Search results for: composite system reliability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20171

Search results for: composite system reliability

19721 Comparison Between Nano Composite and Pits and Fissure Sealant: In Vitro Study

Authors: Osama Safwat Mohamed

Abstract:

Pits and fissures dental caries can be prevented using sealant material. This study aimed to compare the microleakage and interfacial morphology of flowable nanocomposites and conventional pit and fissure sealants. 60 extracted intact and caries-free permanent mandibular third molars. The teeth were randomly divided into three groups (n = 20) according to the material used for pit and fissure sealant. Group I: Unfilled resin-based pits and fissure sealant, Group II: Unfilled resin-based pits and fissure sealant with bond and Group III: Nano flowable composite resin with bond. The results showed that nano-flowable composite was significantly better than the conventional sealants groups p = 0.000. As well there was better as well, there were gaps between sealants and the tooth surfaces in groups I and II, but for group III, there was close contact between the nano-flowable composite and tooth surfaces. It was concluded that nano-flowable composite showed better microleakage and interfacial morphology results than conventional pits and fissure sealant and offered promising results at the fissure sealing.

Keywords: pits and fissures, Sealant, nanocomposite, dental caries

Procedia PDF Downloads 108
19720 Weak Mutually Unbiased Bases versus Mutually Unbiased Bases in Terms of T-Designs

Authors: Mohamed Shalaby, Yasser Kamal, Negm Shawky

Abstract:

Mutually unbiased bases (MUBs) have an important role in the field of quantum computation and information. A complete set of these bases can be constructed when the system dimension is the power of the prime. Constructing such complete set in composite dimensions is still an open problem. Recently, the concept of weak mutually unbiased bases (WMUBs) in composite dimensions was introduced. A complete set of such bases can be constructed by combining the MUBs in each subsystem. In this paper, we present a comparative study between MUBs and WMUBs in the context of complex projective t-design. Explicit proofs are presented.

Keywords: complex projective t-design, finite quantum systems, mutually unbiased bases, weak mutually unbiased bases

Procedia PDF Downloads 416
19719 Mecano-Reliability Coupled of Reinforced Concrete Structure and Vulnerability Analysis: Case Study

Authors: Kernou Nassim

Abstract:

The current study presents a vulnerability and a reliability-mechanical approach that focuses on evaluating the seismic performance of reinforced concrete structures to determine the probability of failure. In this case, the performance function reflecting the non-linear behavior of the structure is modeled by a response surface to establish an analytical relationship between the random variables (strength of concrete and yield strength of steel) and mechanical responses of the structure (inter-floor displacement) obtained by the pushover results of finite element simulations. The push over-analysis is executed by software SAP2000. The results acquired prove that properly designed frames will perform well under seismic loads. It is a comparative study of the behavior of the existing structure before and after reinforcement using the pushover method. The coupling indirect mechanical reliability by response surface avoids prohibitive calculation times. Finally, the results of the proposed approach are compared with Monte Carlo Simulation. The comparative study shows that the structure is more reliable after the introduction of new shear walls.

Keywords: finite element method, surface response, reliability, reliability mechanical coupling, vulnerability

Procedia PDF Downloads 104
19718 Green Natural Rubber Composites Reinforced with Synthetic Graphite: Effects of Reinforcing Agent on Film’s Mechanical Properties and Electrical Conductivity

Authors: Veerapat Kitsawat, Muenduen Phisalaphong

Abstract:

Green natural rubber (NR) composites reinforced with synthetic graphite, using alginate as thickening and dispersing agent, were developed to improve mechanical properties and electrical conductivity. The film fabrication was performed using a latex aqueous microdispersion process. The research found that up to 60 parts per hundred rubbers (phr) of graphite could be successfully integrated into the NR matrix without causing agglomeration and phase separation. Accordingly, the mechanical properties, in terms of tensile strength and Young’s modulus of the composite films, were significantly increased, while the elongation at break decreased with higher graphite loading. The reinforcement strongly improved the hydrophilicity of the composite films, resulting in a higher water absorption rate compared to the neat NR film. Moreover, the incorporation of synthetic graphite significantly improved the chemical resistance of the composite films when exposed to toluene. It is demonstrated that the electrical conductivity of the composite films was considerably enhanced with graphite loading. According to the obtained properties, the developed composites offer potential for further development as conductive substrate for electronic applications.

Keywords: alginate, composite, graphite, natural rubber

Procedia PDF Downloads 61
19717 An Adaptive Cooperative Scheme for Reliability of Transmission Using STBC and CDD in Wireless Communications

Authors: Hyun-Jun Shin, Jae-Jeong Kim, Hyoung-Kyu Song

Abstract:

In broadcasting and cellular system, a cooperative scheme is proposed for the improvement of performance of bit error rate. Up to date, the coverage of broadcasting system coexists with the coverage of cellular system. Therefore each user in a cellular coverage is frequently involved in a broadcasting coverage. The proposed cooperative scheme is derived from the shared areas. The users receive signals from both broadcasting base station and cellular base station. The proposed scheme selects a cellular base station of a worse channel to achieve better performance of bit error rate in cooperation. The performance of the proposed scheme is evaluated in fading channel.

Keywords: cooperative communication, diversity, STBC, CDD, channel condition, broadcasting system, cellular system

Procedia PDF Downloads 487
19716 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network

Authors: Z. Abdollahi Biron, P. Pisu

Abstract:

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.

Keywords: fault diagnostics, communication network, connected vehicles, packet drop out, platoon

Procedia PDF Downloads 218
19715 Non-Linear Free Vibration Analysis of Laminated Composite Beams Resting on Non-Linear Pasternak Elastic Foundation: A Homogenization Procedure

Authors: Merrimi El Bekkaye, El Bikri Khalid, Benamar Rhali

Abstract:

In the present paper, the problem of geometrically non-linear free vibration of symmetrically and asymmetrically laminated composite beams (LCB) resting on nonlinear Pasternak elastic Foundation with immovable ends is studied. A homogenization procedure has been performed to reduce the problem under consideration to that of the isotropic homogeneous beams with effective bending stiffness and axial stiffness parameters. This simple formulation is developed using the governing axial equation of the beam in which the axial inertia and damping are ignored. The theoretical model is based on Hamilton’s principle and spectral analysis. Iterative form solutions are presented to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear frequency to the linear frequency ratio of the LCB has been studied. The non-dimensional curvatures associated to the fundamental mode are also given in the case of clamped-clamped symmetrically and asymmetrically laminated composite beams.

Keywords: large vibration amplitudes, laminated composite beam, Pasternak foundation, composite beams

Procedia PDF Downloads 507
19714 The Review of Permanent Downhole Monitoring System

Authors: Jing Hu, Dong Yang

Abstract:

With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.

Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield

Procedia PDF Downloads 60
19713 Validating the Contract between Microservices

Authors: Parveen Banu Ansari, Venkatraman Chinnappan, Paramasivam Shankar

Abstract:

Contract testing plays a pivotal role in the current landscape of microservices architecture. Testing microservices at the initial stages of development helps to identify and rectify issues before they escalate to higher levels, such as UI testing. By validating microservices through contract testing, you ensure the integration quality of APIs, enhancing the overall reliability and performance of the application. Contract testing, being a collaborative effort between testers and developers, ensures that the microservices adhere to the specified contracts or agreements. This proactive approach significantly reduces defects, streamlines the development process, and contributes to the overall efficiency and robustness of the application. In the dynamic and fast-paced world of digital applications, where microservices are the building blocks, embracing contract testing is indeed a strategic move for ensuring the quality and reliability of the entire system.

Keywords: validation, testing, contract, agreement, microservices

Procedia PDF Downloads 39
19712 Effects of Titanium Dioxide Coatings on Building Composites for Sustainable Construction Applications

Authors: Ifeyinwa Ijeoma Obianyo, Luqman Adedeji Taiwo, Olugbenga O. Amu, Azikiwe Peter Onwualu

Abstract:

Improving the durability of building materials saves maintenance costs, construction time, and energy. In this study, titanium dioxide coated conventional and non-conventional composites were produced, and the effects of titanium dioxide coatings were investigated. Conventional composites were produced using river sand and Portland cement, whereas non-conventional composites were produced by partially replacing river sand and Portland cement with quarry dust and rice husk ash. Water absorption and thickness swelling tests were conducted on the produced coated and non-coated block samples. A reduction in water absorption was observed in the coated composite samples when compared to the non-coated composite samples, and this is an indication of the improved durability of the samples coated with titanium dioxide. However, there was an increase in the thickness swelling of coatings on the coated block samples, but this increase has a slight influence on the compressive strength of the coated samples. The outcome of this study indicates that coating composite building blocks with titanium dioxide will improve theirdurability. Also, the site exposure experiments revealed the self-cleansing properties of TiO2-coated composite block samples, while the Rhodamine B discolouration test confirmed the photocatalytic features of TiO2-coated composite block samples.

Keywords: titanium dioxide, water absorption, durability, mechanical properties, building composite

Procedia PDF Downloads 85
19711 Loss Allocation in Radial Distribution Networks for Loads of Composite Types

Authors: Sumit Banerjee, Chandan Kumar Chanda

Abstract:

The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example.

Keywords: composite type, deregulation, loss allocation, radial distribution networks

Procedia PDF Downloads 265
19710 Prediction of Fatigue Crack Propagation in Bonded Joints Using Fracture Mechanics

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Fracture Mechanics is used to predict debonding propagation in adhesive joint between aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate and their results are compared. It was seen that generally the cases with stacking sequence of [0/45/-45/90]s have much shorter lives than cases with [0/90]2s. It was also seen that in cases with λ=0 the ends of the debonding front propagates forward more than its middle, while in cases with λ=0.5 or λ=1 it is vice versa. Moreover, regardless of value of λ, the difference between the debonding propagations of the ends and the middle of the debonding front is very close in cases λ=0.5 and λ=1. Another main conclusion was the non-dimensionalized debonding front profile is almost independent of sequence type or the applied load value.

Keywords: fatigue, debonding, Paris law, APDL, adhesive

Procedia PDF Downloads 342
19709 Customer Satisfaction on Reliability Dimension of Service Quality in Indian Higher Education

Authors: Rajasekhar Mamilla, G. Janardhana, G. Anjan Babu

Abstract:

The present research studies analyses the students’ satisfaction with university performance regarding the reliability dimension, ability of professors and staff to perform the promised services with quality to students in the post-graduate courses offered by Sri Venkateswara University in India. The research is done with the notion that the student compares the perceived performance with prior expectations. Customer satisfaction is seen as the outcome of this comparison. The sample respondents were administered with the schedule based on the stratified random technique for this study. Statistical techniques such as factor analysis, t-test and correlation analysis were used to accomplish the respective objectives of the study.

Keywords: satisfaction, reliability, service quality, customer

Procedia PDF Downloads 532
19708 Flexural Analysis of Palm Fiber Reinforced Hybrid Polymer Matrix Composite

Authors: G.Venkatachalam, Gautham Shankar, Dasarath Raghav, Krishna Kuar, Santhosh Kiran, Bhargav Mahesh

Abstract:

Uncertainty in the availability of fossil fuels in the future and global warming increased the need for more environment-friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as a reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

Keywords: Adhesion, CNSL, Flexural Analysis, Hybrid Matrix Composite, Palm Fiber

Procedia PDF Downloads 383
19707 Fuzzy Sliding Mode Control of a Flexible Structure for Vibration Suppression Using MFC Actuator

Authors: Jinsiang Shaw, Shih-Chieh Tseng

Abstract:

Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper use a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to suppress the disturbance. A fuzzy sliding mode controller is developed and applied to this system. Experimental results illustrate that the controller and MFC actuator are very effective in attenuating the structural vibration near the first resonant freuqency. Furthermore, this controller is shown to outperform the traditional skyhook controller, with nearly 90% of the vibration suppressed at the first resonant frequency of the structure.

Keywords: Fuzzy sliding mode controller, macro-fiber-composite actuator, skyhook controller, vibration suppression

Procedia PDF Downloads 381
19706 Hybrid Energy Harvesting System with Energy Storage Management

Authors: Lucian Pîslaru-Dănescu, George-Claudiu Zărnescu, Laurențiu Constantin Lipan, Rareș-Andrei Chihaia

Abstract:

In recent years, the utilization of supercapacitors for energy storage (ES) devices that are designed for energy harvesting (EH) applications has increased substantially. The use of supercapacitors as energy storage devices in hybrid energy harvesting systems allows the miniaturization of electronic structures for energy storage. This study is concerned with the concept of energy management capacitors – supercapacitors and the new electronic structures for energy storage used for energy harvesting devices. Supercapacitors are low-voltage devices, and electronic overvoltage protection is needed for powering the source. The power management device that uses these proposed new electronic structures for energy storage is better than conventional electronic structures used for this purpose, like rechargeable batteries, supercapacitors, and hybrid systems. A hybrid energy harvesting system with energy storage management is able to simultaneously use several energy sources with recovery from the environment. The power management device uses a summing electronic block to combine the electric power obtained from piezoelectric composite plates and from a photovoltaic conversion system. Also, an overvoltage protection circuit used as a voltage detector and an improved concept of charging supercapacitors is presented. The piezoelectric composite plates are realized only by pressing two printed circuit boards together without damaging or prestressing the piezoceramic elements. The photovoltaic conversion system has the advantage that the modules are covered with glass plates with nanostructured film of ZnO with the role of anti-reflective coating and to improve the overall efficiency of the solar panels.

Keywords: supercapacitors, energy storage, electronic overvoltage protection, energy harvesting

Procedia PDF Downloads 49
19705 Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab

Authors: Nameer A. Alwash, Dunia A. Abd AlRadha, Arshed M. Aljanaby

Abstract:

This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder.

Keywords: reactive powder concrete, RPC, hybrid concrete, composite section, RC girder, RC slab, shear connecters, inverted T section, shear reinforcment, shear span over effective depth

Procedia PDF Downloads 335
19704 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression

Authors: Zhifeng Xu, Zhongfan Chen

Abstract:

A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.

Keywords: cold-formed steel, composite wall, foamed concrete, axial behavior test

Procedia PDF Downloads 320
19703 Bounded Solution Method for Geometric Programming Problem with Varying Parameters

Authors: Abdullah Ali H. Ahmadini, Firoz Ahmad, Intekhab Alam

Abstract:

Geometric programming problem (GPP) is a well-known non-linear optimization problem having a wide range of applications in many engineering problems. The structure of GPP is quite dynamic and easily fit to the various decision-making processes. The aim of this paper is to highlight the bounded solution method for GPP with special reference to variation among right-hand side parameters. Thus this paper is taken the advantage of two-level mathematical programming problems and determines the solution of the objective function in a specified interval called lower and upper bounds. The beauty of the proposed bounded solution method is that it does not require sensitivity analyses of the obtained optimal solution. The value of the objective function is directly calculated under varying parameters. To show the validity and applicability of the proposed method, a numerical example is presented. The system reliability optimization problem is also illustrated and found that the value of the objective function lies between the range of lower and upper bounds, respectively. At last, conclusions and future research are depicted based on the discussed work.

Keywords: varying parameters, geometric programming problem, bounded solution method, system reliability optimization

Procedia PDF Downloads 116
19702 Reliability of 2D Motion Analysis System for Sagittal Plane Lower Limb Kinematics during Running

Authors: Seyed Hamed Mousavi, Juha M. Hijmans, Reza Rajabi, Ron Diercks, Johannes Zwerver, Henk van der Worp

Abstract:

Introduction: Running is one of the most popular sports activity among people. Improper sagittal plane ankle, knee and hip kinematics are considered to be associated with the increase of injury risk in runners. Motion assessing smart-phone applications are increasingly used to measure kinematics both in the field and laboratory setting, as they are cheaper, more portable, accessible, and easier to use relative to 3D motion analysis system. The aims of this study are 1) to compare the results of 3D gait analysis system and CE; 2) to evaluate the test-retest and intra-rater reliability of coach’s eye (CE) app for the sagittal plane hip, knee, and ankle angles in the touchdown and toe-off while running. Method: Twenty subjects participated in this study. Sixteen reflective markers and cluster markers were attached to the subject’s body. Subjects were asked to run at a self-selected speed on a treadmill. Twenty-five seconds of running were collected for analyzing kinematics of interest. To measure sagittal plane hip, knee and ankle joint angles at touchdown (TD) and toe off (TO), the mean of first ten acceptable consecutive strides was calculated for each angle. A smartphone (Samsung Note5, android) was placed on the right side of the subject so that whole body was simultaneously filmed with 3D gait system during running. All subjects repeated the task with the same running speed after a short interval of 5 minutes in between. The CE app, installed on the smartphone, was used to measure the sagittal plane hip, knee and ankle joint angles at touchdown and toe off the stance phase. Results: Intraclass correlation coefficient (ICC) was used to assess test-retest and intra-rater reliability. To analyze the agreement between 3D and 2D outcomes, the Bland and Altman plot was used. The values of ICC were for Ankle at TD (TRR=0.8,IRR=0.94), ankle at TO (TRR=0.9,IRR=0.97), knee at TD (TRR=0.78,IRR=0.98), knee at TO (TRR=0.9,IRR=0.96), hip at TD (TRR=0.75,IRR=0.97), hip at TO (TRR=0.87,IRR=0.98). The Bland and Altman plots displaying a mean difference (MD) and ±2 standard deviation of MD (2SDMD) of 3D and 2D outcomes were for Ankle at TD (MD=3.71,+2SDMD=8.19, -2SDMD=-0.77), ankle at TO (MD=-1.27, +2SDMD=6.22, -2SDMD=-8.76), knee at TD (MD=1.48, +2SDMD=8.21, -2SDMD=-5.25), knee at TO (MD=-6.63, +2SDMD=3.94, -2SDMD=-17.19), hip at TD (MD=1.51, +2SDMD=9.05, -2SDMD=-6.03), hip at TO (MD=-0.18, +2SDMD=12.22, -2SDMD=-12.59). Discussion: The ability that the measurements are accurately reproduced is valuable in the performance and clinical assessment of outcomes of joint angles. The results of this study showed that the intra-rater and test-retest reliability of CE app for all kinematics measured are excellent (ICC ≥ 0.75). The Bland and Altman plots display that there are high differences of values for ankle at TD and knee at TO. Measuring ankle at TD by 2D gait analysis depends on the plane of movement. Since ankle at TD mostly occurs in the none-sagittal plane, the measurements can be different as foot progression angle at TD increases during running. The difference in values of the knee at TD can depend on how 3D and the rater detect the TO during the stance phase of running.

Keywords: reliability, running, sagittal plane, two dimensional

Procedia PDF Downloads 178
19701 Interactive Image Search for Mobile Devices

Authors: Komal V. Aher, Sanjay B. Waykar

Abstract:

Nowadays every individual having mobile device with them. In both computer vision and information retrieval Image search is currently hot topic with many applications. The proposed intelligent image search system is fully utilizing multimodal and multi-touch functionalities of smart phones which allows search with Image, Voice, and Text on mobile phones. The system will be more useful for users who already have pictures in their minds but have no proper descriptions or names to address them. The paper gives system with ability to form composite visual query to express user’s intention more clearly which helps to give more precise or appropriate results to user. The proposed algorithm will considerably get better in different aspects. System also uses Context based Image retrieval scheme to give significant outcomes. So system is able to achieve gain in terms of search performance, accuracy and user satisfaction.

Keywords: color space, histogram, mobile device, mobile visual search, multimodal search

Procedia PDF Downloads 347
19700 Effect of Substituting Groundnut Cake with Remnant of Food Composite on Survival and Growth of Clarias gariepinus and Oreochromis niloticus Fingerlings

Authors: M. Y. Abubakar, M. Yunisa, A. N. Muhammad

Abstract:

Constraining the production Clarias gariepinus and Oreochromis niloticus culture is the prohibitive cost of feed. We assess the performance of the species fingerlings on diets substituted with composite. Four dietary treatments (0%, 25%, 45%, and 75%) for C. gariepinus and five (0%, 25%, 50%, 75%, and whole food composite) for O. niloticus were formulated and each fed to 15 fingerlings for C. gariepinus and 10 fingerlings for O. niloticus stocked in 75ltrs plastic bowls, replicated trice in a completely randomized design. The experiment lasted 56 days. Percent survival rate was significantly (p < 0.05) higher (57.78 ± 9.69) in C. gariepinus fed diet III. The growth and nutrient utilization indices were least in the fish fed diet IV, which was significantly (p < 0.05) lower than in other treatments. Fish fed dietary treatment III, recorded the best in growth and nutrient utilization indices and was significantly higher (p < 0.05) than those fed dietary treatments I & II which were non-significant (p > 0.05) and higher than those fed 75% substitution. Better profit index was in the fish fed diet with 50% substitution level. For O. niloticus, the survival (172.62 ± 39.03) was significantly higher (p < 0.05) in those fed 25% substituted diet. For growth indices, the least performed were those fed whole composite while other treatments were non-significant (p > 0.05) different from each other. In terms of nutrient utilization, fish fed diet substituted at 0%, 25%, 50% and 75% food composite had similar food conversion ratio and protein efficiency ratio. However, there was no significant difference in the profit index among the whole treatment. It can be concluded that food composite from Sokoto house-holds can optimally replace groundnut cake up to 50% level as a protein source in the diets of Clarias gariepinus and O. niloticus fingerlings without adverse effects on survival, growth, and nutrient utilization.

Keywords: food composite, nutrient utilization, C. gariepinus, O. niloticus household, substitution levels

Procedia PDF Downloads 164
19699 Evaluation of Clinical Decision Support System in Electronic Medical Record System: A Case of Malawi National Art Electronic Medical Record System

Authors: Pachawo Bisani, Goodall Nyirenda

Abstract:

The Malawi National Antiretroviral Therapy (NART) Electronic Medical Record (EMR) system was designed and developed with guidance from the Ministry of Health through the Department of HIV and AIDS (DHA) with the aim of supporting the management of HIV patient data and reporting in high prevalence ART clinics. As of 2021, the system has been scaled up to over 206 facilities across the country. The system is integrated with the clinical decision support system (CDSS) to assist healthcare providers in making a decision about an individual patient at a particular point in time. Despite NART EMR undergoing several evaluations and assessments, little has been done to evaluate the clinical decision support system in the NART EMR system. Hence, the study aimed to evaluate the use of CDSS in the NART EMR system in Malawi. The study adopted a mixed-method approach, and data was collected through interviews, observations, and questionnaires. The study has revealed that the CDSS tools were integrated into the ART clinic workflow, making it easy for the user to use it. The study has also revealed challenges in system reliability and information accuracy. Despite the challenges, the study further revealed that the system is effective and efficient, and overall, users are satisfied with the system. The study recommends that the implementers focus more on the logic behind the clinical decision-support intervention in order to address some of the concerns and enhance the accuracy of the information supplied. The study further suggests consulting the system's actual users throughout implementation.

Keywords: clinical decision support system, electronic medical record system, usability, antiretroviral therapy

Procedia PDF Downloads 66
19698 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms

Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat

Abstract:

In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.

Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization

Procedia PDF Downloads 96
19697 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite

Authors: Anuj Suhag, Rahul Dayal

Abstract:

Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.

Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement

Procedia PDF Downloads 639
19696 In-situ Fabrication of a Metal-Intermetallic Composite: Microstructure Evolution and Mechanical Response

Authors: Monireh Azimi, Mohammad Reza Toroghinejad, Leo A. I. Kestens

Abstract:

The role of different metallic and intermetallic reinforcements on the microstructure and the associated mechanical response of a composite is of crucial importance. To investigate this issue, a multiphase metal-intermetallic composite was in-situ fabricated through reactive annealing and accumulative roll bonding (ARB) processes. EBSD results indicated that the lamellar grain structure of the Al matrix after the first cycle has evolved with increasing strain to a mixed structure consisting of equiaxed and lamellar grains, whereby the steady-state did not occur after the 3rd (last) cycle—applying a strain of 6.1 in the Al phase, the length and thickness of the grains reduced by 92.2% and 97.3%, respectively, compared to the annealed state. Intermetallic phases together with the metallic reinforcement of Ni influence grain fragmentation of the Al matrix and give rise to a specific texture evolution by creating heterogeneity in the strain and flow patterns. Mechanical properties of the multiphase composite demonstrated the yield and ultimate tensile strengths of 217.9 MPa and 340.1 MPa, respectively, compared to 48.7 MPa and 55.4 MPa in the metal-intermetallic laminated (MIL) sandwich before applying the ARB process, which corresponds to an increase of 347% and 514% of yield and tensile strength, respectively.

Keywords: accumulative roll bonding, mechanical properties, metal-intermetallic composite, severe plastic deformation, texture

Procedia PDF Downloads 174
19695 Optimizing Availability of Marine Knowledge Repository with Cloud-Based Framework

Authors: Ahmad S. Mohd Noor, Emma A. Sirajudin, Nur F. Mat Zain

Abstract:

Reliability is an important property for knowledge repository system. National Marine Bioinformatics System or NABTICS is a marine knowledge repository portal aimed to provide a baseline for marine biodiversity and a tool for researchers and developers. It is intended to be a large and growing online database and also a metadata system for inputs of research analysis. The trends of present large distributed systems such as Cloud computing are the delivery of computing as a service rather than a product. The goal of this research is to make NABTICS a system of greater availability by integrating it with Cloud based Neighbor Replication and Failure Recovery (NRFR). This can be achieved by implementation of NABTICS into distributed environment. As a result, the user can experience minimum downtime while using the system should the server is having a failure. Consequently the online database application is said to be highly available.

Keywords: cloud, availability, distributed system, marine repository, database replication

Procedia PDF Downloads 448
19694 R Statistical Software Applied in Reliability Analysis: Case Study of Diesel Generator Fans

Authors: Jelena Vucicevic

Abstract:

Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. This paper will try to introduce another way of calculating reliability by using R statistical software. R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. The R programming environment is a widely used open source system for statistical analysis and statistical programming. It includes thousands of functions for the implementation of both standard and new statistical methods. R does not limit user only to operation related only to these functions. This program has many benefits over other similar programs: it is free and, as an open source, constantly updated; it has built-in help system; the R language is easy to extend with user-written functions. The significance of the work is calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. Seventy generators were studied. For each one, the number of hours of running time from its first being put into service until fan failure or until the end of the study (whichever came first) was recorded. Dataset consists of two variables: hours and status. Hours show the time of each fan working and status shows the event: 1- failed, 0- censored data. Censored data represent cases when we cannot track the specific case, so it could fail or success. Gaining the result by using R was easy and quick. The program will take into consideration censored data and include this into the results. This is not so easy in hand calculation. For the purpose of the paper results from R program have been compared to hand calculations in two different cases: censored data taken as a failure and censored data taken as a success. In all three cases, results are significantly different. If user decides to use the R for further calculations, it will give more precise results with work on censored data than the hand calculation.

Keywords: censored data, R statistical software, reliability analysis, time to failure

Procedia PDF Downloads 383
19693 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem

Authors: Yu T. Tsai, Jin H. Huang

Abstract:

In this paper, the specific sound transmission loss (TL) of the laminated composite plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.

Keywords: sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties

Procedia PDF Downloads 362
19692 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite

Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li

Abstract:

Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.

Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption

Procedia PDF Downloads 262