Search results for: cardio data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42081

Search results for: cardio data analysis

41631 Value Chain Analysis and Enhancement Added Value in Palm Oil Supply Chain

Authors: Juliza Hidayati, Sawarni Hasibuan

Abstract:

PT. XYZ is a manufacturing company that produces Crude Palm Oil (CPO). The fierce competition in the global markets not only between companies but also a competition between supply chains. This research aims to analyze the supply chain and value chain of Crude Palm Oil (CPO) in the company. Data analysis method used is qualitative analysis and quantitative analysis. The qualitative analysis describes supply chain and value chain, while the quantitative analysis is used to find out value added and the establishment of the value chain. Based on the analysis, the value chain of crude palm oil (CPO) in the company consists of four main actors that are suppliers of raw materials, processing, distributor, and customer. The value chain analysis consists of two actors; those are palm oil plantation and palm oil processing plant. The palm oil plantation activities include nurseries, planting, plant maintenance, harvesting, and shipping. The palm oil processing plant activities include reception, sterilizing, thressing, pressing, and oil classification. The value added of palm oil plantations was 72.42% and the palm oil processing plant was 10.13%.

Keywords: palm oil, value chain, value added, supply chain

Procedia PDF Downloads 371
41630 Data Analysis to Uncover Terrorist Attacks Using Data Mining Techniques

Authors: Saima Nazir, Mustansar Ali Ghazanfar, Sanay Muhammad Umar Saeed, Muhammad Awais Azam, Saad Ali Alahmari

Abstract:

Terrorism is an important and challenging concern. The entire world is threatened by only few sophisticated terrorist groups and especially in Gulf Region and Pakistan, it has become extremely destructive phenomena in recent years. Predicting the pattern of attack type, attack group and target type is an intricate task. This study offers new insight on terrorist group’s attack type and its chosen target. This research paper proposes a framework for prediction of terrorist attacks using the historical data and making an association between terrorist group, their attack type and target. Analysis shows that the number of attacks per year will keep on increasing, and Al-Harmayan in Saudi Arabia, Al-Qai’da in Gulf Region and Tehreek-e-Taliban in Pakistan will remain responsible for many future terrorist attacks. Top main targets of each group will be private citizen & property, police, government and military sector under constant circumstances.

Keywords: data mining, counter terrorism, machine learning, SVM

Procedia PDF Downloads 408
41629 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning

Authors: Janet Holland

Abstract:

Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.

Keywords: area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation

Procedia PDF Downloads 131
41628 Advances in Mathematical Sciences: Unveiling the Power of Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid advancements in data collection, storage, and processing capabilities have led to an explosion of data in various domains. In this era of big data, mathematical sciences play a crucial role in uncovering valuable insights and driving informed decision-making through data analytics. The purpose of this abstract is to present the latest advances in mathematical sciences and their application in harnessing the power of data analytics. This abstract highlights the interdisciplinary nature of data analytics, showcasing how mathematics intersects with statistics, computer science, and other related fields to develop cutting-edge methodologies. It explores key mathematical techniques such as optimization, mathematical modeling, network analysis, and computational algorithms that underpin effective data analysis and interpretation. The abstract emphasizes the role of mathematical sciences in addressing real-world challenges across different sectors, including finance, healthcare, engineering, social sciences, and beyond. It showcases how mathematical models and statistical methods extract meaningful insights from complex datasets, facilitating evidence-based decision-making and driving innovation. Furthermore, the abstract emphasizes the importance of collaboration and knowledge exchange among researchers, practitioners, and industry professionals. It recognizes the value of interdisciplinary collaborations and the need to bridge the gap between academia and industry to ensure the practical application of mathematical advancements in data analytics. The abstract highlights the significance of ongoing research in mathematical sciences and its impact on data analytics. It emphasizes the need for continued exploration and innovation in mathematical methodologies to tackle emerging challenges in the era of big data and digital transformation. In summary, this abstract sheds light on the advances in mathematical sciences and their pivotal role in unveiling the power of data analytics. It calls for interdisciplinary collaboration, knowledge exchange, and ongoing research to further unlock the potential of mathematical methodologies in addressing complex problems and driving data-driven decision-making in various domains.

Keywords: mathematical sciences, data analytics, advances, unveiling

Procedia PDF Downloads 93
41627 Legal Regulation of Personal Information Data Transmission Risk Assessment: A Case Study of the EU’s DPIA

Authors: Cai Qianyi

Abstract:

In the midst of global digital revolution, the flow of data poses security threats that call China's existing legislative framework for protecting personal information into question. As a preliminary procedure for risk analysis and prevention, the risk assessment of personal data transmission lacks detailed guidelines for support. Existing provisions reveal unclear responsibilities for network operators and weakened rights for data subjects. Furthermore, the regulatory system's weak operability and a lack of industry self-regulation heighten data transmission hazards. This paper aims to compare the regulatory pathways for data information transmission risks between China and Europe from a legal framework and content perspective. It draws on the “Data Protection Impact Assessment Guidelines” to empower multiple stakeholders, including data processors, controllers, and subjects, while also defining obligations. In conclusion, this paper intends to solve China's digital security shortcomings by developing a more mature regulatory framework and industry self-regulation mechanisms, resulting in a win-win situation for personal data protection and the development of the digital economy.

Keywords: personal information data transmission, risk assessment, DPIA, internet service provider, personal information data transimission, risk assessment

Procedia PDF Downloads 60
41626 A Systematic Review and Meta-Analysis of Diabetes Ketoacidosis in Ethiopia

Authors: Addisu Tadesse Sahile, Mussie Wubshet Teka, Solomon Muluken Ayehu

Abstract:

Background: Diabetes is one of the common public health problems of the century that was estimated to affect one in a tenth of the world population by the year 2030, where diabetes ketoacidosis is one of its common acute complications. Objectives: The aim of this review was to assess the magnitude of diabetes ketoacidosis among patients with type 1 diabetes in Ethiopia. Methods: A systematic data search was done across Google Scholar, PubMed, Web of Science, and African Online Journals. Two reviewers carried out the selection, reviewing, screening, and extraction of the data independently by using a Microsoft Excel Spreadsheet. The Joanna Briggs Institute's prevalence critical appraisal tool was used to assess the quality of evidence. All studies conducted in Ethiopia that reported diabetes ketoacidosis rates among type 1 diabetes were included. The extracted data was imported into the comprehensive meta-analysis version 3.0 for further analysis. Heterogeneity was checked by Higgins’s method, whereas the publication bias was checked by using Beggs and Eggers’s tests. A random-effects meta-analysis model with a 95% confidence interval was computed to estimate the pooled prevalence. Furthermore, subgroup analysis based on the study area (Region) and the sample size was carried out. Result and Conclusion: After review made across a total of 51 articles, of which 12 articles fulfilled the inclusion criteria and were included in the meta-analysis. The pooled prevalence of diabetes ketoacidosis among type 1 diabetes in Ethiopia was 53.2% (95%CI: 43.1%-63.1%). The highest prevalence of DKA was reported in the Tigray region of Ethiopia, whereas the lowest was reported in the Southern region of Ethiopia. Concerned bodies were suggested to work on the escalated burden of diabetes ketoacidosis in Ethiopia.

Keywords: DKA, Type 1 diabetes, Ethiopia, systematic review, meta-analysis

Procedia PDF Downloads 58
41625 Recovery of Physical Performance in Postpartum Women: An Effective Physical Education Program

Authors: Julia A. Ermakova

Abstract:

This study aimed to investigate the efficacy of a physical rehabilitation program for postpartum women. The program was developed with the purpose of restoring physical performance in women during the postpartum period. The research employed a variety of methods, including an analysis of scientific literature, pedagogical testing and experimentation, mathematical processing of study results, and physical performance assessment using a range of tests. The program recommends refraining from abdominal exercises during the first 6-8 months following a cesarean section and avoiding exercises with weights. Instead, a feasible training regimen that gradually increases in intensity several times a week is recommended, along with moderate cardio exercises such as walking, bodyweight training, and a separate workout component that targets posture improvement. Stretching after strength training is also encouraged. The necessary equipment includes comfortable sports attire with a chest support top, mat, push-ups, resistance band, timer, and clock. The motivational aspect of the program is paramount, and the mentee's positive experience with the workout regimen includes feelings of lightness in the body, increased energy, and positive emotions. The gradual reduction of body size and weight loss due to an improved metabolism also serves as positive reinforcement. The mentee's progress can be measured through various means, including an external assessment of her form, body measurements, weight, BMI, and the presence or absence of slouching in everyday life. The findings of this study reveal that the program is effective in restoring physical performance in postpartum women. The mentee achieved weight loss and almost regained her pre-pregnancy shape while her self-esteem improved. Her waist, shoulder, and hip measurements decreased, and she displayed less slouching in her daily life. In conclusion, the developed physical rehabilitation program for postpartum women is an effective means of restoring physical performance. It is crucial to follow the recommended training regimen and equipment to avoid limitations and ensure safety during the postpartum period. The motivational component of the program is also fundamental in encouraging positive reinforcement and improving self-esteem.

Keywords: physical rehabilitation, postpartum, methodology, postpartum recovery, rehabilitation

Procedia PDF Downloads 75
41624 A Critical Analysis of Environmental Investment in India

Authors: K. Y. Chen, H. Chua, C. W. Kan

Abstract:

Environmental investment is an important issue in many countries. In this study, we will first review the environmental issues related to India and their effect on the economical development. Secondly, economic data would be collected from government yearly statistics. The statistics would also include the environmental investment information of India. Finally, we would co-relate the data in order to find out the relationship between environmental investment and sustainable development in India. Therefore, in the paper, we aim to analyse the effect of an environmental investment on the sustainable development in India. Based on the economic data collected, India is in development status with fast population and GDP growth speed. India is facing the environment problems due to its high-speed development. However, the environment investment could give a positive impact on the sustainable development in India. The environmental investment is keeping in the same growth rate with GDP. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: India, environmental investment, sustainable development, analysis

Procedia PDF Downloads 314
41623 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 277
41622 Business Intelligence for Profiling of Telecommunication Customer

Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro

Abstract:

Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.

Keywords: business intelligence, customer segmentation, data warehouse, data mining

Procedia PDF Downloads 483
41621 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome

Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco

Abstract:

Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.

Keywords: data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index

Procedia PDF Downloads 135
41620 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: recurrent neural network, players lineup, basketball data, decision making model

Procedia PDF Downloads 133
41619 Empirical and Indian Automotive Equity Portfolio Decision Support

Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu

Abstract:

A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.

Keywords: Indian automotive sector, stock market decisions, equity portfolio analysis, decision tree classifiers, statistical data analysis

Procedia PDF Downloads 485
41618 Gendered Labelling and Its Effects on Vhavenda Women

Authors: Matodzi Rapalalani

Abstract:

In context with Spencer's (2018) classic labelling theory, labels influence the perceptions of both the individual and other members of society. That is, once labelled, the individual act in ways that confirm the stereotypes attached to the label. This study, therefore, investigates the understanding of gendered labelling and its effects on Vhavenda women. Gender socialization and patriarchy have been viewed as the core causes of the problem. The literature presented the development of gendered labelling, forms of it, and other aspects. A qualitative method of data collection was used in this study, and semi-structural interviews were conducted. A total of 6 participants were used as it is easy to deal with a small sample. Thematic analysis was used as the data was interpreted and analyzed. Ethical issues such as confidentiality, informed consent, and voluntary participation were considered. Through the analysis and data interpretation, causes such as lack of Christian values, insecurities, and lust were mentioned as well as some of the effects such as frustrations, increased divorce, and low self-esteem.

Keywords: gender, naming, Venda, women, African culture

Procedia PDF Downloads 91
41617 A Model to Assist Military Mission Planners in Identifying and Assessing Variables Impacting Food Security

Authors: Lynndee Kemmet

Abstract:

The U.S. military plays an increasing role in supporting political stability efforts, and this includes efforts to prevent the food insecurity that can trigger political and social instability. This paper presents a model that assists military commanders in identifying variables that impact food production and distribution in their areas of operation (AO), in identifying connections between variables and in assessing the impacts of those variables on food production and distribution. Through use of the model, military units can better target their data collection efforts and can categorize and analyze data within the data categorization framework most widely-used by military forces—PMESII-PT (Political, Military, Economic, Infrastructure, Information, Physical Environment and Time). The model provides flexibility of analysis in that commanders can target analysis to be highly focused on a specific PMESII-PT domain or variable or conduct analysis across multiple PMESII-PT domains. The model is also designed to assist commanders in mapping food systems in their AOs and then identifying components of those systems that must be strengthened or protected.

Keywords: food security, food system model, political stability, US Military

Procedia PDF Downloads 195
41616 Methodologies, Findings, Discussion, and Limitations in Global, Multi-Lingual Research: We Are All Alone - Chinese Internet Drama

Authors: Patricia Portugal Marques de Carvalho Lourenco

Abstract:

A three-phase methodological multi-lingual path was designed, constructed and carried out using the 2020 Chinese Internet Drama Series We Are All Alone as a case study. Phase one, the backbone of the research, comprised of secondary data analysis, providing the structure on which the next two phases would be built on. Phase one incorporated a Google Scholar and a Baidu Index analysis, Star Network Influence Index and Mydramalist.com top two drama reviews, along with an article written about the drama and scrutiny of Chinese related blogs and websites. Phase two was field research elaborated across Latin Europe, and phase three was social media focused, having into account that perceptions are going to be memory conditioned based on past ideas recall. Overall, research has shown the poor cultural expression of Chinese entertainment in Latin Europe and demonstrated the inexistence of Chinese content in French, Italian, Portuguese and Spanish Business to Consumer retailers; a reflection of their low significance in Latin European markets and the short-life cycle of entertainment products in general, bubble-gum, disposable goods without a mid to long-term effect in consumers lives. The process of conducting comprehensive international research was complex and time-consuming, with data not always available in Mandarin, the researcher’s linguistic deficiency, limited Chinese Cultural Knowledge and cultural equivalence. Despite steps being taken to minimize the international proposed research, theoretical limitations concurrent to Latin Europe and China still occurred. Data accuracy was disputable; sampling, data collection/analysis methods are heterogeneous; ascertaining data requirements and the method of analysis to achieve a construct equivalence was challenging and morose to operationalize. Secondary data was also not often readily available in Mandarin; yet, in spite of the array of limitations, research was done, and results were produced.

Keywords: research methodologies, international research, primary data, secondary data, research limitations, online dramas, china, latin europe

Procedia PDF Downloads 68
41615 Intelligent Production Machine

Authors: A. Şahinoğlu, R. Gürbüz, A. Güllü, M. Karhan

Abstract:

This study in production machines, it is aimed that machine will automatically perceive cutting data and alter cutting parameters. The two most important parameters have to be checked in machine control unit are progress feed rate and speeds. These parameters are aimed to be controlled by sounds of machine. Optimum sound’s features introduced to computer. During process, real time data is received and converted by Matlab software. Data is converted into numerical values. According to them progress and speeds decreases/increases at a certain rate and thus optimum sound is acquired. Cutting process is made in respect of optimum cutting parameters. During chip remove progress, features of cutting tools, kind of cut material, cutting parameters and used machine; affects on various parameters. Instead of required parameters need to be measured such as temperature, vibration, and tool wear that emerged during cutting process; detailed analysis of the sound emerged during cutting process will provide detection of various data that included in the cutting process by the much more easy and economic way. The relation between cutting parameters and sound is being identified.

Keywords: cutting process, sound processing, intelligent late, sound analysis

Procedia PDF Downloads 334
41614 The Relationship Between Hourly Compensation and Unemployment Rate Using the Panel Data Regression Analysis

Authors: S. K. Ashiquer Rahman

Abstract:

the paper concentrations on the importance of hourly compensation, emphasizing the significance of the unemployment rate. There are the two most important factors of a nation these are its unemployment rate and hourly compensation. These are not merely statistics but they have profound effects on individual, families, and the economy. They are inversely related to one another. When we consider the unemployment rate that will probably decline as hourly compensations in manufacturing rise. But when we reduced the unemployment rates and increased job prospects could result from higher compensation. That’s why, the increased hourly compensation in the manufacturing sector that could have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, we use panel data regression models to evaluate the expected link between hourly compensation and unemployment rate in order to determine the effect of hourly compensation on unemployment rate. We estimate the fixed effects model, evaluate the error components, and determine which model (the FEM or ECM) is better by pooling all 60 observations. We then analysis and review the data by comparing 3 several countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of the extensive research on how the hourly compensation effects on the unemployment rate. Additionally, this paper offers relevant and useful informational to help the government and academic community use an econometrics and social approach to lessen on the effect of the hourly compensation on Unemployment rate to eliminate the problem.

Keywords: hourly compensation, Unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model

Procedia PDF Downloads 81
41613 Determinant Factor Analysis of Foreign Direct Investment in Asean-6 Countries Period 2004-2012

Authors: Eleonora Sofilda, Ria Amalia, Muhammad Zilal Hamzah

Abstract:

Foreign direct investment is one of the sources of financing or capital that important for a country, especially for developing countries. This investment also provides a great contribution to development through the transfer of assets, management improving, and transfer of technology in enhancing the economy of a country. In the other side currently in ASEAN countries emerge the interesting phenomenon where some big producers are re-locate their basic production among those countries. This research is aimed to analyze the factors that affect capital inflows of foreign direct investment into the 6 ASEAN countries (Indonesia, Malaysia, Singapore, Thailand, Philippines, and Vietnam) in period 2004-2012. This study uses panel data analysis to determine the factors that affect of foreign direct investment in 6 ASEAN. The factors that affect of foreign direct investment (FDI) are the gross domestic product (GDP), global competitiveness (GCI), interest rate, exchange rate and trade openness (TO). Result of panel data analysis show that three independent variables (GCI, GDP, and TO) have a significant effect to the FDI in 6 ASEAN Countries.

Keywords: foreign direct investment, the gross domestic product, global competitiveness, interest rate, exchange rate, trade openness, panel data analysis

Procedia PDF Downloads 469
41612 Global City Typologies: 300 Cities and Over 100 Datasets

Authors: M. Novak, E. Munoz, A. Jana, M. Nelemans

Abstract:

Cities and local governments the world over are interested to employ circular strategies as a means to bring about food security, create employment and increase resilience. The selection and implementation of circular strategies is facilitated by modeling the effects of strategies locally and understanding the impacts such strategies have had in other (comparable) cities and how that would translate locally. Urban areas are heterogeneous because of their geographic, economic, social characteristics, governance, and culture. In order to better understand the effect of circular strategies on urban systems, we create a dataset for over 300 cities around the world designed to facilitate circular strategy scenario modeling. This new dataset integrates data from over 20 prominent global national and urban data sources, such as the Global Human Settlements layer and International Labour Organisation, as well as incorporating employment data from over 150 cities collected bottom up from local departments and data providers. The dataset is made to be reproducible. Various clustering techniques are explored in the paper. The result is sets of clusters of cities, which can be used for further research, analysis, and support comparative, regional, and national policy making on circular cities.

Keywords: data integration, urban innovation, cluster analysis, circular economy, city profiles, scenario modelling

Procedia PDF Downloads 180
41611 Content Analysis and Attitude of Thai Students towards Thai Series “Hormones: Season 2”

Authors: Siriporn Meenanan

Abstract:

The objective of this study is to investigate the attitude of Thai students towards the Thai series "Hormones the Series Season 2". This study was conducted in the quantitative research, and the questionnaires were used to collect data from 400 people of the sample group. Descriptive statistics were used in data analysis. The findings reveal that most participants have positive comments regarding the series. They strongly agreed that the series reflects on the way of life and problems of teenagers in Thailand. Hence, the participants believe that if adults have a chance to watch the series, they will have the better understanding of the teenagers. In addition, the participants also agreed that the contents of the play are appropriate and satisfiable as the contents of “Hormones the Series Season 2” will raise awareness among the teens and use it as a guide to prevent problems that might happen during their teenage life.

Keywords: content analysis, attitude, Thai series, hormones the Series

Procedia PDF Downloads 229
41610 Industry 4.0 and Supply Chain Integration: Case of Tunisian Industrial Companies

Authors: Rym Ghariani, Ghada Soltane, Younes Boujelbene

Abstract:

Industry 4.0, a set of emerging smart and digital technologies, has been the main focus of operations management researchers and practitioners in recent years. The objective of this research paper is to study the impact of Industry 4.0 on the integration of the supply chain (SCI) in Tunisian industrial companies. A conceptual model to study the relationship between Industry 4.0 technologies and supply chain integration was designed. This model contains three explained variables (Big data, Internet of Things, and Robotics) and one variable to be explained (supply chain integration). In order to answer our research questions and investigate the research hypotheses, principal component analysis and discriminant analysis were used using SPSS26 software. The results reveal that there is a statistically positive impact significant impact of Industry 4.0 (Big data, Internet of Things and Robotics) on the integration of the supply chain. Interestingly, big data has a greater positive impact on supply chain integration than the Internet of Things and robotics.

Keywords: industry 4.0 (I4.0), big data, internet of things, robotics, supply chain integration

Procedia PDF Downloads 59
41609 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data

Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu

Abstract:

Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant  of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual  value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.

Keywords: food waste reduction, particle filter, point-of-sales, sustainable development goals, Taylor's law, time series analysis

Procedia PDF Downloads 131
41608 Empirical Acceleration Functions and Fuzzy Information

Authors: Muhammad Shafiq

Abstract:

In accelerated life testing approaches life time data is obtained under various conditions which are considered more severe than usual condition. Classical techniques are based on obtained precise measurements, and used to model variation among the observations. In fact, there are two types of uncertainty in data: variation among the observations and the fuzziness. Analysis techniques, which do not consider fuzziness and are only based on precise life time observations, lead to pseudo results. This study was aimed to examine the behavior of empirical acceleration functions using fuzzy lifetimes data. The results showed an increased fuzziness in the transformed life times as compare to the input data.

Keywords: acceleration function, accelerated life testing, fuzzy number, non-precise data

Procedia PDF Downloads 298
41607 Using Corpora in Semantic Studies of English Adjectives

Authors: Oxana Lukoshus

Abstract:

The methods of corpus linguistics, a well-established field of research, are being increasingly applied in cognitive linguistics. Corpora data are especially useful for different quantitative studies of grammatical and other aspects of language. The main objective of this paper is to demonstrate how present-day corpora can be applied in semantic studies in general and in semantic studies of adjectives in particular. Polysemantic adjectives have been the subject of numerous studies. But most of them have been carried out on dictionaries. Undoubtedly, dictionaries are viewed as one of the basic data sources, but only at the initial steps of a research. The author usually starts with the analysis of the lexicographic data after which s/he comes up with a hypothesis. In the research conducted three polysemantic synonyms true, loyal, faithful have been analyzed in terms of differences and similarities in their semantic structure. A corpus-based approach in the study of the above-mentioned adjectives involves the following. After the analysis of the dictionary data there was the reference to the following corpora to study the distributional patterns of the words under study – the British National Corpus (BNC) and the Corpus of Contemporary American English (COCA). These corpora are continually updated and contain thousands of examples of the words under research which make them a useful and convenient data source. For the purpose of this study there were no special needs regarding genre, mode or time of the texts included in the corpora. Out of the range of possibilities offered by corpus-analysis software (e.g. word lists, statistics of word frequencies, etc.), the most useful tool for the semantic analysis was the extracting a list of co-occurrence for the given search words. Searching by lemmas, e.g. true, true to, and grouping the results by lemmas have proved to be the most efficient corpora feature for the adjectives under the study. Following the search process, the corpora provided a list of co-occurrences, which were then to be analyzed and classified. Not every co-occurrence was relevant for the analysis. For example, the phrases like An enormous sense of responsibility to protect the minds and hearts of the faithful from incursions by the state was perceived to be the basic duty of the church leaders or ‘True,’ said Phoebe, ‘but I'd probably get to be a Union Official immediately were left out as in the first example the faithful is a substantivized adjective and in the second example true is used alone with no other parts of speech. The subsequent analysis of the corpora data gave the grounds for the distribution groups of the adjectives under the study which were then investigated with the help of a semantic experiment. To sum it up, the corpora-based approach has proved to be a powerful, reliable and convenient tool to get the data for the further semantic study.

Keywords: corpora, corpus-based approach, polysemantic adjectives, semantic studies

Procedia PDF Downloads 314
41606 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 69
41605 Anomaly Detection of Log Analysis using Data Visualization Techniques for Digital Forensics Audit and Investigation

Authors: Mohamed Fadzlee Sulaiman, Zainurrasyid Abdullah, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin

Abstract:

In common digital forensics cases, investigation may rely on the analysis conducted on specific and relevant exhibits involved. Usually the investigation officer may define and advise digital forensic analyst about the goals and objectives to be achieved in reconstructing the trail of evidence while maintaining the specific scope of investigation. With the technology growth, people are starting to realize the importance of cyber security to their organization and this new perspective creates awareness that digital forensics auditing must come in place in order to measure possible threat or attack to their cyber-infrastructure. Instead of performing investigation on incident basis, auditing may broaden the scope of investigation to the level of anomaly detection in daily operation of organization’s cyber space. While handling a huge amount of data such as log files, performing digital forensics audit for large organization proven to be onerous task for the analyst either to analyze the huge files or to translate the findings in a way where the stakeholder can clearly understand. Data visualization can be emphasized in conducting digital forensic audit and investigation to resolve both needs. This study will identify the important factors that should be considered to perform data visualization techniques in order to detect anomaly that meet the digital forensic audit and investigation objectives.

Keywords: digital forensic, data visualization, anomaly detection , log analysis, forensic audit, visualization techniques

Procedia PDF Downloads 287
41604 Developing Logistics Indices for Turkey as an an Indicator of Economic Activity

Authors: Gizem İntepe, Eti Mizrahi

Abstract:

Investment and financing decisions are influenced by various economic features. Detailed analysis should be conducted in order to make decisions not only by companies but also by governments. Such analysis can be conducted either at the company level or on a sectoral basis to reduce risks and to maximize profits. Sectoral disaggregation caused by seasonality effects, subventions, data advantages or disadvantages may appear in sectors behaving parallel to BIST (Borsa Istanbul stock exchange) Index. Proposed logistic indices could serve market needs as a decision parameter in sectoral basis and also helps forecasting activities in import export volume changes. Also it is an indicator of logistic activity, which is also a sign of economic mobility at the national level. Publicly available data from “Ministry of Transport, Maritime Affairs and Communications” and “Turkish Statistical Institute” is utilized to obtain five logistics indices namely as; exLogistic, imLogistic, fLogistic, dLogistic and cLogistic index. Then, efficiency and reliability of these indices are tested.

Keywords: economic activity, export trade data, import trade data, logistics indices

Procedia PDF Downloads 336
41603 Blood Glucose Measurement and Analysis: Methodology

Authors: I. M. Abd Rahim, H. Abdul Rahim, R. Ghazali

Abstract:

There is numerous non-invasive blood glucose measurement technique developed by researchers, and near infrared (NIR) is the potential technique nowadays. However, there are some disagreements on the optimal wavelength range that is suitable to be used as the reference of the glucose substance in the blood. This paper focuses on the experimental data collection technique and also the analysis method used to analyze the data gained from the experiment. The selection of suitable linear and non-linear model structure is essential in prediction system, as the system developed need to be conceivably accurate.

Keywords: linear, near-infrared (NIR), non-invasive, non-linear, prediction system

Procedia PDF Downloads 459
41602 Status and Results from EXO-200

Authors: Ryan Maclellan

Abstract:

EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1.1x10^25 years at 90% C.L. on the neutrinoless double-beta decay half-life of Xe-136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.

Keywords: double-beta, Majorana, neutrino, neutrinoless

Procedia PDF Downloads 414