Search results for: computing
543 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations
Authors: Adrian Millea
Abstract:
In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions
Procedia PDF Downloads 171542 Software Defined Storage: Object Storage over Hadoop Platform
Authors: Amritesh Srivastava, Gaurav Sharma
Abstract:
The purpose of this project is to develop an open source object storage system that is highly durable, scalable and reliable. There are two representative systems in cloud computing: Google and Amazon. Their storage systems for Google GFS and Amazon S3 provide high reliability, performance and stability. Our proposed system is highly inspired from Amazon S3. We are using Hadoop Distributed File System (HDFS) Java API to implement our system. We propose the architecture of object storage system based on Hadoop. We discuss the requirements of our system, what we expect from our system and what problems we may encounter. We also give detailed design proposal along with the abstract source code to implement it. The final goal of the system is to provide REST based access to our object storage system that exists on top of HDFS.Keywords: Hadoop, HBase, object storage, REST
Procedia PDF Downloads 339541 The Primitive Code-Level Design Patterns for Distributed Programming
Authors: Bing Li
Abstract:
The primitive code-level design patterns (PDP) are the rudimentary programming elements to develop any distributed systems in the generic distributed programming environment, GreatFree. The PDP works with the primitive distributed application programming interfaces (PDA), the distributed modeling, and the distributed concurrency for scaling-up. They not only hide developers from underlying technical details but also support sufficient adaptability to a variety of distributed computing environments. Programming with them, the simplest distributed system, the lightweight messaging two-node client/server (TNCS) system, is constructed rapidly with straightforward and repeatable behaviors, copy-paste-replace (CPR). As any distributed systems are made up of the simplest ones, those PDAs, as well as the PDP, are generic for distributed programming.Keywords: primitive APIs, primitive code-level design patterns, generic distributed programming, distributed systems, highly patterned development environment, messaging
Procedia PDF Downloads 191540 Simulating the Hot Hand Phenomenon in Basketball with Bayesian Hidden Markov Models
Authors: Gabriel Calvo, Carmen Armero, Luigi Spezia
Abstract:
A basketball player is said to have a hot hand if his/her performance is better than expected in different periods of time. A way to deal with this phenomenon is to make use of latent variables, which can indicate whether the player is ‘on fire’ or not. This work aims to model the hot hand phenomenon through a Bayesian hidden Markov model (HMM) with two states (cold and hot) and two different probability of success depending on the corresponding hidden state. This task is illustrated through a comprehensive simulation study. The simulated data sets emulate the field goal attempts in an NBA season from different profile players. This model can be a powerful tool to assess the ‘streakiness’ of each player, and it provides information about the general performance of the players during the match. Finally, the Bayesian HMM allows computing the posterior probability of any type of streak.Keywords: Bernoulli trials, field goals, latent variables, posterior distribution
Procedia PDF Downloads 190539 Toward Cloud E-learning System Based on Smart Tools
Authors: Mohsen Maraoui
Abstract:
In the face of the growth in the quantity of data produced, several methods and techniques appear to remedy the problems of processing and analyzing large amounts of information mainly in the field of teaching. In this paper, we propose an intelligent cloud-based teaching system for E-learning content services. This system makes easy the manipulation of various educational content forms, including text, images, videos, 3 dimensions objects and scenes of virtual reality and augmented reality. We discuss the integration of institutional and external services to provide personalized assistance to university members in their daily activities. The proposed system provides an intelligent solution for media services that can be accessed from smart devices cloud-based intelligent service environment with a fully integrated system.Keywords: cloud computing, e-learning, indexation, IoT, learning in Arabic language, smart tools
Procedia PDF Downloads 135538 SeCloudBPMN: A Lightweight Extension for BPMN Considering Security Threats in the Cloud
Authors: Somayeh Sobati Moghadam
Abstract:
Business processes are crucial for organizations and help businesses to evaluate and optimize their performance and processes against current and future-state business goals. Outsourcing business processes to the cloud becomes popular due to a wide varsity of benefits and cost-saving. However, cloud outsourcing raises enterprise data security concerns, which must be incorporated in Business Process Model and Notation (BPMN). This paper, presents SeCloudBPMN, a lightweight extension for BPMN which extends the BPMN to explicitly support the security threats in the cloud as an outsourcing environment. SeCloudBPMN helps business’s security experts to outsource business processes to the cloud considering different threats from inside and outside the cloud. In this way, appropriate security countermeasures could be considered to preserve data security in business processes outsourcing to the cloud.Keywords: BPMN, security threats, cloud computing, business processes outsourcing, privacy
Procedia PDF Downloads 269537 Simulation-Based Unmanned Surface Vehicle Design Using PX4 and Robot Operating System With Kubernetes and Cloud-Native Tooling
Authors: Norbert Szulc, Jakub Wilk, Franciszek Górski
Abstract:
This paper presents an approach for simulating and testing robotic systems based on PX4, using a local Kubernetes cluster. The approach leverages modern cloud-native tools and runs on single-board computers. Additionally, this solution enables the creation of datasets for computer vision and the evaluation of control system algorithms in an end-to-end manner. This paper compares this approach to method commonly used Docker based approach. This approach was used to develop simulation environment for an unmanned surface vehicle (USV) for RoboBoat 2023 by running a containerized configuration of the PX4 Open-source Autopilot connected to ROS and the Gazebo simulation environment.Keywords: cloud computing, Kubernetes, single board computers, simulation, ROS
Procedia PDF Downloads 76536 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs
Authors: Swapnil Gupta, C. Pandu Rangan
Abstract:
A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.Keywords: uniquely restricted matching, interval graph, matching, induced matching, witness counting
Procedia PDF Downloads 389535 Privacy for the Internet of Things and its Different Dimensions
Authors: Maryam M Esfahani
Abstract:
The Internet of Things is a concept that has fundamentally changed the way information technology works and communication environments. This concept, which is referred to as the next revolution in the field of information and communication technology, takes advantage of existing technologies such as wireless sensor networks, RFID, cloud computing, M2M, etc., to the final slogan of providing the possibility of connecting any object anywhere and everywhere. This use of technologies, along with the possibility of providing new services, also inherits their threats, and although the Internet of Things is facing many challenges, it can be said that its most important challenge is security and privacy, and perhaps even a more tangible challenge is privacy. In this article, we will first introduce the definition and concepts related to privacy, and then we will examine some threats against the privacy of the Internet of Things in different layers of a typical architecture. Also, while examining the differences and the relationship between security and privacy, we study different dimensions of privacy, and finally, we review some of the methods and technologies for improving the level of privacy.Keywords: Iot, privacy, different dimension of privacy, W3model, privacy enhancing technologies
Procedia PDF Downloads 98534 Analyzing the Practicality of Drawing Inferences in Automation of Commonsense Reasoning
Authors: Chandan Hegde, K. Ashwini
Abstract:
Commonsense reasoning is the simulation of human ability to make decisions during the situations that we encounter every day. It has been several decades since the introduction of this subfield of artificial intelligence, but it has barely made some significant progress. The modern computing aids also have remained impotent in this regard due to the absence of a strong methodology towards commonsense reasoning development. Among several accountable reasons for the lack of progress, drawing inference out of commonsense knowledge-base stands out. This review paper emphasizes on a detailed analysis of representation of reasoning uncertainties and feasible prospects of programming aids for drawing inferences. Also, the difficulties in deducing and systematizing commonsense reasoning and the substantial progress made in reasoning that influences the study have been discussed. Additionally, the paper discusses the possible impacts of an effective inference technique in commonsense reasoning.Keywords: artificial intelligence, commonsense reasoning, knowledge base, uncertainty in reasoning
Procedia PDF Downloads 187533 Modeling and Simulation of the Tripod Gait of a Hexapod Robot
Authors: El Hansali Hasnaa, Bennani Mohammed
Abstract:
Hexapod legged robot’s missions, particularly in irregular and dangerous areas, require high stability and high precision. In this paper, we consider the rectangular architecture body of legged robots with six legs distributed symmetrically along two sides, each leg contains three degrees of freedom for greater mobility. The aim of this work is planning tripod gait trajectory, based on the computing of the kinematic model to determine the joint variables in the lifting and the propelling phases. For this, appropriate coordinate frames are attached to the body and legs in order to obtain clear representation and efficient generation of the system equations. A simulation in MATLAB software platform is developed to confirm the kinematic model and various trajectories to the tripod gait adopted by the hexapod robot in its locomotion.Keywords: hexapod legged robot, inverse kinematic model, simulation in MATLAB, tripod gait
Procedia PDF Downloads 277532 Monte Carlo Simulation of Magnetic Properties in Bit Patterned Media
Authors: O. D. Arbeláez-Echeverri, E. Restrepo-Parra, J. C. Riano-Rojas
Abstract:
A two dimensional geometric model of Bit Patterned Media is proposed, the model is based on the crystal structure of the materials commonly used to produce the nano islands in bit patterned materials and the possible defects that may arise from the interaction between the nano islands and the matrix material. The dynamic magnetic properties of the material are then computed using time aware integration methods for the multi spin Hamiltonian. The Hamiltonian takes into account both the spatial and topological disorder of the sample as well as the high perpendicular anisotropy that is pursued when building bit patterned media. The main finding of the research was the possibility of replicating the results of previous experiments on similar materials and the ability of computing the switching field distribution given the geometry of the material and the parameters required by the model.Keywords: nanostructures, Monte Carlo, pattern media, magnetic properties
Procedia PDF Downloads 503531 Computing Some Topological Descriptors of Single-Walled Carbon Nanotubes
Authors: Amir Bahrami
Abstract:
In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index or a descriptor index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. In this paper some descriptor index (descriptor index) of single-walled carbon nanotubes, is determined.Keywords: chemical graph theory, molecular topology, molecular descriptor, single-walled carbon nanotubes
Procedia PDF Downloads 338530 Autonomic Recovery Plan with Server Virtualization
Authors: S. Hameed, S. Anwer, M. Saad, M. Saady
Abstract:
For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone.Keywords: autonomous intelligence, disaster recovery, cloud computing, server virtualization
Procedia PDF Downloads 162529 Effect of Ionized Plasma Medium on the Radiation of a Rectangular Microstrip Antenna on Ferrite Substrate
Authors: Ayman Al Sawalha
Abstract:
This paper presents theoretical investigations on the radiation of rectangular microstrip antenna printed on a magnetized ferrite substrate Ni0.62Co0.02Fe1.948O4 in the presence of ionized plasma medium. The theoretical study of rectangular microstrip antenna in free space is carried out by applying the transmission line model combining with potential function techniques while hydrodynamic theory is used for it is analysis in plasma medium. By taking the biased and unbiased ferrite cases, far-field radiation patterns in free space and plasma medium are obtained which in turn are applied in computing radiated power, directivity, quality factor and bandwidth of antenna. It is found that the presence of plasma medium affects the performance of rectangular microstrip antenna structure significantly.Keywords: ferrite, microstrip antenna, plasma, radiation
Procedia PDF Downloads 323528 Fast and Non-Invasive Patient-Specific Optimization of Left Ventricle Assist Device Implantation
Authors: Huidan Yu, Anurag Deb, Rou Chen, I-Wen Wang
Abstract:
The use of left ventricle assist devices (LVADs) in patients with heart failure has been a proven and effective therapy for patients with severe end-stage heart failure. Due to the limited availability of suitable donor hearts, LVADs will probably become the alternative solution for patient with heart failure in the near future. While the LVAD is being continuously improved toward enhanced performance, increased device durability, reduced size, a better understanding of implantation management becomes critical in order to achieve better long-term blood supplies and less post-surgical complications such as thrombi generation. Important issues related to the LVAD implantation include the location of outflow grafting (OG), the angle of the OG, the combination between LVAD and native heart pumping, uniform or pulsatile flow at OG, etc. We have hypothesized that an optimal implantation of LVAD is patient specific. To test this hypothesis, we employ a novel in-house computational modeling technique, named InVascular, to conduct a systematic evaluation of cardiac output at aortic arch together with other pertinent hemodynamic quantities for each patient under various implantation scenarios aiming to get an optimal implantation strategy. InVacular is a powerful computational modeling technique that integrates unified mesoscale modeling for both image segmentation and fluid dynamics with the cutting-edge GPU parallel computing. It first segments the aortic artery from patient’s CT image, then seamlessly feeds extracted morphology, together with the velocity wave from Echo Ultrasound image of the same patient, to the computation model to quantify 4-D (time+space) velocity and pressure fields. Using one NVIDIA Tesla K40 GPU card, InVascular completes a computation from CT image to 4-D hemodynamics within 30 minutes. Thus it has the great potential to conduct massive numerical simulation and analysis. The systematic evaluation for one patient includes three OG anastomosis (ascending aorta, descending thoracic aorta, and subclavian artery), three combinations of LVAD and native heart pumping (1:1, 1:2, and 1:3), three angles of OG anastomosis (inclined upward, perpendicular, and inclined downward), and two LVAD inflow conditions (uniform and pulsatile). The optimal LVAD implantation is suggested through a comprehensive analysis of the cardiac output and related hemodynamics from the simulations over the fifty-four scenarios. To confirm the hypothesis, 5 random patient cases will be evaluated.Keywords: graphic processing unit (GPU) parallel computing, left ventricle assist device (LVAD), lumped-parameter model, patient-specific computational hemodynamics
Procedia PDF Downloads 133527 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris
Authors: Piyush Samant, Ravinder Agarwal
Abstract:
Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction
Procedia PDF Downloads 407526 Fat-Tail Test of Regulatory DNA Sequences
Authors: Jian-Jun Shu
Abstract:
The statistical properties of CRMs are explored by estimating similar-word set occurrence distribution. It is observed that CRMs tend to have a fat-tail distribution for similar-word set occurrence. Thus, the fat-tail test with two fatness coefficients is proposed to distinguish CRMs from non-CRMs, especially from exons. For the first fatness coefficient, the separation accuracy between CRMs and exons is increased as compared with the existing content-based CRM prediction method – fluffy-tail test. For the second fatness coefficient, the computing time is reduced as compared with fluffy-tail test, making it very suitable for long sequences and large data-base analysis in the post-genome time. Moreover, these indexes may be used to predict the CRMs which have not yet been observed experimentally. This can serve as a valuable filtering process for experiment.Keywords: statistical approach, transcription factor binding sites, cis-regulatory modules, DNA sequences
Procedia PDF Downloads 290525 Exploration of Various Metrics for Partitioning of Cellular Automata Units for Efficient Reconfiguration of Field Programmable Gate Arrays (FPGAs)
Authors: Peter Tabatt, Christian Siemers
Abstract:
Using FPGA devices to improve the behavior of time-critical parts of embedded systems is a proven concept for years. With reconfigurable FPGA devices, the logical blocks can be partitioned and grouped into static and dynamic parts. The dynamic parts can be reloaded 'on demand' at runtime. This work uses cellular automata, which are constructed through compilation from (partially restricted) ANSI-C sources, to determine the suitability of various metrics for optimal partitioning. Significant metrics, in this case, are for example the area on the FPGA device for the partition, the pass count for loop constructs and communication characteristics to other partitions. With successful partitioning, it is possible to use smaller FPGA devices for the same requirements as with not reconfigurable FPGA devices or – vice versa – to use the same FPGAs for larger programs.Keywords: reconfigurable FPGA, cellular automata, partitioning, metrics, parallel computing
Procedia PDF Downloads 271524 Investigating the Form of the Generalised Equations of Motion of the N-Bob Pendulum and Computing Their Solution Using MATLAB
Authors: Divij Gupta
Abstract:
Pendular systems have a range of both mathematical and engineering applications, ranging from modelling the behaviour of a continuous mass-density rope to utilisation as Tuned Mass Dampers (TMD). Thus, it is of interest to study the differential equations governing the motion of such systems. Here we attempt to generalise these equations of motion for the plane compound pendulum with a finite number of N point masses. A Lagrangian approach is taken, and we attempt to find the generalised form for the Euler-Lagrange equations of motion for the i-th bob of the N -bob pendulum. The co-ordinates are parameterized as angular quantities to reduce the number of degrees of freedom from 2N to N to simplify the form of the equations. We analyse the form of these equations up to N = 4 to determine the general form of the equation. We also develop a MATLAB program to compute a solution to the system for a given input value of N and a given set of initial conditions.Keywords: classical mechanics, differential equation, lagrangian analysis, pendulum
Procedia PDF Downloads 208523 Low-Cost Fog Edge Computing for Smart Power Management and Home Automation
Authors: Belkacem Benadda, Adil Benabdellah, Boutheyna Souna
Abstract:
The Internet of Things (IoT) is an unprecedented creation. Electronics objects are now able to interact, share, respond and adapt to their environment on a much larger basis. Actual spread of these modern means of connectivity and solutions with high data volume exchange are affecting our ways of life. Accommodation is becoming an intelligent living space, not only suited to the people circumstances and desires, but also to systems constraints to make daily life simpler, cheaper, increase possibilities and achieve a higher level of services and luxury. In this paper we are as Internet access, teleworking, consumption monitoring, information search, etc.). This paper addresses the design and integration of a smart home, it also purposes an IoT solution that allows smart power consumption based on measurements from power-grid and deep learning analysis.Keywords: array sensors, IoT, power grid, FPGA, embedded
Procedia PDF Downloads 116522 Wearable Music: Generation of Costumes from Music and Generative Art and Wearing Them by 3-Way Projectors
Authors: Noriki Amano
Abstract:
The final goal of this study is to create another way in which people enjoy music through the performance of 'Wearable Music'. Concretely speaking, we generate colorful costumes in real- time from music and to realize their dressing by projecting them to a person. For this purpose, we propose three methods in this study. First, a method of giving color to music in a three-dimensionally way. Second, a method of generating images of costumes from music. Third, a method of wearing the images of music. In particular, this study stands out from other related work in that we generate images of unique costumes from music and realize to wear them. In this study, we use the technique of generative arts to generate images of unique costumes and project the images to the fog generated around a person from 3-way using projectors. From this study, we can get how to enjoy music as 'wearable'. Furthermore, we are also able to have the prospect of unconventional entertainment based on the fusion between music and costumes.Keywords: entertainment computing, costumes, music, generative programming
Procedia PDF Downloads 173521 DAG Design and Tradeoff for Full Live Virtual Machine Migration over XIA Network
Authors: Dalu Zhang, Xiang Jin, Dejiang Zhou, Jianpeng Wang, Haiying Jiang
Abstract:
Traditional TCP/IP network is showing lots of shortages and research for future networks is becoming a hotspot. FIA (Future Internet Architecture) and FIA-NP (Next Phase) are supported by US NSF for future Internet designing. Moreover, virtual machine migration is a significant technique in cloud computing. As a network application, it should also be supported in XIA (expressive Internet Architecture), which is in both FIA and FIA-NP projects. This paper is an experimental study aims at verifying the feasibility of VM migration over XIA. We present three ways to maintain VM connectivity and communication states concerning DAG design and routing table modification. VM migration experiments are conducted intra-AD and inter-AD with KVM instances. The procedure is achieved by a migration control protocol which is suitable for the characters of XIA. Evaluation results show that our solutions can well supports full live VM migration over XIA network respectively, keeping services seamless.Keywords: DAG, downtime, virtual machine migration, XIA
Procedia PDF Downloads 855520 SciPaaS: a Scientific Execution Platform for the Cloud
Authors: Wesley H. Brewer, John C. Sanford
Abstract:
SciPaaS is a prototype development of an execution platform/middleware designed to make it easy for scientists to rapidly deploy their scientific applications (apps) to the cloud. It provides all the necessary infrastructure for running typical IXP (Input-eXecute-Plot) style apps, including: a web interface, post-processing and plotting capabilities, job scheduling, real-time monitoring of running jobs, and even a file/case manager. In this paper, first the system architecture is described and then is demonstrated for a two scientific applications: (1) a simple finite-difference solver of the inviscid Burger’s equation, and (2) Mendel’s Accountant—a forward-time population genetics simulation model. The implications of the prototype are discussed in terms of ease-of-use and deployment options, especially in cloud environments.Keywords: web-based simulation, cloud computing, Platform-as-a-Service (PaaS), rapid application development (RAD), population genetics
Procedia PDF Downloads 590519 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit
Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu
Abstract:
Diagonal sparse matrix-vector multiplication is a well-studied topic in the fields of scientific computing and big data processing. However, when diagonal sparse matrices are stored in DIA format, there can be a significant number of padded zero elements and scattered points, which can lead to a degradation in the performance of the current DIA kernel. This can also lead to excessive consumption of computational and memory resources. In order to address these issues, the authors propose the DIA-Adaptive scheme and its kernel, which leverages the parallel instruction sets on MLU. The researchers analyze the effect of allocating a varying number of threads, clusters, and hardware architectures on the performance of SpMV using different formats. The experimental results indicate that the proposed DIA-Adaptive scheme performs well and offers excellent parallelism.Keywords: adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication
Procedia PDF Downloads 134518 A Conceptual Framework of Digital Twin for Homecare
Authors: Raja Omman Zafar, Yves Rybarczyk, Johan Borg
Abstract:
This article proposes a conceptual framework for the application of digital twin technology in home care. The main goal is to bridge the gap between advanced digital twin concepts and their practical implementation in home care. This study uses a literature review and thematic analysis approach to synthesize existing knowledge and proposes a structured framework suitable for homecare applications. The proposed framework integrates key components such as IoT sensors, data-driven models, cloud computing, and user interface design, highlighting the importance of personalized and predictive homecare solutions. This framework can significantly improve the efficiency, accuracy, and reliability of homecare services. It paves the way for the implementation of digital twins in home care, promoting real-time monitoring, early intervention, and better outcomes.Keywords: digital twin, homecare, older adults, healthcare, IoT, artificial intelligence
Procedia PDF Downloads 71517 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression
Authors: Anne M. Denton, Rahul Gomes, David W. Franzen
Abstract:
High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression
Procedia PDF Downloads 129516 Managers’ Mobile Information Behavior in an Openness Paradigm Era
Authors: Abd Latif Abdul Rahman, Zuraidah Arif, Muhammad Faizal Iylia, Mohd Ghazali, Asmadi Mohammed Ghazali
Abstract:
Mobile information is a significant access point for human information activities. Theories and models of human information behavior have developed over several decades but have not yet considered the role of the user’s computing device in digital information interactions. This paper reviews the literature that leads to developing a conceptual framework of a study on the managers mobile information behavior. Based on the literature review, dimensions of mobile information behavior are identified, namely, dimension information needs, dimension information access, information retrieval and dimension of information use. The study is significant to understand the nature of librarians’ behavior in searching, retrieving and using information via the mobile device. Secondly, the study would provide suggestions about various kinds of mobile applications which organization can provide for their staff to improve their services.Keywords: mobile information behavior, information behavior, mobile information, mobile devices
Procedia PDF Downloads 349515 Evaluating Service Trustworthiness for Service Selection in Cloud Environment
Authors: Maryam Amiri, Leyli Mohammad-Khanli
Abstract:
Cloud computing is becoming increasingly popular and more business applications are moving to cloud. In this regard, services that provide similar functional properties are increasing. So, the ability to select a service with the best non-functional properties, corresponding to the user preference, is necessary for the user. This paper presents an Evaluation Framework of Service Trustworthiness (EFST) that evaluates the trustworthiness of equivalent services without need to additional invocations of them. EFST extracts user preference automatically. Then, it assesses trustworthiness of services in two dimensions of qualitative and quantitative metrics based on the experiences of past usage of services. Finally, EFST determines the overall trustworthiness of services using Fuzzy Inference System (FIS). The results of experiments and simulations show that EFST is able to predict the missing values of Quality of Service (QoS) better than other competing approaches. Also, it propels users to select the most appropriate services.Keywords: user preference, cloud service, trustworthiness, QoS metrics, prediction
Procedia PDF Downloads 287514 Multi-Scaled Non-Local Means Filter for Medical Images Denoising: Empirical Mode Decomposition vs. Wavelet Transform
Authors: Hana Rabbouch
Abstract:
In recent years, there has been considerable growth of denoising techniques mainly devoted to medical imaging. This important evolution is not only due to the progress of computing techniques, but also to the emergence of multi-resolution analysis (MRA) on both mathematical and algorithmic bases. In this paper, a comparative study is conducted between the two best-known MRA-based decomposition techniques: the Empirical Mode Decomposition (EMD) and the Discrete Wavelet Transform (DWT). The comparison is carried out in a framework of multi-scale denoising, where a Non-Local Means (NLM) filter is performed scale-by-scale to a sample of benchmark medical images. The results prove the effectiveness of the multiscaled denoising, especially when the NLM filtering is coupled with the EMD.Keywords: medical imaging, non local means, denoising, multiscaled analysis, empirical mode decomposition, wavelets
Procedia PDF Downloads 141