well as in improving physical activities in the participants with mild-to-moderate KOA. Clinical Relevance: There are the effects of ESWT on pain relief and the improvement of physical performance in the with KOA.Keywords: knee osteoarthritis, extracorporeal shockwave therapy, pain relief, physical performance, shockwave
Procedia PDF Downloads 8525039 Common Soccer Injuries and Its Risk Factors: A Systematic Review
Authors: C. Brandt, R. Christopher, N. Damons
Abstract:
Background: Soccer is one of the most common sports in the world. It is associated with a significant chance of injury either during training or during the course of an actual match. Studies on the epidemiology of soccer injuries have been widely conducted, but methodological appraisal is lacking to make evidence-based decisions. Objectives: The purpose of this study was to conduct a systematic review of common injuries in soccer and their risk factors. Methods: A systematic review was performed based on the Joanna Briggs Institute procedure for conducting systematic reviews. Databases such as SPORT Discus, Cinahl, Medline, Science Direct, PubMed, and grey literature were searched. The quality of selected studies was rated, and data extracted and tabulated. Plot data analysis was done, and incidence rates and odds ratios were calculated, with their respective 95% confidence intervals. I² statistic was used to determine the proportion of variation across studies. Results: The search yielded 62 studies, of which 21 were screened for inclusion. A total of 16 studies were included for the analysis, ten for qualitative and six for quantitative analysis. The included studies had, on average, a low risk of bias and good methodological quality. The heterogeneity amongst the pooled studies was, however, statistically significant (χ²-p value < 0.001). The pooled results indicated a high incidence of soccer injuries at an incidence rate of 6.83 per 1000 hours of play. The pooled results also showed significant evidence of risk factors and the likelihood of injury occurrence in relation to these risk factors (OR=1.12 95% CI 1.07; 1.17). Conclusion: Although multiple studies are available on the epidemiology of soccer injuries and risk factors, only a limited number of studies were of sound methodology to be included in a review. There was also significant heterogeneity amongst the studies. The incidence rate of common soccer injuries was found to be 6.83 per 1000 hours of play. This incidence rate is lower than the values reported by the majority of previous studies on the occurrence of common soccer injuries. The types of common soccer injuries found by this review support the soccer injuries pattern reported in existing literature as muscle strain and ligament sprain of varying severity, especially in the lower limbs. The risk factors that emerged from this systematic review are predominantly intrinsic risk factors. The risk factors increase the risk of traumatic and overuse injuries of the lower extremities such as hamstrings and groin strains, knee and ankle sprains, and contusion.Keywords: incidence, prevalence, risk factors, soccer injuries
Procedia PDF Downloads 18225038 Research Opportunities in Business Process Management and Performance Measurement from a Constructivist View
Authors: R.T.O. Lacerda, L. Ensslin., S.R. Ensslin, L. Knoff
Abstract:
This research paper aims to discover research opportunities in business process management and performance measurement from a constructivist view. The nature of this research is exploratory and descriptive and the research method was performed in a qualitative way. The process narrowed down 2142 articles, gathered after a search in scientific databases, and identified 16 articles that were relevant to the research and highly cited. The analysis found that most of the articles uses realistic approach and there is a need to analyze the decision making process in a singular manner. The measurement criteria are identified from scientific literature searching, in most cases, using ordinal scale without any integration process to present the results to the decision maker. Regarding management aspects, most of the articles do not have a structured process to measure the current situation and generate improvements opportunities.Keywords: performance measurement, BPM, decision, research opportunities
Procedia PDF Downloads 31125037 Inspection of Railway Track Fastening Elements Using Artificial Vision
Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux
Abstract:
In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network
Procedia PDF Downloads 45325036 An Overview of New Era in Food Science and Technology
Authors: Raana Babadi Fathipour
Abstract:
Strict prerequisites of logical diaries united ought to demonstrate the exploratory information is (in)significant from the statistical point of view and has driven a soak increment within the utilization and advancement of the factual program. It is essential that the utilization of numerical and measurable strategies, counting chemometrics and many other factual methods/algorithms in nourishment science and innovation has expanded steeply within the final 20 a long time. Computational apparatuses accessible can be utilized not as it were to run factual investigations such as univariate and bivariate tests as well as multivariate calibration and improvement of complex models but also to run reenactments of distinctive scenarios considering a set of inputs or essentially making expectations for particular information sets or conditions. Conducting a fast look within the most legitimate logical databases (Pubmed, ScienceDirect, Scopus), it is conceivable to watch that measurable strategies have picked up a colossal space in numerous regions.Keywords: food science, food technology, food safety, computational tools
Procedia PDF Downloads 6725035 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.Keywords: biomedical data, learning, classifier, algorithms decision tree, knowledge extraction
Procedia PDF Downloads 55825034 Analysis of Different Classification Techniques Using WEKA for Diabetic Disease
Authors: Usama Ahmed
Abstract:
Data mining is the process of analyze data which are used to predict helpful information. It is the field of research which solve various type of problem. In data mining, classification is an important technique to classify different kind of data. Diabetes is most common disease. This paper implements different classification technique using Waikato Environment for Knowledge Analysis (WEKA) on diabetes dataset and find which algorithm is suitable for working. The best classification algorithm based on diabetic data is Naïve Bayes. The accuracy of Naïve Bayes is 76.31% and take 0.06 seconds to build the model.Keywords: data mining, classification, diabetes, WEKA
Procedia PDF Downloads 14725033 Water Quality, Safety and Drowning Prevention to Preschool Children in Sub-Saharan Africa
Authors: Amos King'ori Githu
Abstract:
Water safety is crucial for all ages, but particularly for children. In the past decade, preschool institutions in Sub-Saharan Africa have seen the inclusion of swimming as one of the co-curricular activities. However, these countries face challenges in adopting frameworks, staffing, and resources to heighten water safety, quality, and drowning prevention, hence the focus of this research. It is worth noting that drowning is a leading cause of injury-related deaths among children. Universally, the highest drowning rates occur among children aged 1-4 years and 5-9 years. Preschool children even stand a higher risk of drowning as they are active, eager, and curious to explore their environment. If not supervised closely around or in water, these children can drown quickly in just a few inches of water. Thus, this empirical review focuses on the identification, assessment, and analysis of water safety efforts to curb drowning among children and assess the quality of water to mitigate contamination that may eventually pose infection risks to the children. In addition, it outlines the use of behavioral theories and evaluation frameworks to guide the above. Notably, a search on ten databases was adopted for crucial peer-reviewed articles, and five were selected in the eventual review. This research relied extensively on secondary data to curb water infections and drowning-inflicted deaths among children. It suffices to say that interventions must be supported that adopt an array of strategies, are guided by planning and theory as well as evaluation frameworks, and are vast in intervention design, evaluation, and delivery methodology. Finally, this approach will offer solid evidence that can be shared to guide future practices and policies in preschools on child safety and drowning prevention.Keywords: water quality and safety, drowning prevention, preschool children, sub-saharan Africa, supervision
Procedia PDF Downloads 6025032 A Simple Model for Solar Panel Efficiency
Authors: Stefano M. Spagocci
Abstract:
The efficiency of photovoltaic panels can be calculated with such software packages as RETScreen that allow design engineers to take financial as well as technical considerations into account. RETScreen is interfaced with meteorological databases, so that efficiency calculations can be realistically carried out. The author has recently contributed to the development of solar modules with accumulation capability and an embedded water purifier, aimed at off-grid users such as users in developing countries. The software packages examined do not allow to take ancillary equipment into account, hence the decision to implement a technical and financial model of the system. The author realized that, rather than re-implementing the quite sophisticated model of RETScreen - a mathematical description of which is anyway not publicly available - it was possible to drastically simplify it, including the meteorological factors which, in RETScreen, are presented in a numerical form. The day-by-day efficiency of a photovoltaic solar panel was parametrized by the product of factors expressing, respectively, daytime duration, solar right ascension motion, solar declination motion, cloudiness, temperature. For the sun-motion-dependent factors, positional astronomy formulae, simplified by the author, were employed. Meteorology-dependent factors were fitted by simple trigonometric functions, employing numerical data supplied by RETScreen. The accuracy of our model was tested by comparing it to the predictions of RETScreen; the accuracy obtained was 11%. In conclusion, our study resulted in a model that can be easily implemented in a spreadsheet - thus being easily manageable by non-specialist personnel - or in more sophisticated software packages. The model was used in a number of design exercises, concerning photovoltaic solar panels and ancillary equipment like the above-mentioned water purifier.Keywords: clean energy, energy engineering, mathematical modelling, photovoltaic panels, solar energy
Procedia PDF Downloads 6725031 Differential Response of Cellular Antioxidants and Proteome Expression to Salt, Cadmium and Their Combination in Spinach (Spinacia oleracea)
Authors: Rita Bagheri, Javed Ahmed, Humayra Bashir, M. Irfan Qureshi
Abstract:
Agriculture lands suffer from a combination of stresses such as salinity and metal contamination including cadmium at the same time. Under such condition of multiple stresses, plant may exhibit unique responses different from the stress occurring individually. Thus, it would be interesting to investigate that how plant respond to combined stress at level of antioxidants and proteome expression, and identifying the proteins which are involved in imparting stress tolerance. With an approach of comparative proteomics and antioxidant analysis, present study investigates the response of Spinacia oleracea to salt (NaCl), cadmium (Cd), and their combination (NaCl+Cd) stress. Two-dimensional gel electrophoresis was used for resolving leaf proteome, and proteins of interest were identified using PDQuest software. A number of proteins expressed differentially, those indicated towards their roles in imparting stress tolerance, were digested by trypsin and analyzed on mass spectrometer for peptide mass fingerprinting (PMF). Data signals were then matched with protein databases using MASCOT. Results show that NaCl, Cd and both together (NaCl+Cd) induce oxidative stress which was highest in combined stress of Cd+NaCl. Correspondingly, the activities of enzymatic antioxidants viz., SOD, APX, GR and CAT, and non-enzymatic antioxidants had highest changes under combined stress compares to single stress over their respective controls. Among the identified proteins, several interesting proteins were identified that may be have role in Spinacia oleracia tolerance in individual and combinatorial stress of salt and cadmium. The functional classification of identified proteins indicates the importance and necessity of keeping higher ratio of defence and disease responsive proteins.Keywords: Spinacia oleracea, Cd, salinity, proteomics, antioxidants, combinatorial stress
Procedia PDF Downloads 38225030 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 8225029 A Systematic Review for the Association between Active Smoking and Latent Tuberculosis Infection
Authors: Pui Hong Chung, Wing Chi Ho, Jun Li, Cyrus Leung, Ek Yeoh
Abstract:
Background: Cigarette smoking is associated with poor tuberculosis (TB) outcomes in terms of progression of active TB, relapse of TB and TB-related mortality, but the association with latent tuberculosis infection (LTBI) is unclear. The systematic review conducted aimed at studying the association between active smoking and LTBI, and likelihood of dose-response relationship. Methods: Two independent reviewers searched three electronic databases comprising PudMed, Medline by EBSCOHOST, ExcerptaMedica Database (EMBASE), from inception up to 31st Dec 2015 for studies reporting data on current smoking and the LTBI with tuberculin skin test (TST) or interferon-γ release assays (IGRAs) results, comparing the odds ratios (ORs) of outcome measure of TST or IGRAs among current smokers with 95% confidence intervals (CI). Results: Seven studies were identified, including six cross-sectional studies and one longitudinal cohort study. The outcome measures from three studies were in TST, three studies in IGRAs and one for both tests. For TST, OR ranging from 1.39 to 3.40 (95% CI) with all studies shown positive association between cigarette smoking and LTBI. For IGRAs, OR ranging from 0.47 to 1.89 (95% CI) with one study shown the negative association that might be related to impaired interferon-gamma production in immunosuppressive persons. One identified study demonstrated positive dose-response relationship in TST result. Conclusions: Cigarette smoking is likely to be a risk factor of LTBI. There is the important implication for TB and tobacco control program to halt TB by empowering public health policy. Further study is also needed to provide more evidence of the dose-response model/relationship.Keywords: latent tuberculosis infection, systematic review, active smoking, model
Procedia PDF Downloads 25625028 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling
Authors: Ahmad Odeh, Ahmad Jrade
Abstract:
Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.Keywords: building information modelling, energy, life cycle analysis, sustainablity
Procedia PDF Downloads 26925027 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 27325026 Preventive Interventions for Central Venous Catheter Infections in Intensive Care Units: A Systematic Literature Review
Authors: Jakob Renko, Deja Praprotnik, Kristina Martinovič, Igor Karnjuš
Abstract:
Introduction: Catheter-related bloodstream infections are a major burden for healthcare and patients. Although infections of this type cannot be completely avoided, they can be reduced by taking preventive measures. The aim of this study is to review and analyze the existing literature on preventive interventions to prevent central venous catheters (CVC) infections. Methods: A systematic literature review was carried out. The international databases CINAHL, Medline, PubMed, and Web of Science were searched using the search strategy: "catheter-related infections" AND "intensive care units" AND "prevention" AND "central venous catheter." Articles that met the inclusion and exclusion criteria were included in the study. The literature search flow is illustrated by the PRISMA diagram. The descriptive research method was used to analyze the data. Results: Out of 554 search results, 22 surveys were included in the final analysis. We identified seven relevant preventive measures to prevent CVC infections: washing the whole body with chlorhexidine gluconate (CHG) solution, disinfecting the CVC entry site with CHG solution, use of CHG or silver dressings, alcohol protective caps, CVC care education, selecting appropriate catheter and multicomponent care bundles. Discussion and conclusions: Both single interventions and multicomponent care bundles have been shown to be currently effective measures to prevent CVC infections in adult patients in the ICU. None of the measures identified stood out in terms of their effectiveness. Prevention work to reduce CVC infections in the ICU is a complex process that requires the simultaneous consideration of several factors.Keywords: central venous access, critically ill patients, hospital-acquired complications, prevention
Procedia PDF Downloads 33625025 Interpreting Privacy Harms from a Non-Economic Perspective
Authors: Christopher Muhawe, Masooda Bashir
Abstract:
With increased Internet Communication Technology(ICT), the virtual world has become the new normal. At the same time, there is an unprecedented collection of massive amounts of data by both private and public entities. Unfortunately, this increase in data collection has been in tandem with an increase in data misuse and data breach. Regrettably, the majority of data breach and data misuse claims have been unsuccessful in the United States courts for the failure of proof of direct injury to physical or economic interests. The requirement to express data privacy harms from an economic or physical stance negates the fact that not all data harms are physical or economic in nature. The challenge is compounded by the fact that data breach harms and risks do not attach immediately. This research will use a descriptive and normative approach to show that not all data harms can be expressed in economic or physical terms. Expressing privacy harms purely from an economic or physical harm perspective negates the fact that data insecurity may result into harms which run counter the functions of privacy in our lives. The promotion of liberty, selfhood, autonomy, promotion of human social relations and the furtherance of the existence of a free society. There is no economic value that can be placed on these functions of privacy. The proposed approach addresses data harms from a psychological and social perspective.Keywords: data breach and misuse, economic harms, privacy harms, psychological harms
Procedia PDF Downloads 19525024 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 4425023 Unlocking the Genetic Code: Exploring the Potential of DNA Barcoding for Biodiversity Assessment
Authors: Mohammed Ahmed Ahmed Odah
Abstract:
DNA barcoding is a crucial method for assessing and monitoring species diversity amidst escalating threats to global biodiversity. The author explores DNA barcoding's potential as a robust and reliable tool for biodiversity assessment. It begins with a comprehensive review of existing literature, delving into the theoretical foundations, methodologies and applications of DNA barcoding. The suitability of various DNA regions, like the COI gene, as universal barcodes is extensively investigated. Additionally, the advantages and limitations of different DNA sequencing technologies and bioinformatics tools are evaluated within the context of DNA barcoding. To evaluate the efficacy of DNA barcoding, diverse ecosystems, including terrestrial, freshwater and marine habitats, are sampled. Extracted DNA from collected specimens undergoes amplification and sequencing of the target barcode region. Comparison of the obtained DNA sequences with reference databases allows for the identification and classification of the sampled organisms. Findings demonstrate that DNA barcoding accurately identifies species, even in cases where morphological identification proves challenging. Moreover, it sheds light on cryptic and endangered species, aiding conservation efforts. The author also investigates patterns of genetic diversity and evolutionary relationships among different taxa through the analysis of genetic data. This research contributes to the growing knowledge of DNA barcoding and its applicability for biodiversity assessment. The advantages of this approach, such as speed, accuracy and cost-effectiveness, are highlighted, along with areas for improvement. By unlocking the genetic code, DNA barcoding enhances our understanding of biodiversity, supports conservation initiatives and informs evidence-based decision-making for the sustainable management of ecosystems.Keywords: DNA barcoding, biodiversity assessment, genetic code, species identification, taxonomic resolution, next-generation sequencing
Procedia PDF Downloads 2425022 Data Access, AI Intensity, and Scale Advantages
Authors: Chuping Lo
Abstract:
This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.Keywords: digital intensity, digital divide, international trade, scale of economics
Procedia PDF Downloads 6825021 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data
Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju
Abstract:
Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding
Procedia PDF Downloads 41225020 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 25725019 Psychological Distress Screening in Patients with Esophageal Cancer after Esophagectomy: A Scoping Review
Authors: Erietta-Christina Arnaoutaki, Stelios-Elion Bousi, Marinos Zachiotis, Simoni Zarkada, Alexandra Chrysagi, Mamdouh Fahad Alenazi, Dimitri Aristotle Raptis
Abstract:
Objective: This review aimed to evaluate the mental health status of patients with esophageal cancer following surgical treatment, as well as the role of psychological distress screening tests in this patient population. Methods: Studies reporting psychometric screening tools used in esophageal cancer patients after esophagectomy, published before January 2024 on PubMed, Scopus, and CENTRAL databases, were searched and analyzed. Results: Six non-randomized control trials were selected for inclusion in this scoping review, which involved 1059 patients undergoing esophagectomy for esophageal cancer. Among the included studies, five employed the Hospital Anxiety and Depression Scale (HADS) for anxiety and/or depression screening, while one used the MD Anderson Symptom Inventory for gastrointestinal cancer (MDASI-GI) for sadness screening. A range of time points was used to evaluate these patients: 102 patients were evaluated at 1 month, 230 patients at 3 months, 218 patients at 6 months, 653 patients at 12 months, and 154 patients at 24 months postoperatively. Analysis of data pooled from three studies employing the HADS revealed a prevalence of 19.45% for anxiety and 17.92% for depression at the 12-month follow-up and mean scores of 3.91 (3.12) and 3.56 (3.12) for the HADS anxiety (HADS-A) and depression (HADS-D) subscales respectively, at any time postoperatively. Conclusion: The findings show a neglected concern regarding the mental health of esophageal cancer survivors following surgical treatment. The use of psychometric screening tools is essential to address psychological distress and improve the quality of life of these patients.Keywords: esophageal cancer, esophagectomy, psychological distress, anxiety, depression, psychometric tests, HADS, MDASI-GI
Procedia PDF Downloads 1725018 A Review on Intelligent Systems for Geoscience
Authors: R Palson Kennedy, P.Kiran Sai
Abstract:
This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science
Procedia PDF Downloads 13525017 Competitors’ Influence Analysis of a Retailer by Using Customer Value and Huff’s Gravity Model
Authors: Yepeng Cheng, Yasuhiko Morimoto
Abstract:
Customer relationship analysis is vital for retail stores, especially for supermarkets. The point of sale (POS) systems make it possible to record the daily purchasing behaviors of customers as an identification point of sale (ID-POS) database, which can be used to analyze customer behaviors of a supermarket. The customer value is an indicator based on ID-POS database for detecting the customer loyalty of a store. In general, there are many supermarkets in a city, and other nearby competitor supermarkets significantly affect the customer value of customers of a supermarket. However, it is impossible to get detailed ID-POS databases of competitor supermarkets. This study firstly focused on the customer value and distance between a customer's home and supermarkets in a city, and then constructed the models based on logistic regression analysis to analyze correlations between distance and purchasing behaviors only from a POS database of a supermarket chain. During the modeling process, there are three primary problems existed, including the incomparable problem of customer values, the multicollinearity problem among customer value and distance data, and the number of valid partial regression coefficients. The improved customer value, Huff’s gravity model, and inverse attractiveness frequency are considered to solve these problems. This paper presents three types of models based on these three methods for loyal customer classification and competitors’ influence analysis. In numerical experiments, all types of models are useful for loyal customer classification. The type of model, including all three methods, is the most superior one for evaluating the influence of the other nearby supermarkets on customers' purchasing of a supermarket chain from the viewpoint of valid partial regression coefficients and accuracy.Keywords: customer value, Huff's Gravity Model, POS, Retailer
Procedia PDF Downloads 12325016 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network
Procedia PDF Downloads 16125015 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13525014 Alcohol-Containing versus Aqueous-Based Solutions for Skin Preparation in Abdominal Surgery: A Systematic Review and Meta-Analysis
Authors: Dimitra V. Peristeri, Hussameldin M. Nour, Amiya Ahsan, Sameh Abogabal, Krishna K. Singh, Muhammad Shafique Sajid
Abstract:
Introduction: The use of optimal skin antiseptic agents for the prevention of surgical site infection (SSI) is of critical importance, especially during abdominal surgical procedures. Alcohol-based chlorhexidine gluconate (CHG) and aqueous-based povidone-iodine (PVI) are the two most common skin antiseptics used nowadays. The objective of this article is to evaluate the effectiveness of alcohol-based CHG versus aqueous-based PVI used for skin preparation before abdominal surgery to reduce SSIs. Methods: Standard medical databases such as MEDLINE, Embase, Pubmed, and Cochrane Library were searched to find randomised, controlled trials (RCTs) comparing alcohol-based CHG skin preparation versus aqueous-based PVI in patients undergoing abdominal surgery. The combined outcomes of SSIs were calculated using an odds ratio (OR) with 95% confidence intervals (95% CI). All data were analysed using Review Manager (RevMan) Software 5.4, and the meta-analysis was performed with a random effect model analysis. Results: A total of 11 studies, all RCTs, were included (n= 12072 participants), recruiting adult patients undergoing abdominal surgery. In the random effect model analysis, the use of alcohol-based CHG in patients undergoing abdominal surgery was associated with a reduced risk of SSI compared to aqueous-based PVI (OR: 0.84; 95% CI [0.74, 0.96], z= 2.61, p= 0.009). Conclusion: Alcohol-based CHG may be more effective for preventing the risk of SSI compared to aqueous-based PVI agents in abdominal surgery. The conclusion of this meta-analysis may add a guiding value to reinforce current clinical practice guidelines.Keywords: skin preparation, surgical site infection, chlorhexidine, skin antiseptics
Procedia PDF Downloads 109