Search results for: customer discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1638

Search results for: customer discovery

1188 Artificial Intelligence in Bioscience: The Next Frontier

Authors: Parthiban Srinivasan

Abstract:

With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.

Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction

Procedia PDF Downloads 360
1187 Implementation-Specific Obstacles and Measures for Chatbots in B2B Business

Authors: Daniela Greven, Kathrin Endres, Shugana Sundralingam

Abstract:

The use of chatbots has hardly been established in B2B companies to date and involves various challenges. The goal of this paper is to identify the biggest obstacles to the successful implementation of chatbots in B2B companies and to develop measures to overcome them. The obstacles are identified by conducting expert interviews within the framework of Eisenhardt's case study research. These are examined through a socio-technical analysis focusing on people, technology, and organization. By means of systematic literature research and in-depth interviews with German chatbot providers and customers of chatbots, measures for overcoming the obstacles are identified. Using interviews with experts from German chatbot providers, the responsible stakeholders of each measure according to the RASCI Responsibility Matrix are identified. The study shows that there are major obstacles in all areas of a socio-technical system that can cause the implementation of a chatbot to fail. A total of 44 implementation obstacles and 58 measures to overcome these obstacles are identified. The study shows that there are major obstacles in the areas of people, technology, and organization of a socio-technical system that can cause the implementation of a chatbot to fail. A holistic view is therefore essential. The results provide firms with a guideline on how to overcome potential obstacles during chatbot implementation in B2B customer service.

Keywords: chatbots, socio-technical analysis, B2B customer service, implementation success factors

Procedia PDF Downloads 96
1186 Research on Construction of Subject Knowledge Base Based on Literature Knowledge Extraction

Authors: Yumeng Ma, Fang Wang, Jinxia Huang

Abstract:

Researchers put forward higher requirements for efficient acquisition and utilization of domain knowledge in the big data era. As literature is an effective way for researchers to quickly and accurately understand the research situation in their field, the knowledge discovery based on literature has become a new research method. As a tool to organize and manage knowledge in a specific domain, the subject knowledge base can be used to mine and present the knowledge behind the literature to meet the users' personalized needs. This study designs the construction route of the subject knowledge base for specific research problems. Information extraction method based on knowledge engineering is adopted. Firstly, the subject knowledge model is built through the abstraction of the research elements. Then under the guidance of the knowledge model, extraction rules of knowledge points are compiled to analyze, extract and correlate entities, relations, and attributes in literature. Finally, a database platform based on this structured knowledge is developed that can provide a variety of services such as knowledge retrieval, knowledge browsing, knowledge q&a, and visualization correlation. Taking the construction practices in the field of activating blood circulation and removing stasis as an example, this study analyzes how to construct subject knowledge base based on literature knowledge extraction. As the system functional test shows, this subject knowledge base can realize the expected service scenarios such as a quick query of knowledge, related discovery of knowledge and literature, knowledge organization. As this study enables subject knowledge base to help researchers locate and acquire deep domain knowledge quickly and accurately, it provides a transformation mode of knowledge resource construction and personalized precision knowledge services in the data-intensive research environment.

Keywords: knowledge model, literature knowledge extraction, precision knowledge services, subject knowledge base

Procedia PDF Downloads 163
1185 Optimizing Design Works in Construction Consultant Company: A Knowledge-Based Application

Authors: Phan Nghiem Vu, Le Tuan Vu, Ta Quang Tai

Abstract:

The optimal construction design used during the execution of a construction project is a key factor in determining high productivity and customer satisfaction, however, this management process sometimes is carried out without care and the systematic method that it deserves, bringing negative consequences. This study proposes a knowledge management (KM) approach that will enable the intelligent use of experienced and acknowledged engineers to improve the management of construction design works for a project. Then a knowledge-based application to support this decision-making process is proposed and described. To define and design the system for the application, semi-structured interviews were conducted within five construction consulting organizations with the purpose of studying the way that the method’ optimizing process is implemented in practice and the knowledge supported with it. A system of an optimizing construction design works (OCDW) based on knowledge was developed then validated with construction experts. The OCDW was liked as a valuable tool for construction design works’ optimization, by supporting organizations to generate a corporate memory on this issue, reducing the reliance on individual knowledge and also the subjectivity of the decision-making process. The benefits are described as provided by the performance support system, reducing costs and time, improving product design quality, satisfying customer requirements, expanding the brand organization.

Keywords: optimizing construction design work, construction consultant organization, knowledge management, knowledge-based application

Procedia PDF Downloads 130
1184 Using Real Truck Tours Feedback for Address Geocoding Correction

Authors: Dalicia Bouallouche, Jean-Baptiste Vioix, Stéphane Millot, Eric Busvelle

Abstract:

When researchers or logistics software developers deal with vehicle routing optimization, they mainly focus on minimizing the total travelled distance or the total time spent in the tours by the trucks, and maximizing the number of visited customers. They assume that the upstream real data given to carry the optimization of a transporter tours is free from errors, like customers’ real constraints, customers’ addresses and their GPS-coordinates. However, in real transporter situations, upstream data is often of bad quality because of address geocoding errors and the irrelevance of received addresses from the EDI (Electronic Data Interchange). In fact, geocoders are not exempt from errors and could give impertinent GPS-coordinates. Also, even with a good geocoding, an inaccurate address can lead to a bad geocoding. For instance, when the geocoder has trouble with geocoding an address, it returns those of the center of the city. As well, an obvious geocoding issue is that the mappings used by the geocoders are not regularly updated. Thus, new buildings could not exist on maps until the next update. Even so, trying to optimize tours with impertinent customers GPS-coordinates, which are the most important and basic input data to take into account for solving a vehicle routing problem, is not really useful and will lead to a bad and incoherent solution tours because the locations of the customers used for the optimization are very different from their real positions. Our work is supported by a logistics software editor Tedies and a transport company Upsilon. We work with Upsilon's truck routes data to carry our experiments. In fact, these trucks are equipped with TOMTOM GPSs that continuously save their tours data (positions, speeds, tachograph-information, etc.). We, then, retrieve these data to extract the real truck routes to work with. The aim of this work is to use the experience of the driver and the feedback of the real truck tours to validate GPS-coordinates of well geocoded addresses, and bring a correction to the badly geocoded addresses. Thereby, when a vehicle makes its tour, for each visited customer, the vehicle might have trouble with finding this customer’s address at most once. In other words, the vehicle would be wrong at most once for each customer’s address. Our method significantly improves the quality of the geocoding. Hence, we achieve to automatically correct an average of 70% of GPS-coordinates of a tour addresses. The rest of the GPS-coordinates are corrected in a manual way by giving the user indications to help him to correct them. This study shows the importance of taking into account the feedback of the trucks to gradually correct address geocoding errors. Indeed, the accuracy of customer’s address and its GPS-coordinates play a major role in tours optimization. Unfortunately, address writing errors are very frequent. This feedback is naturally and usually taken into account by transporters (by asking drivers, calling customers…), to learn about their tours and bring corrections to the upcoming tours. Hence, we develop a method to do a big part of that automatically.

Keywords: driver experience feedback, geocoding correction, real truck tours

Procedia PDF Downloads 675
1183 Transformation of the Business Model in an Occupational Health Care Company Embedded in an Emerging Personal Data Ecosystem: A Case Study in Finland

Authors: Tero Huhtala, Minna Pikkarainen, Saila Saraniemi

Abstract:

Information technology has long been used as an enabler of exchange for goods and services. Services are evolving from generic to personalized, and the reverse use of customer data has been discussed in both academia and industry for the past few years. This article presents the results of an empirical case study in the area of preventive health care services. The primary data were gathered in workshops, in which future personal data-based services were conceptualized by analyzing future scenarios from a business perspective. The aim of this study is to understand business model transformation in emerging personal data ecosystems. The work was done as a case study in the context of occupational healthcare. The results have implications to theory and practice, indicating that adopting personal data management principles requires transformation of the business model, which, if successfully managed, may provide access to more resources, potential to offer better value, and additional customer channels. These advantages correlate with the broadening of the business ecosystem. Expanding the scope of this study to include more actors would improve the validity of the research. The results draw from existing literature and are based on findings from a case study and the economic properties of the healthcare industry in Finland.

Keywords: ecosystem, business model, personal data, preventive healthcare

Procedia PDF Downloads 251
1182 Recent Advances in Data Warehouse

Authors: Fahad Hanash Alzahrani

Abstract:

This paper describes some recent advances in a quickly developing area of data storing and processing based on Data Warehouses and Data Mining techniques, which are associated with software, hardware, data mining algorithms and visualisation techniques having common features for any specific problems and tasks of their implementation.

Keywords: data warehouse, data mining, knowledge discovery in databases, on-line analytical processing

Procedia PDF Downloads 404
1181 Implementation of Total Quality Management in a Small Scale Industry: A Case Study

Authors: Soham Lalwala, Ronita Singh, Yaman Pattanaik

Abstract:

In the present scenario of globalization and privatization, it becomes difficult for small scale industries to sustain due to rapidly increasing competition. In a developing country, most of the gross output is generally obtained from small scale industries. Thus, quality plays a vital role in maintaining customer satisfaction. Total quality management (TQM) is an approach which enables employees to focus on quality rather quantity, further improving the competitiveness, effectiveness and flexibility of the whole organization. The objective of the paper is to present the application of TQM and develop a TQM Model in a small scale industry of narrow fabrics in Surat, India named ‘Rajdhani Lace & Borders’. Further, critical success factors relating all the fabric processes involved were identified. The data was collected by conducting a questionnaire survey. After data was collected, critical areas were visualized using different tools of TQM such as cause and effect diagram, control charts and run charts. Overall, responses were analyzed, and factor analysis was used to develop the model. The study presented here will aid the management of the above-mentioned industry in identifying the weaker areas and thus give a plausible solution to improve the total productivity of the firm along with effective utilization of resources and better customer satisfaction.

Keywords: critical success factors, narrow fabrics, quality, small scale industries, total quality management (TQM)

Procedia PDF Downloads 254
1180 The Early Discovery and Confirmation of the Indus Valley Civilization

Authors: Muhammad Ishaqa, Quanchao Zhanga, Qian Wangb

Abstract:

The Indus Valley Civilization is predominantly found in the northeast of Afghanistan, Pakistan, and the northwest of India and is considered one of the four ancient civilizations of the Old World, as well as the first urban civilization in South Asia. In 1920, John Marshall and other archaeologists established the existence of this civilization. Over the course of a century, India and Pakistan have made significant advancements in their joint archaeological investigation and excavation, contributing to the study of the Indus Valley Civilization. Given the importance of early discovery and confirmation of this civilization, our research focuses on the academic history of its archaeology by gathering published research material. Our research begins by collecting research data associated with the Indus Valley Civilization and documenting the process of archaeological investigations and excavations from the 19th century until the present day. We also summarize the archaeological works conducted during different periods. Furthermore, we present the primary academic views on the Indus Civilization from the 19th century until the present, explaining their developmental process and highlighting recent research. This forms a foundation for further study. We discovered that the archaeological research of the Indus Civilization is significantly influenced by Western archaeology and has yet to establish an independent, local research system. We delve into the three primary sites of the Indus Valley Civilization - Harappa, Mohenjo-Daro, and Chanhudaro - discussing their history and archaeological excavation records. Our findings indicate that the Indus Civilization is solely dependent on archaeology, distinguishing it from the Sumerian Civilization and verifying that it originates from the Bronze Age of the Indus Valley. Lastly, we examine the primary academic issues associated with the Indus Civilization in greater depth. These issues include climate environment, political system, primitive religion, and academic contribution.

Keywords: Indus Valley civilization, archaeology, Harappa, Mohenjo-Daro

Procedia PDF Downloads 53
1179 Using Printouts as Social Media Evidence and Its Authentication in the Courtroom

Authors: Chih-Ping Chang

Abstract:

Different from traditional objective evidence, social media evidence has its own characteristics with easily tampering, recoverability, and cannot be read without using other devices (such as a computer). Simply taking a screenshot from social network sites must be questioned its original identity. When the police search and seizure digital information, a common way they use is to directly print out digital data obtained and ask the signature of the parties at the presence, without taking original digital data back. In addition to the issue on its original identity, this conduct to obtain evidence may have another two results. First, it will easily allege that is tampering evidence because the police wanted to frame the suspect and falsified evidence. Second, it is not easy to discovery hidden information. The core evidence associated with crime may not appear in the contents of files. Through discovery the original file, data related to the file, such as the original producer, creation time, modification date, and even GPS location display can be revealed from hidden information. Therefore, how to show this kind of evidence in the courtroom will be arguably the most important task for ruling social media evidence. This article, first, will introduce forensic software, like EnCase, TCT, FTK, and analyze their function to prove the identity with another digital data. Then turning back to the court, the second part of this article will discuss legal standard for authentication of social media evidence and application of that forensic software in the courtroom. As the conclusion, this article will provide a rethinking, that is, what kind of authenticity is this rule of evidence chase for. Does legal system automatically operate the transcription of scientific knowledge? Or furthermore, it wants to better render justice, not only under scientific fact, but through multivariate debating.

Keywords: federal rule of evidence, internet forensic, printouts as evidence, social media evidence, United States v. Vayner

Procedia PDF Downloads 291
1178 Fuzzy Set Qualitative Comparative Analysis in Business Models' Study

Authors: K. Debkowska

Abstract:

The aim of this article is presenting the possibilities of using Fuzzy Set Qualitative Comparative Analysis (fsQCA) in researches concerning business models of enterprises. FsQCA is a bridge between quantitative and qualitative researches. It's potential can be used in analysis and evaluation of business models. The article presents the results of a study conducted on the basis of enterprises belonging to different sectors: transport and logistics, industry, building construction, and trade. The enterprises have been researched taking into account the components of business models and the financial condition of companies. Business models are areas of complex and heterogeneous nature. The use of fsQCA has enabled to answer the following question: which components of a business model and in which configuration influence better financial condition of enterprises. The analysis has been performed separately for particular sectors. This enabled to compare the combinations of business models' components which actively influence the financial condition of enterprises in analyzed sectors. The following components of business models were analyzed for the purposes of the study: Key Partners, Key Activities, Key Resources, Value Proposition, Channels, Cost Structure, Revenue Streams, Customer Segment and Customer Relationships. These components of the study constituted the variables shaping the financial results of enterprises. The results of the study lead us to believe that fsQCA can help in analyzing and evaluating a business model, which is important in terms of making a business decision about the business model used or its change. In addition, results obtained by fsQCA can be applied by all stakeholders connected with the company.

Keywords: business models, components of business models, data analysis, fsQCA

Procedia PDF Downloads 173
1177 Healthcare Service Quality in Indian Context

Authors: Ganesh Nivrutti Akhade

Abstract:

This paper attempts to develop a reliable and valid instrument of measuring Healthcare service quality in India, and also analyses the impact of demographic factor of respondent on healthcare service quality. In this research paper , extant literature survey, discussion with stakeholder of healthcare system such as patients, patients relative, administrators of hospitals, clinics, professionals and expert interviews were used to develop a attributes of healthcare service quality dimensions. A pilot study was conducted with a sample of 31 healthcare patients of private sector, public sector ,trust hospital ,primary health care centers and clinics was surveyed in the Nagpur Metropolitan Area. At the end fifteen dimensions—reliability, assurance, responsiveness, tangibility, empathy, affordability, respect, and caring, Attitude of staff, Technical competence, Appropriateness, Safety, continuity, Effectiveness, Availability, Financial support. This fifteen-dimensional model was validated through a content validity and construct validity. The proposed research model shows acceptable fit indices. Impact of these dimensions on the Overall Healthcare Service Quality and customer satisfaction are analyzed using multiple regression technique. Findings indicate that all dimensions carry significant impact on the Overall Healthcare Service Quality perceptions and customer satisfaction. However, availability and effectiveness dimensions carry the maximum impact on the Overall healthcare Service Quality .

Keywords: healthcare, service quality, factor analysis (CFA), india, service quality dimensions

Procedia PDF Downloads 278
1176 Pharmaceutical Science and Development in Drug Research

Authors: Adegoke Yinka Adebayo

Abstract:

An understanding of the critical product attributes that impact on in vivo performance is key to the production of safe and effective medicines. Thus, a key driver for our research is the development of new basic science and technology underpinning the development of new pharmaceutical products. Research includes the structure and properties of drugs and excipients, biopharmaceutical characterisation, pharmaceutical processing and technology and formulation and analysis.

Keywords: drug discovery, drug development, drug delivery

Procedia PDF Downloads 495
1175 Classification Framework of Production Planning and Scheduling Solutions from Supply Chain Management Perspective

Authors: Kwan Hee Han

Abstract:

In today’s business environments, frequent change of customer requirements is a tough challenge to manufacturing company. To cope with these challenges, a production planning and scheduling (PP&S) function might be established to provide accountability for both customer service and operational efficiency. Nowadays, many manufacturing firms have utilized PP&S software solutions to generate a realistic production plan and schedule to adapt to external changes efficiently. However, companies which consider the introduction of PP&S software solution, still have difficulties for selecting adequate solution to meet their specific needs. Since the task of PP&S is the one of major building blocks of SCM (Supply Chain Management) architecture, which deals with short term decision making in the production process of SCM, it is needed that the functionalities of PP&S should be analysed within the whole SCM process. The aim of this paper is to analyse the PP&S functionalities and its system architecture from the SCM perspective by using the criteria of level of planning hierarchy, major 4 SCM processes and problem-solving approaches, and finally propose a classification framework of PP&S solutions to facilitate the comparison among various commercial software solutions. By using proposed framework, several major PP&S solutions are classified and positioned according to their functional characteristics in this paper. By using this framework, practitioners who consider the introduction of computerized PP&S solutions in manufacturing firms can prepare evaluation and benchmarking sheets for selecting the most suitable solution with ease and in less time.

Keywords: production planning, production scheduling, supply chain management, the advanced planning system

Procedia PDF Downloads 198
1174 Examining the Drivers of Engagement in Social Media Brand Communities

Authors: Rania S. Hussein

Abstract:

This research mainly focuses on examining engagement in social media brand communities. Engagement in social media has become a main focus in literature affirming that the role of social media in our daily lives is growing. (Akman and Mishra, 2017;Prado-Gascó et al., 2017). Social media has also become a key medium for brand communication and brand building relationships(Frimpong and McLean,2018;Dimitriu and Guesalaga, 2017). Engagement on social media has become a main focus of many researchers who tried to understand this concept further and draw a link between engagement and various social media activities (Cvijikj and Michahelles;2013), Andre,2015; Wang et al., 2015). According to Felix et al. (2017), the internet and social media have provided better digital resources to improve brand loyalty and customer interactions, thus leading to social media engagement within brand communities. The aim of this research is to highlight the importance of social media and why it is important to maintain engagement within social media. While the term ‘engagement’ is widely used in scholarly literature, there isn’t a common consensus about what the term exactly entails, according to Kidd, (2011). On one hand, it was seen as something that includes factors such as participation, activation, empowerment, devotion, trust, and productivity (Zhang et al, andBenyoucef, M. (2016), ). Other scholars held different viewpoints. For example, Lim et al. (2015) has chosen to break down engagement into three types: operational engagement, emotional engagement, and relational engagement. Chandler and Lusch (2015) further studied engagement as a means to measure commitment to a brand. Fernandes&Remelhe (2016) had a more technical view, measuring engagement through comments, following, subscribing, sharing, enjoying, writing, etc., in the social media context. ustomer engagement has become a research focus for understanding how consumer relationships are developed, retained, and improved within a digital context. Based on previous literature, it is evident that many customer engagement related studies are limited to the interaction between firms and consumers on social media. There is a clear gap in the literature regarding consumer-to-consumer interaction and user-generated content and its significance. While some researchers, such as Alversia et al. (2016), touched upon the importance of customer-based engagement, a gap still remains: there is no consistent and well-tested method for defining the factors that affect consumer interaction. Moreover, few scholarly research papers such as (Case, 2019; Riley, 2020;Habibi, 2014) provided to assist businesses understand their customers' interaction habits as well as the best ways to develop customer loyalty. Additionally, the majority of research on brand pages concentrated on the drivers of Consumer engagement, with just a few studies example, Lamberton, Cc(2016), Poorrezaei, (2016). (Jayasingh, 2019), looking into the implications. This study focuses on understanding the concept of engagement and its importance, specifically engagement within social media brand communities. It examines drivers as well as consequences of engagement, including brand knowledge, brand trust, entertainment, and brand page interactivity. Brand engagement is also expected to affect brand loyalty and word of the mouth.

Keywords: engagement, social media, brand communities, drivers

Procedia PDF Downloads 163
1173 Comparison of Blockchain Ecosystem for Identity Management

Authors: K. S. Suganya, R. Nedunchezhian

Abstract:

In recent years, blockchain technology has been found to be the most significant discovery in this digital era, after the discovery of the Internet and Cloud Computing. Blockchain is a simple, distributed public ledger that contains all the user’s transaction details in a block. The global copy of the block is then shared among all its peer-peer network users after validation by the Blockchain miners. Once a block is validated and accepted, it cannot be altered by any users making it a trust-free transaction. It also resolves the problem of double-spending by using traditional cryptographic methods. Since the advent of bitcoin, blockchain has been the backbone for all its transactions. But in recent years, it has found its roots and uses in many fields like Smart Contracts, Smart City management, healthcare, etc. Identity management against digital identity theft has become a major concern among financial and other organizations. To solve this digital identity theft, blockchain technology can be employed with existing identity management systems, which maintain a distributed public ledger containing details of an individual’s identity containing information such as Digital birth certificates, Citizenship number, Bank details, voter details, driving license in the form of blocks verified on the blockchain becomes time-stamped, unforgeable and publicly visible for any legitimate users. The main challenge in using blockchain technology to prevent digital identity theft is ensuring the pseudo-anonymity and privacy of the users. This survey paper will exert to study the blockchain concepts, consensus protocols, and various blockchain-based Digital Identity Management systems with their research scope. This paper also discusses the role of Blockchain in COVID-19 pandemic management by self-sovereign identity and supply chain management.

Keywords: blockchain, consensus protocols, bitcoin, identity theft, digital identity management, pandemic, COVID-19, self-sovereign identity

Procedia PDF Downloads 131
1172 Adaptive Energy-Aware Routing (AEAR) for Optimized Performance in Resource-Constrained Wireless Sensor Networks

Authors: Innocent Uzougbo Onwuegbuzie

Abstract:

Wireless Sensor Networks (WSNs) are crucial for numerous applications, yet they face significant challenges due to resource constraints such as limited power and memory. Traditional routing algorithms like Dijkstra, Ad hoc On-Demand Distance Vector (AODV), and Bellman-Ford, while effective in path establishment and discovery, are not optimized for the unique demands of WSNs due to their large memory footprint and power consumption. This paper introduces the Adaptive Energy-Aware Routing (AEAR) model, a solution designed to address these limitations. AEAR integrates reactive route discovery, localized decision-making using geographic information, energy-aware metrics, and dynamic adaptation to provide a robust and efficient routing strategy. We present a detailed comparative analysis using a dataset of 50 sensor nodes, evaluating power consumption, memory footprint, and path cost across AEAR, Dijkstra, AODV, and Bellman-Ford algorithms. Our results demonstrate that AEAR significantly reduces power consumption and memory usage while optimizing path weight. This improvement is achieved through adaptive mechanisms that balance energy efficiency and link quality, ensuring prolonged network lifespan and reliable communication. The AEAR model's superior performance underlines its potential as a viable routing solution for energy-constrained WSN environments, paving the way for more sustainable and resilient sensor network deployments.

Keywords: wireless sensor networks (WSNs), adaptive energy-aware routing (AEAR), routing algorithms, energy, efficiency, network lifespan

Procedia PDF Downloads 39
1171 Cas9-Assisted Direct Cloning and Refactoring of a Silent Biosynthetic Gene Cluster

Authors: Peng Hou

Abstract:

Natural products produced from marine bacteria serve as an immense reservoir for anti-infective drugs and therapeutic agents. Nowadays, heterologous expression of gene clusters of interests has been widely adopted as an effective strategy for natural product discovery. Briefly, the heterologous expression flowchart would be: biosynthetic gene cluster identification, pathway construction and expression, and product detection. However, gene cluster capture using traditional Transformation-associated recombination (TAR) protocol is low-efficient (0.5% positive colony rate). To make things worse, most of these putative new natural products are only predicted by bioinformatics analysis such as antiSMASH, and their corresponding natural products biosynthetic pathways are either not expressed or expressed at very low levels under laboratory conditions. Those setbacks have inspired us to focus on seeking new technologies to efficiently edit and refractor of biosynthetic gene clusters. Recently, two cutting-edge techniques have attracted our attention - the CRISPR-Cas9 and Gibson Assembly. By now, we have tried to pretreat Brevibacillus laterosporus strain genomic DNA with CRISPR-Cas9 nucleases that specifically generated breaks near the gene cluster of interest. This trial resulted in an increase in the efficiency of gene cluster capture (9%). Moreover, using Gibson Assembly by adding/deleting certain operon and tailoring enzymes regardless of end compatibility, the silent construct (~80kb) has been successfully refactored into an active one, yielded a series of analogs expected. With the appearances of the novel molecular tools, we are confident to believe that development of a high throughput mature pipeline for DNA assembly, transformation, product isolation and identification would no longer be a daydream for marine natural product discovery.

Keywords: biosynthesis, CRISPR-Cas9, DNA assembly, refactor, TAR cloning

Procedia PDF Downloads 283
1170 An Improved Discrete Version of Teaching–Learning-Based ‎Optimization for Supply Chain Network Design

Authors: Ehsan Yadegari

Abstract:

While there are several metaheuristics and exact approaches to solving the Supply Chain Network Design (SCND) problem, there still remains an unfilled gap in using the Teaching-Learning-Based Optimization (TLBO) algorithm. The algorithm has demonstrated desirable results with problems with complicated combinational optimization. The present study introduces a Discrete Self-Study TLBO (DSS-TLBO) with priority-based solution representation that can solve a supply chain network configuration model to lower the total expenses of establishing facilities and the flow of materials. The network features four layers, namely suppliers, plants, distribution centers (DCs), and customer zones. It is designed to meet the customer’s demand through transporting the material between layers of network and providing facilities in the best economic Potential locations. To have a higher quality of the solution and increase the speed of TLBO, a distinct operator was introduced that ensures self-adaptation (self-study) in the algorithm based on the four types of local search. In addition, while TLBO is used in continuous solution representation and priority-based solution representation is discrete, a few modifications were added to the algorithm to remove the solutions that are infeasible. As shown by the results of experiments, the superiority of DSS-TLBO compared to pure TLBO, genetic algorithm (GA) and firefly Algorithm (FA) was established.

Keywords: supply chain network design, teaching–learning-based optimization, improved metaheuristics, discrete solution representation

Procedia PDF Downloads 52
1169 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach

Authors: Shital Suresh Borse, Vijayalaxmi Kadroli

Abstract:

E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.

Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN

Procedia PDF Downloads 113
1168 Change of Education Business in the Age of 5G

Authors: Heikki Ruohomaa, Vesa Salminen

Abstract:

Regions are facing huge competition to attract companies, businesses, inhabitants, students, etc. This way to improve living and business environment, which is rapidly changing due to digitalization. On the other hand, from the industry's point of view, the availability of a skilled labor force and an innovative environment are crucial factors. In this context, qualified staff has been seen to utilize the opportunities of digitalization and respond to the needs of future skills. World Manufacturing Forum has stated in the year 2019- report that in next five years, 40% of workers have to change their core competencies. Through digital transformation, new technologies like cloud, mobile, big data, 5G- infrastructure, platform- technology, data- analysis, and social networks with increasing intelligence and automation, enterprises can capitalize on new opportunities and optimize existing operations to achieve significant business improvement. Digitalization will be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, the education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The Fourth Industrial Revolution will bring unprecedented change to societies, education organizations and business environments. This article aims to identify how education, education content, the way education has proceeded, and overall whole the education business is changing. Most important is how we should respond to this inevitable co- evolution. Methodology: The study aims to verify how the learning process is boosted by new digital content, new learning software and tools, and customer-oriented learning environments. The change of education programs and individual education modules can be supported by applied research projects. You can use them in making proof- of- the concept of new technology, new ways to teach and train, and through the experiences gathered change education content, way to educate and finally education business as a whole. Major findings: Applied research projects can prove the concept- phases on real environment field labs to test technology opportunities and new tools for training purposes. Customer-oriented applied research projects are also excellent for students to make assignments and use new knowledge and content and teachers to test new tools and create new ways to educate. New content and problem-based learning are used in future education modules. This article introduces some case study experiences on customer-oriented digital transformation projects and how gathered knowledge on new digital content and a new way to educate has influenced education. The case study is related to experiences of research projects, customer-oriented field labs/learning environments and education programs of Häme University of Applied Sciences.

Keywords: education process, digitalization content, digital tools for education, learning environments, transdisciplinary co-operation

Procedia PDF Downloads 177
1167 Typology of Customers in Fitness Centres

Authors: Josef Voracek, Jan Sima

Abstract:

The main purpose of our study is to state the basic types of fitness customers. This paper aims to create a specific customer typology in today’s fitness centres in the region of Prague. Our suggested typology of Prague fitness centres customers is based on answers to the questions: What are the customers like, what are their preferences, and what kinds of services do they use more often in Prague fitness centres? These are the main aspects of the presented typology. A survey was conducted on a sample of 1004 respondents from 48 fitness centres, which ran during May 2012. We used questionnaires and latent class analysis for the assessment and interpretation of data. Gender was especially the main filter criterion. In the population, there were 522 males and 482 females. Data were analysed using the LCA method. We identified 6 segments of typical customers, of which three are male and three are female. Each segment is influenced primarily by the age of customers, from which we can develop further characteristics, such as education, income, marital status, etc. Male segments use the main workout area above all, whilst female segments use a much wider range of services offered, for example, group exercises, personal training, and cardio theatres. LCA method was found to be the most suitable tool, because cluster analysis is very limited in the forms and numbers of variables and indicators. Models of 3 latent classes for each gender are optimal, as it is demonstrated by entropy indices and matrices of the likelihood of the membership to the classes. A probable weak point of the survey is the selection of fitness centres, because of the market in Prague is really specific.

Keywords: customer, fitness, latent class analysis, typology

Procedia PDF Downloads 217
1166 Impact of Sensory Marketing on Consumer Consumption Behaviour in the Hotel Spa Industry

Authors: Li (Claudia) Chen

Abstract:

With the rapid development of the global economy, the growing prevalence of customer health consciousness has arisen over the last decade. Consumers are considered more healthy lifestyles and wellness routines in their daily life, and likewise, they are inclined to invest disposable incomes in enhancing their health and wellness, beauty, and social identity. Nowadays, visiting spas has become a popular activity; particularly, millennials are increasingly prone to visiting spas. It has now become one of the major places for relaxation, rejuvenation, revitalization, and enjoyment by providing various types of spa services such as hotel and resort spas, destination spas, mineral, and thermal spring spas, medical spas, and so forth. The hotel and resort spa has been becoming increasingly popular among other spas, which is the largest number of spas and revenue over the last five years, and has now surpassed day/salon spas as the industry revenue leader. In the hotel and resort spa industry, sensory experience plays a vital role in the customer journey, and it encompasses all aspects of the sense that can affect the overall experience. Consumers use senses-sight, sound, touch, smell, and taste to gather the information that contributes to the establishment of an experience, and all senses interacting together form the foundation of sensory experiences. Sensory marketing as a marketing strategy engages consumers' senses and affects their behaviour, yet consumers are often unaware of the way senses interact with their day-to-day experiences. Indeed, it is important to understand consumer sensory experience in terms of how it influences consumer consumption behaviour. The aim of this paper is to evaluate the sensory experiences of consumers and the ways that sensory experiences shape consumer behaviour in the hotel and resort spa industry. This paper consists of in-depth interviews, focus groups, and participant-observation methods to collect data from different stakeholders. The findings reveal that multisensory experiences play vital roles in consumer spa experiences and are highly influential in consumer perception, cognition, and behaviour. Moreover, the findings also demonstrate that sensory stimuli bring positive or negative effects on consumer experience in the hotel spa industry. Ultimately, the findings also offer additional insight to managers on sensory marketing strategy to stimulate brand experience that can establish customer loyalty.

Keywords: sensory marketing, senses, consumer behaviour, multi-sensory marketing, hotel and resorts spa industry, qualitative research

Procedia PDF Downloads 82
1165 Management of Non-Revenue Municipal Water

Authors: Habib Muhammetoglu, I. Ethem Karadirek, Selami Kara, Ayse Muhammetoglu

Abstract:

The problem of non-revenue water (NRW) from municipal water distribution networks is common in many countries such as Turkey, where the average yearly water losses are around 50% . Water losses can be divided into two major types namely: 1) Real or physical water losses, and 2) Apparent or commercial water losses. Total water losses in Antalya city, Turkey is around 45%. Methods: A research study was conducted to develop appropriate methodologies to reduce NRW. A pilot study area of about 60 thousands inhabitants was chosen to apply the study. The pilot study area has a supervisory control and data acquisition (SCADA) system for the monitoring and control of many water quantity and quality parameters at the groundwater drinking wells, pumping stations, distribution reservoirs, and along the water mains. The pilot study area was divided into 18 District Metered Areas (DMAs) with different number of service connections that ranged between a few connections to less than 3000 connections. The flow rate and water pressure to each DMA were on-line continuously measured by an accurate flow meter and water pressure meter that were connected to the SCADA system. Customer water meters were installed to all billed and unbilled water users. The monthly water consumption as given by the water meters were recorded regularly. Water balance was carried out for each DMA using the well-know standard IWA approach. There were considerable variations in the water losses percentages and the components of the water losses among the DMAs of the pilot study area. Old Class B customer water meters at one DMA were replaced by more accurate new Class C water meters. Hydraulic modelling using the US-EPA EPANET model was carried out in the pilot study area for the prediction of water pressure variations at each DMA. The data sets required to calibrate and verify the hydraulic model were supplied by the SCADA system. It was noticed that a number of the DMAs exhibited high water pressure values. Therefore, pressure reducing valves (PRV) with constant head were installed to reduce the pressure up to a suitable level that was determined by the hydraulic model. On the other hand, the hydraulic model revealed that the water pressure at the other DMAs cannot be reduced when complying with the minimum pressure requirement (3 bars) as stated by the related standards. Results: Physical water losses were reduced considerably as a result of just reducing water pressure. Further physical water losses reduction was achieved by applying acoustic methods. The results of the water balances helped in identifying the DMAs that have considerable physical losses. Many bursts were detected especially in the DMAs that have high physical water losses. The SCADA system was very useful to assess the efficiency level of this method and to check the quality of repairs. Regarding apparent water losses reduction, changing the customer water meters resulted in increasing water revenue by more than 20%. Conclusions: DMA, SCADA, modelling, pressure management, leakage detection and accurate customer water meters are efficient for NRW.

Keywords: NRW, water losses, pressure management, SCADA, apparent water losses, urban water distribution networks

Procedia PDF Downloads 406
1164 Optimization Approach to Integrated Production-Inventory-Routing Problem for Oxygen Supply Chains

Authors: Yena Lee, Vassilis M. Charitopoulos, Karthik Thyagarajan, Ian Morris, Jose M. Pinto, Lazaros G. Papageorgiou

Abstract:

With globalisation, the need to have better coordination of production and distribution decisions has become increasingly important for industrial gas companies in order to remain competitive in the marketplace. In this work, we investigate a problem that integrates production, inventory, and routing decisions in a liquid oxygen supply chain. The oxygen supply chain consists of production facilities, external third-party suppliers, and multiple customers, including hospitals and industrial customers. The product produced by the plants or sourced from the competitors, i.e., third-party suppliers, is distributed by a fleet of heterogenous vehicles to satisfy customer demands. The objective is to minimise the total operating cost involving production, third-party, and transportation costs. The key decisions for production include production and inventory levels and product amount from third-party suppliers. In contrast, the distribution decisions involve customer allocation, delivery timing, delivery amount, and vehicle routing. The optimisation of the coordinated production, inventory, and routing decisions is a challenging problem, especially when dealing with large-size problems. Thus, we present a two-stage procedure to solve the integrated problem efficiently. First, the problem is formulated as a mixed-integer linear programming (MILP) model by simplifying the routing component. The solution from the first-stage MILP model yields the optimal customer allocation, production and inventory levels, and delivery timing and amount. Then, we fix the previous decisions and solve a detailed routing. In the second stage, we propose a column generation scheme to address the computational complexity of the resulting detailed routing problem. A case study considering a real-life oxygen supply chain in the UK is presented to illustrate the capability of the proposed models and solution method. Furthermore, a comparison of the solutions from the proposed approach with the corresponding solutions provided by existing metaheuristic techniques (e.g., guided local search and tabu search algorithms) is presented to evaluate the efficiency.

Keywords: production planning, inventory routing, column generation, mixed-integer linear programming

Procedia PDF Downloads 113
1163 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior

Authors: Nazli Uren, Ayse Okur

Abstract:

Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.

Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort

Procedia PDF Downloads 303
1162 Efficient Synthesis of Highly Functionalized Biologically Important Spirocarbocyclic Oxindoles via Hauser Annulation

Authors: Kanduru Lokesh, Venkitasamy Kesavan

Abstract:

The unique structural features of spiro-oxindoles with diverse biological activities have made them privileged structures in new drug discovery. The key structural characteristic of these compounds is the spiro ring fused at the C-3 position of the oxindole core with varied heterocyclic motifs. Structural diversification of heterocyclic scaffolds to synthesize new chemical entities as pharmaceuticals and agrochemicals is one of the important goals of synthetic organic chemists. Nitrogen and oxygen containing heterocycles are by far the most widely occurring privileged structures in medicinal chemistry. The structural complexity and distinct three-dimensional arrangement of functional groups of these privileged structures are generally responsible for their specificity against biological targets. Structurally diverse compound libraries have proved to be valuable assets for drug discovery against challenging biological targets. Thus, identifying a new combination of substituents at C-3 position on oxindole moiety is of great importance in drug discovery to improve the efficiency and efficacy of the drugs. The development of suitable methodology for the synthesis of spiro-oxindole compounds has attracted much interest often in response to the significant biological activity displayed by the both natural and synthetic compounds. So creating structural diversity of oxindole scaffolds is need of the decade and formidable challenge. A general way to improve synthetic efficiency and also to access diversified molecules is through the annulation reactions. Annulation reactions allow the formation of complex compounds starting from simple substrates in a single transformation consisting of several steps in an ecologically and economically favorable way. These observations motivated us to develop the annulation reaction protocol to enable the synthesis of a new class of spiro-oxindole motifs which in turn would enable the enhancement of molecular diversity. As part of our enduring interest in the development of novel, efficient synthetic strategies to enable the synthesis of biologically important oxindole fused spirocarbocyclic systems, We have developed an efficient methodology for the construction of highly functionalized spirocarbocyclic oxindoles through [4+2] annulation of phthalides via Hauser annulation. functionalized spirocarbocyclic oxindoles was accomplished for the first time in the literature using Hauser annulation strategy. The reaction between methyleneindolinones and arylsulfonylphthalides catalyzed by cesium carbonate led to the access of new class of biologically important spiro[indoline-3,2'-naphthalene] derivatives in very good yields. The synthetic utility of the annulated product was further demonstrated by fluorination Using NFSI as a fluorinating agent to furnish corresponding fluorinated product.

Keywords: Hauser-Kraus annulation, spiro carbocyclic oxindoles, oxindole-ester, fluoridation

Procedia PDF Downloads 199
1161 An Unsupervised Domain-Knowledge Discovery Framework for Fake News Detection

Authors: Yulan Wu

Abstract:

With the rapid development of social media, the issue of fake news has gained considerable prominence, drawing the attention of both the public and governments. The widespread dissemination of false information poses a tangible threat across multiple domains of society, including politics, economy, and health. However, much research has concentrated on supervised training models within specific domains, their effectiveness diminishes when applied to identify fake news across multiple domains. To solve this problem, some approaches based on domain labels have been proposed. By segmenting news to their specific area in advance, judges in the corresponding field may be more accurate on fake news. However, these approaches disregard the fact that news records can pertain to multiple domains, resulting in a significant loss of valuable information. In addition, the datasets used for training must all be domain-labeled, which creates unnecessary complexity. To solve these problems, an unsupervised domain knowledge discovery framework for fake news detection is proposed. Firstly, to effectively retain the multidomain knowledge of the text, a low-dimensional vector for each news text to capture domain embeddings is generated. Subsequently, a feature extraction module utilizing the unsupervisedly discovered domain embeddings is used to extract the comprehensive features of news. Finally, a classifier is employed to determine the authenticity of the news. To verify the proposed framework, a test is conducted on the existing widely used datasets, and the experimental results demonstrate that this method is able to improve the detection performance for fake news across multiple domains. Moreover, even in datasets that lack domain labels, this method can still effectively transfer domain knowledge, which can educe the time consumed by tagging without sacrificing the detection accuracy.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 101
1160 Joint Optimal Pricing and Lot-Sizing Decisions for an Advance Sales System under Stochastic Conditions

Authors: Maryam Ghoreishi, Christian Larsen

Abstract:

In this paper, we investigate the effect of stochastic inputs on problem of joint optimal pricing and lot-sizing decisions where the inventory cycle is divided into advance and spot sales periods. During the advance sales period, customer can make reservations while customer with reservations can cancel their order. However, during the spot sales period customers receive the order as soon as the order is placed, but they cannot make any reservation or cancellation during that period. We assume that the inter arrival times during the advance sales and spot sales period are exponentially distributed where the arrival rate is decreasing function of price. Moreover, we assume that the number of cancelled reservations is binomially distributed. In addition, we assume that deterioration process follows an exponential distribution. We investigate two cases. First, we consider two-state case where we find the optimal price during the spot sales period and the optimal price during the advance sales period. Next, we develop a generalized case where we extend two-state case also to allow dynamic prices during the spot sales period. We apply the Markov decision theory in order to find the optimal solutions. In addition, for the generalized case, we apply the policy iteration algorithm in order to find the optimal prices, the optimal lot-size and maximum advance sales amount.

Keywords: inventory control, pricing, Markov decision theory, advance sales system

Procedia PDF Downloads 325
1159 Molecular Design and Synthesis of Heterocycles Based Anticancer Agents

Authors: Amna J. Ghith, Khaled Abu Zid, Khairia Youssef, Nasser Saad

Abstract:

Backgrounds: The multikinase and vascular endothelial growth factor (VEGF) receptor inhibitors interrupt the pathway by which angiogenesis becomes established and promulgated, resulting in the inadequate nourishment of metastatic disease. VEGFR-2 has been the principal target of anti-angiogenic therapies. We disclose the new thieno pyrimidines as inhibitors of VEGFR-2 designed by a molecular modeling approach with increased synergistic activity and decreased side effects. Purpose: 2-substituted thieno pyrimidines are designed and synthesized with anticipated anticancer activity based on its in silico molecular docking study that supports the initial pharmacophoric hypothesis with a same binding mode of interaction at the ATP-binding site of VEGFR-2 (PDB 2QU5) with high docking score. Methods: A series of compounds were designed using discovery studio 4.1/CDOCKER with a rational that mimic the pharmacophoric features present in the reported active compounds that targeted VEGFR-2. An in silico ADMET study was also performed to validate the bioavailability of the newly designed compounds. Results: The Compounds to be synthesized showed interaction energy comparable to or within the range of the benzimidazole inhibitor ligand when docked with VEGFR-2. ADMET study showed comparable results most of the compounds showed absorption within (95-99) zone varying according to different substitutions attached to thieno pyrimidine ring system. Conclusions: A series of 2-subsituted thienopyrimidines are to be synthesized with anticipated anticancer activity and according to docking study structure requirement for the design of VEGFR-2 inhibitors which can act as powerful anticancer agents.

Keywords: docking, discovery studio 4.1/CDOCKER, heterocycles based anticancer agents, 2-subsituted thienopyrimidines

Procedia PDF Downloads 247