Search results for: arid region soil
7247 Lacustrine Sediments of the Poljanska Locality in the Miocene Climatic Optimum North Croatian Basin, Croatia
Authors: Marijan KovačIć, Davor Pavelić, Darko Tibljaš, Ivo Galić, Frane Marković, Ivica PavičIć
Abstract:
The North Croatian Basin (NCB) occupies the southwestern part of the Pannonian Basin System and belongs to the Central Paratethys realm. In a quarry near the village of Poljanska, on the southern slopes of Mt. Papuk in eastern Croatia, a 40-meter-thick section is exposed, consisting of well-bedded, mixed, carbonate-siliciclastic deposits with occurrences of pyroclastics. Sedimentological investigation indicates that a salina lake developed in the central NCB during the late early Miocene. Field studies and mineralogical and petrological analyses indicate that alternations of laminated crypto- characterize the lower part of the section to microcrystalline dolomite and analcimolite (sedimentary rocks composed essentially of authigenic analcime) associated with tuffites and marls. The pyroclastic material is a product of volcanic activity at the end of the early Miocene, while the formation of analcime, the zeolite group mineral, is a result of an alteration of pyroclastic material in an alkaline lacustrine environment. These sediments were deposited in a shallow, hydrologically closed lake that was controlled by an arid climate during the first phase of its development. The middle part of the section consists of dolomites interbedded with analcimolites and sandstones. The sandstone beds are a result of the increased supply of clastic material derived from the locally uplifted metamorphic and granitoid basement. The emplacement of sandstones and dolomites reflects a distinct alternation of hydrologically open and closed lacustrine environments controlled by the frequent alternation of humid and arid climates, representing the second phase of lake development. The siliciclastics of the third phase of lake development were deposited during the Middle Miocene in a hydrologically mostly open lake. All lacustrine deposition coincides with the Miocene Climatic Optimum, which was characterized by a hot and warm climate. The sedimentological data confirm the mostly wet conditions previously identified by paleobotanical studies in the region. The exception is the relatively long interval of arid climate in the late early Miocene that controlled the first phase of lake evolution, i.e., the salina-type lake.Keywords: early Miocene, Pannonian basin System, pyroclastics, salina-type lake
Procedia PDF Downloads 2147246 Assessment of Soil Erosion Risk Using Soil and Water Assessment Tools Model: Case of Siliana Watershed, Northwest Tunisia
Authors: Sana Dridi, Jalel Aouissi, Rafla Attia, Taoufik Hermassi, Thouraya Sahli
Abstract:
Soil erosion is an increasing issue in Mediterranean countries. In Tunisia, the capacity of dam reservoirs continues to decrease as a consequence of soil erosion. This study aims to predict sediment yield to enrich soil management practices using Soil and Water Assessment Tools model (SWAT) in the Siliana watershed (1041.6 km²), located in the northwest of Tunisia. A database was constructed using remote sensing and Geographical Information System. Climatic and flow data were collected from water resources directorates in Tunisia. The SWAT model was built to simulate hydrological processes and sediment transport. A sensitivity analysis, calibration, and validation were performed using SWAT-CUP software. The model calibration of stream flow simulations shows a good performance with NSE and R² values of 0.77 and 0.79, respectively. The model validation shows a very good performance with values of NSE and R² for 0.8 and 0.88, respectively. After calibration and validation of stream flow simulation, the model was used to simulate the soil erosion and sediment load transport. The spatial distributions of soil loss rate for determining the critical sediment source areas show that 63 % of the study area has a low soil loss rate less than 7 t ha⁻¹y⁻¹. The annual average soil loss rate simulated with the SWAT model in the Siliana watershed is 4.62 t ha⁻¹y⁻¹.Keywords: water erosion, SWAT model, streamflow, SWATCUP, sediment yield
Procedia PDF Downloads 1027245 Usage the Point Analysis Algorithm (SANN) on Drought Analysis
Authors: Khosro Shafie Motlaghi, Amir Reza Salemian
Abstract:
In arid and semi-arid regions like our country Evapotranspiration is the greatestportion of water resource. Therefor knowlege of its changing and other climate parameters plays an important role for planning, development, and management of water resource. In this search the Trend of long changing of Evapotranspiration (ET0), average temprature, monthly rainfall were tested. To dose, all synoptic station s in iran were divided according to the climate with Domarton climate. The present research was done in semi-arid climate of Iran, and in which 14 synoptic with 30 years period of statistics were investigated with 3 methods of minimum square error, Mann Kendoll, and Vald-Volfoytz Evapotranspiration was calculated by using the method of FAO-Penman. The results of investigation in periods of statistic has shown that the process Evapotranspiration parameter of 24 percent of stations is positive, and for 2 percent is negative, and for 47 percent. It was without any Trend. Similary for 22 percent of stations was positive the Trend of parameter of temperature for 19 percent , the trend was negative and for 64 percent, it was without any Trend. The results of rainfall trend has shown that the amount of rainfall in most stations was not considered as a meaningful trend. The result of Mann-kendoll method similar to minimum square error method. regarding the acquired result was can admit that in future years Some regions will face increase of temperature and Evapotranspiration.Keywords: analysis, algorithm, SANN, ET0
Procedia PDF Downloads 2977244 Soil Quality State and Trends in New Zealand’s Largest City after Fifteen Years
Authors: Fiona Curran-Cournane
Abstract:
Soil quality monitoring is a science-based soil management tool that assesses soil ecosystem health. A soil monitoring program in Auckland, New Zealand’s largest city, extends from 1995 to the present. The objective of this study was to firstly determine changes in soil parameters (basic soil properties and heavy metals) that were assessed from rural land in 1995-2000 and repeated in 2008-2012. The second objective was to determine differences in soil parameters across various land uses including native bush, rural (horticulture, pasture and plantation forestry) and urban land uses using soil data collected in more recent years (2009-2013). Across rural land, mean concentrations of Olsen P had significantly increased in the second sampling period and was identified as the indicator of most concern, followed by soil macroporosity, particularly for horticultural and pastoral land. Mean concentrations of Cd were also greatest for pastoral and horticultural land and a positive correlation existed between these two parameters, which highlights the importance of analysing basic soil parameters in conjunction with heavy metals. In contrast, mean concentrations of As, Cr, Pb, Ni and Zn were greatest for urban sites. Native bush sites had the lowest concentrations of heavy metals and were used to calculate a ‘pollution index’ (PI). The mean PI was classified as high (PI > 3) for Cd and Ni and moderate for Pb, Zn, Cr, Cu, As, and Hg, indicating high levels of heavy metal pollution across both rural and urban soils. From a land use perspective, the mean ‘integrated pollution index’ was highest for urban sites at 2.9 followed by pasture, horticulture and plantation forests at 2.7, 2.6, and 0.9, respectively. It is recommended that soil sampling continues over time because a longer spanning record will allow further identification of where soil problems exist and where resources need to be targeted in the future. Findings from this study will also inform policy and science direction in regional councils.Keywords: heavy metals, pollution index, rural and urban land use, soil quality
Procedia PDF Downloads 3787243 The Effects of Different Agroforestry Practices on Glomalin Related Soil Protein, Soil Aggregate Stability and Organic Carbon-Association with Soil Aggregates in Southern Ethiopia
Authors: Nebiyou Masebo
Abstract:
The severities of land degradation in southern Ethiopia has been increasing due to high population density, replacement of an age-old agroforestry (AF) based agricultural system with monocropping. The consequences of these activities combined with climate change have been impaired soil biota, soil organic carbon (SOC), soil glomalin, soil aggregation and aggregate stability. The AF systems could curb these problems due it is an ecologically and economically sustainable. This study was aimed to determine the effect of agroforestry practices (AFPs) on soil glomalin, soil aggregate stability (SAS), and aggregate association with SOC. Soil samples (from two depth level: 0-30 & 30-60 cm) and woody species were collected from homegarden based agroforestry practice (HAFP), cropland based agroforestry practice (ClAFP), woodlot based agroforestry practice (WlAFP) and trees on soil and water conservation based agroforestry practice (TSWAFP) using systematic sampling. In this study, both easily extractable glomalin related soil protein (EEGRSP) and total glomalin related soil protein (TGRSP) were significantly (p<0.05) higher in HAFP compared to others, with decreasing order HAFP>WlAFP>TSWAFP>ClAFP at upper surface but in subsurface in decreasing order: WlAFP>HAFP>TSWAFP>ClAFP. On the other hand, the macroaggregate fraction of AFPs ranged from 22.64-36.51% where the lowest was in ClAFP, while the highest was in HAFP, moreover, the order for subsurface was also the same but SAS decreased with the increasing of soil depths. The micro-aggregate fraction ranged from 15.9–24.56%, where the lowest was in HAFP, but the highest was in ClAFP. Besides, the association of OC with both macro-and micro-aggregates was greatest in HAFP and followed by WlAFP. The findings also showed that both glomalin and SAS were significantly high with woody species diversity and richness. Thus, AFP with good management practice can play role on maintenance of biodiversity, glomalin content and other soil quality parameters with future implications for a stable ecosystem.Keywords: agroforestry, soil aggregate stability, glomalin, aggregate-associated carbon, HAFP, ClAFP, WlAFP, TSWAFP.
Procedia PDF Downloads 1097242 Comparison of Numerical and Laboratory Results of Pull-Out Test on Soil–Geogrid Interactions
Authors: Parisa Ahmadi Oliaei, Seyed Abolhassan Naeini
Abstract:
The knowledge of soil–reinforcement interaction parameters is particularly important in the design of reinforced soil structures. The pull-out test is one of the most widely used tests in this regard. The results of tensile tests may be very sensitive to boundary conditions, and more research is needed for a better understanding of the Pull-out response of reinforcement, so numerical analysis using the finite element method can be a useful tool for the understanding of the Pull-out response of soil-geogrid interaction. The main objective of the present study is to compare the numerical and experimental results of Pull- out a test on geogrid-reinforced sandy soils interactions. Plaxis 2D finite element software is used for simulation. In the present study, the pull-out test modeling has been done on sandy soil. The effect of geogrid hardness was also investigated by considering two different types of geogrids. The numerical results curve had a good agreement with the pull-out laboratory results.Keywords: plaxis, pull-out test, sand, soil- geogrid interaction
Procedia PDF Downloads 1727241 Experimental Investigation of The Influence of Cement on Soil-Municipal Solid Waste Incineration Fly ash Mix Properties
Authors: Gehan Aouf, Diala Tabbal, Abd El Rahim Sabsabi, Rashad Aouf
Abstract:
The aim of this study is to assess the viability of utilizing Municipal Solid Waste Incineration Fly Ash (MSWIFA) with Ordinary Portland cement as soil reinforcement materials for geotechnical engineering applications. A detailed experimental program is carried out, followed by analysis of results. Soil samples were prepared by adding Cement to MSWIFA-soil mix at different percentages. Then, a series of laboratory tests were performed, namely: Sieve analysis, Atterberg limits tests, Unconfined compression test, and Proctor tests. A parametric study is conducted to investigate the effect of adding the cement at different percentages on the unconfined compression strength, maximum dry density, and optimum moisture content of clayey soil-MSWIFA The variation of contents of admixtures were 10%, 20%, and 30% for MSWIFA by dry total weight of soil and 10%, 15%, and 20% for Portland cement by dry total weight of the mix. The test results reveal that adding MSWIFA to the soil up to 20% increased the MDD of the mixture and decreased the OMC, then an opposite trend for results were found when the percentage of MSWIFA exceeds 20%. This is due to the low specific gravity of MSWIFA and to the greater water absorption of MSWIFA. The laboratory tests also indicate that the UCS values were found to be increased for all the mixtures with curing periods of 7, 14, and 28 days. It is also observed that the cement increased the strength of the finished product of the mix of soil and MSWIFA.Keywords: clayey soil, cement, MSWIFA, unconfined compression strength
Procedia PDF Downloads 1327240 Prioritizing Forest Conservation Strategies Using a Multi-Attribute Decision Model to Address Concerns with the Survival of the Endangered Dragon Tree (Dracaena ombet Kotschy and Peyr.)
Authors: Tesfay Gidey, Emiru Birhane, Ashenafi Manaye, Hailemariam Kassa, Tesfay Atsbha, Negasi Solomon, Hadgu Hishe, Aklilu Negussie, Petr Madera, Jose G. Borges
Abstract:
The globally endangered Dracaena ombet is one of the ten dragon multipurpose tree species in arid ecosystems. Anthropogenic and natural factors are now impacting the sustainability of the species. This study was conducted to prioritize criteria and alternative strategies for the conservation of the species using the analytical hierarchy process (AHP) model by involving all relevant stakeholders in the Desa'a dry Afromontane forest in northern Ethiopia. Information about the potential alternative strategies and the criteria for their evaluation was first collected from experts, personal experiences, and literature reviews. Afterward, they were validated using stakeholders' focus group discussions. Five candidate strategies with three evaluation criteria were considered for prioritization using the AHP techniques. The overall priority ranking value of the stakeholders showed that the ecological criterion was deemed as the most essential factor for the choice of alternative strategies, followed by the economic and social criteria. The minimum cut-off strategy, combining exclosures with the collection of only 5% of plant parts from the species, soil and water conservation, and silviculture interventions, was selected as the best alternative strategy for sustainable D. ombet conservation. The livelihood losses due to the selected strategy should be compensated by the collection of non-timber forest products, poultry farming, home gardens, rearing small ruminants, beekeeping, and agroforestry. This approach may be extended to study other dragon tree species and explore strategies for the conservation of other arid ecosystems.Keywords: conservation strategies, analytical hierarchy process model, Desa'a forest, endangered species, Ethiopia, overexploitation
Procedia PDF Downloads 937239 Erosion Influencing Factors Analysis: Case of Isser Watershed (North-West Algeria)
Authors: Chahrazed Salhi, Ayoub Zeroual, Yasmina Hamitouche
Abstract:
Soil water erosion poses a significant threat to the watersheds in Algeria today. The degradation of storage capacity in large dams over the past two decades, primarily due to erosion, necessitates a comprehensive understanding of the factors that contribute to soil erosion. The Isser watershed, located in the Northwestern region of Algeria, faces additional challenges such as recurrent droughts and the presence of delicate marl and clay outcrops, which amplify its susceptibility to water erosion. This study aims to employ advanced techniques such as Geographic Information Systems (GIS) and Remote Sensing (RS), in conjunction with the Canonical Correlation Analysis (CCA) method and Soil Water Assessment Tool (SWAT) model, to predict specific erosion patterns and analyze the key factors influencing erosion in the Isser basin. To accomplish this, an array of data sources including rainfall, climatic, hydrometric, land use, soil, digital elevation, and satellite data were utilized. The application of the SWAT model to the Isser basin yielded an average annual soil loss of approximately 16 t/ha/year. Particularly high erosion rates, exceeding 12 T/ha/year, were observed in the central and southern parts of the basin, encompassing 41% of the total basin area. Through Canonical Correlation Analysis, it was determined that vegetation cover and topography exerted the most substantial influence on erosion. Consequently, the study identified significant and spatially heterogeneous erosion throughout the study area. The impact of land topography on soil loss was found to be directly proportional, while vegetation cover exhibited an inverse proportional relationship. Modeling specific erosion for the Ladrat dam sub-basin estimated a rate of around 39 T/ha/year, thus accounting for the recorded capacity loss of 17.80% compared to the bathymetric survey conducted in 2019. The findings of this research provide valuable decision-support tools for soil conservation managers, empowering them to make informed decisions regarding soil conservation measures.Keywords: Isser watershed, RS, CCA, SWAT, vegetation cover, topography
Procedia PDF Downloads 727238 Study of the Behavior of Geogrid Mechanically Stabilized Earth Walls Under Cyclic Loading
Authors: Yongzhe Zhao, Ying Liu, Zhiyong Liu, Hui You
Abstract:
The soil behind retaining wall is normally subjected to cyclic loading, for example traffic loading. Geotextile has been widely used to reinforce the soil for the purpose of reducing the settlement of the soil. A series of physical model tests were performed to investigate the settlement of footing under cyclic loading. The settlement of the footing, ground deformation and the vertical earth pressure in subsoil were presented and discussed under different types of geotextiles. The results indicate that including geotextiles significantly decreases the footing settlement and the stiffer the geotextile, the less the settlement. Under cyclic loading, the soil below the footing shows dilation within certain depths and beyond that it experiences contraction. The location of footing relative to the retaining wall has important effects on the deformation behavior of the soil in the ground, and the closer the footing to the retaining wall, the greater the contraction soil shows. This is because the retaining wall experienced greater lateral displacement.Keywords: physical model tests, reinforced retaining wall, cyclic loading, footing
Procedia PDF Downloads 1557237 Ecosystem Post-Wildfires Effects of Thasos Island
Authors: George D. Ranis, Valasia Iakovoglou, George N. Zaimes
Abstract:
Fires are one of the main types of disturbances that shape ecosystems in the Mediterranean region. However nowadays, climate alterations towards higher temperature regimes results on the increased levels of the intensity, frequency and the spread of fires inducing obstacles for the natural regeneration. Thasos Island is one of the Greek islands that have experienced those problems. Since 1984, a series of wildfires led to the reduction of forest cover from 61.6% to almost 20%. The negative impacts were devastating in many different aspects for the island. The absence of plant cover, post-wildfire precipitation and steep slopes were the major factors that induced severe soil erosion and intense flooding events. That also resulted to serious economic problems to the local communities and the ability of the burnt areas to regenerate naturally. Despite the substantial amount of published work regarding Thasos wildfires, there is no information related to post-wildfire effects on the hydrology and soil erosion. More research related to post-fire effects should help to an overall assessment of the negative impacts of wildfires on land degradation through processes such as soil erosion and flooding.Keywords: erosion, land degradation, Mediterranean islands, regeneration, Thasos, wildfires
Procedia PDF Downloads 3267236 Physical Dynamics of Planet Earth and Their Implications for Global Climate Change and Mitigation: A Case Study of Sistan Plain, Balochistan Region, Southeastern Iran
Authors: Hamidoddin Yousefi, Ahmad Nikbakht
Abstract:
The Sistan Plain, situated in the Balochistan region of southeastern Iran, is renowned for its arid climatic conditions and prevailing winds that persist for approximately 120 days annually. The region faces multiple challenges, including drought susceptibility, exacerbated by wind erosion, temperature fluctuations, and the influence of policies implemented by neighboring Afghanistan and Iran. This study focuses on investigating the characteristics of jet streams within the Sistan Plain and their implications for global climate change. Various models are employed to analyze convective mass fluxes, horizontal moisture transport, temporal variance, and the calculation of radiation convective equilibrium within the atmosphere. Key considerations encompass the distribution of relative humidity, dry air, and absolute humidity. Moreover, the research aims to predict the interplay between jet streams and human activities, particularly regarding their environmental impacts and water scarcity. The investigation encompasses both local and global environmental consequences, drawing upon historical climate change data and comprehensive field research. The anticipated outcomes of this study hold substantial potential for mitigating global climate change and its associated environmental ramifications. By comprehending the dynamics of jet streams and their interconnections with human activities, effective strategies can be formulated to address water scarcity and minimize environmental degradation.Keywords: Sistani plain, Baluchistan, Hamoun lake, climate change, jet streams, environmental impact, water scarcity, mitigation
Procedia PDF Downloads 747235 Effect of the Soil-Foundation Interface Condition in the Determination of the Resistance Domain of Rigid Shallow Foundations
Authors: Nivine Abbas, Sergio Lagomarsino, Serena Cattari
Abstract:
The resistance domain of a generally loaded rigid shallow foundation is normally represented as an interaction diagram limited by a failure surface in the three dimensional (3D) load space (N, V, M), where N is the vertical centric load component, V is the horizontal load component and M is the bending moment component. Usually, this resistance domain is constructed neglecting the foundation sliding mechanism that take place at the level of soil-foundation interface once the applied horizontal load exceeds the interface frictional resistance of the foundation. This issue is translated in the literature by the fact that the failure limit in the (2D) load space (N, V) is constructed as a parabola having an initial slope, at the center of the coordinate system, that depends, in some works, only of the soil friction angle, and in other works, has an empirical value. However, considering a given geometry of the foundation lying on a given soil type, the initial slope of the failure limit must change, for instance, when varying the roughness of the foundation surface at its interface with the soil. The present study discusses the effect of the soil-foundation interface condition on the construction of the resistance domain, and proposes a correction to be applied to the failure limit in order to overcome this effect.Keywords: soil-foundation interface, sliding mechanism, soil shearing, resistance domain, rigid shallow foundation
Procedia PDF Downloads 4607234 Medical Image Compression Based on Region of Interest: A Review
Authors: Sudeepti Dayal, Neelesh Gupta
Abstract:
In terms of transmission, bigger the size of any image, longer the time the channel takes for transmission. It is understood that the bandwidth of the channel is fixed. Therefore, if the size of an image is reduced, a larger number of data or images can be transmitted over the channel. Compression is the technique used to reduce the size of an image. In terms of storage, compression reduces the file size which it occupies on the disk. Any image is based on two parameters, region of interest and non-region of interest. There are several algorithms of compression that compress the data more economically. In this paper we have reviewed region of interest and non-region of interest based compression techniques and the algorithms which compress the image most efficiently.Keywords: compression ratio, region of interest, DCT, DWT
Procedia PDF Downloads 3767233 The Effect of Traffic on Harmful Metals and Metalloids in the Street Dust and Surface Soil from Urban Areas of Tehran, Iran: Levels, Distribution and Chemical Partitioning Based on Single and Sequential Extraction Procedures
Authors: Hossein Arfaeinia, Ahmad Jonidi Jafari, Sina Dobaradaran, Sadegh Niazi, Mojtaba Ehsanifar, Amir Zahedi
Abstract:
Street dust and surface soil samples were collected from very heavy, heavy, medium and low traffic areas and natural site in Tehran, Iran. These samples were analyzed for some physical–chemical features, total and chemical speciation of selected metals and metalloids (Zn, Al, Sr, Pb, Cu, Cr, Cd, Co, Ni, and V) to study the effect of traffic on their mobility and accumulation in the environment. The pH, electrical conductivity (EC), carbonates and organic carbon (OC) values were similar in soil and dust samples from similar traffic areas. The traffic increases EC contents in dust/soil matrixes but has no effect on concentrations of metals and metalloids in soil samples. Rises in metal and metalloids levels with traffic were found in dust samples. Moreover, the traffic increases the percentage of acid soluble fraction and Fe and Mn oxides associated fractions of Pb and Zn. The mobilization of Cu, Zn, Pb, Cr in dust samples was easier than in soil. The speciation of metals and metalloids except Cd is mainly affected by physicochemical features in soil, although total metals and metalloids affected the speciation in dust samples (except chromium and nickel).Keywords: street dust, surface soil, traffic, metals, metalloids, chemical speciation
Procedia PDF Downloads 2607232 Exploring the Impact of Tillage and Manure on Soil Water Retention and Van Genuchten
Authors: Azadeh Safadoust, Ali Akbar Mahboubi
Abstract:
A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha-1] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha-1). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha-1). This was due to the increase in the total pore size and continuity.Keywords: corn, manure, saturated hydraulic conductivity, soil water characteristic curve, tillage
Procedia PDF Downloads 767231 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation
Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock
Abstract:
This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing.Keywords: soft soil stabilisation, waste materials, fineness, unconfined compressive strength
Procedia PDF Downloads 2717230 Developing a Web GIS Tool for the Evaluation of Soil Erosion of a Watershed
Authors: Y. Fekir, K. Mederbal, M. A. Hamadouche, D. Anteur
Abstract:
The soil erosion by water has become one of the biggest problems of the environment in the world, threatening the majority of countries. There are several models to evaluate erosion. These models are still a simplified representation of reality. They permit the analysis of complex systems, measurements are complementary to allow an extrapolation in time and space and may combine different factors. The empirical model of soil loss proposed by Wischmeier and Smith (Universal Soil Loss Equation), is widely used in many countries. He considers that erosion is a multiplicative function of five factors: rainfall erosivity (the R factor) the soil erodibility factor (K), topography (LS), the erosion control practices (P) and vegetation cover and agricultural practices (C). In this work, we tried to develop a tool based on Web GIS functionality to evaluate soil losses caused by erosion taking into account five factors. This tool allows the user to integrate all the data needed for the evaluation (DEM, Land use, rainfall ...) in the form of digital layers to calculate the five factors taken into account in the USLE equation (R, K, C, P, LS). Accordingly, and after treatment of the integrated data set, a map of the soil losses will be achieved as a result. We tested the proposed tool on a watershed basin located in the weste of Algeria where a dataset was collected and prepared.Keywords: USLE, erosion, web gis, Algeria
Procedia PDF Downloads 3327229 Comparative Study of the Effect of Three Fungicides: Tilt and Artea Amistarxtra about Growing Wheat, Hard, and Soft and Their Impact on Grain Yield and Its Components in the Semi-Arid Zone of Setif
Authors: Cheniti Khalissa, Dekhili Mohamed
Abstract:
Several fungal diseases may infect hard and soft wheat, which directly affect the yield and thus the economy of the homeland. So, a treatment fungicide is one of means of diseases control. In this context, we studied two varieties of wheat; Waha for soft wheat and Hidhab for hard wheat, at the level of the Technical Institute of crops (ITGC) in the wilaya of Setif under semi-arid conditions. This study consists of a successive application of three fungicides (Tilt, Artea, and Armistarxtra) according to three treatments (T1, T2, and T3) in addition to the witness (T0) at different stages of plant development (respectively, Montaison, earing and after flowering) whose purpose is to test and determine the effectiveness of these products used sequentially. The study showed good efficacy when we use the sum of these pesticides The comparison between these different treatments indicates that the T3 treatment reduced yield losses significantly; which is evident in the main yield components such as fertility, grain yield and weight of 1000 grains. The various components of yield and final yield are all parameters to be taken into account in such a study. In general, the fungal treatment is an effective way of improving profitability. In general, the fungal treatment is an effective way of improving profitability and positioning interventions in time is one of the requirements for an appreciable efficiency.Keywords: hard wheat, soft wheat, diseases, fungicide treatment, fertility, 1000-grain weight, semi-arid zone
Procedia PDF Downloads 4067228 The Risk of Ground Movements After Digging Two Parallel Vertical Tunnel in Urban
Authors: Djelloul Chafia, Demagh Rafik, Kareche Toufik
Abstract:
Human activities, made without precautions, accelerate the degradation of the soil structure and reduces its resistance. Operations, such as tunnel construction may exercise an influence more or less permanent on the grounds which surrounded them, these structures alter soil it is necessary to predict their impacts by suitable measures. This research is a numerical analysis that deals the risks and effects due to the weakening of the soil after digging two parallel vertical circular tunnels in urban areas, and suggests forecasting techniques based essentially on the organization of underground space. The simulations are performed using the finite-difference code FLAC in a two-dimensional case and with an elasto-plastic behavior of the soil.Keywords: sol, weakening, degradation, prevention, tunnel
Procedia PDF Downloads 5577227 Removal of Polycyclic Aromatic Hydrocarbons (PAHS) and the Response of Indigenous Bacteria in Highly Contaminated Aged Soil after Persulfate Oxidation
Authors: Yaling Gou, Sucai Yang, Pengwei Qiao
Abstract:
Integrated chemical-biological treatment is an attractive alternative to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soil; wherein indigenous bacteria is the key factor for the biodegradation of residual PAHs concentrations after the application of chemical oxidation. However, the systematical study on the impact of persulfate (PS) oxidation on indigenous bacteria as well as PAHs removal is still scarce. In this study, the influences of different PS dosages (1%, 3%, 6%, and 10% [w/w]), as well as various activation methods (native iron, H2O2, alkaline, ferrous iron, and heat) on PAHs removal and indigenous bacteria in highly contaminated aged soil were investigated. Apparent degradation of PAHs in the soil treated with PS oxidation was observed, and the removal efficiency of total PAHs in the soil ranged from 38.28% to 79.97%. The removal efficiency of total PAHs in the soil increased with increasing consumption of PS. However, the bacterial abundance in soil was negatively affected following oxidation for all of the treatments added with PS, with bacterial abundance in the soil decreased by 0.89~2.88 orders of magnitude compared to the untreated soil. Moreover, the number of total bacteria in the soil decreased as PS consumption increased. Different PS activation methods and PS dosages exhibited different influences on the bacterial community composition. Bacteria capable of degrading PAHs under anoxic conditions were composed predominantly by Proteobacteria and Firmicutes. The total amount of Proteobacteria and Firmicutes also decreased with increasing consumption of PS. The results of this study provide important insight into the design of PAHs contaminated soil remediation projects.Keywords: activation method, chemical oxidation, indigenous bacteria, polycyclic aromatic hydrocarbon
Procedia PDF Downloads 1167226 Impact of Herbicides on Soil Biology in Rapeseed
Authors: M. Eickermann, M. K. Class, J. Junk
Abstract:
Winter oilseed rape, Brassica napus L., is characterized by a high number of herbicide applications. Therefore, its cultivation can lead to massive contamination of ground water and soil by herbicide and their metabolites. A multi-side long-term field experiment (EFFO, Efficient crop rotation) was set-up in Luxembourg to quantify these effects. Based on soil sampling and laboratory analysis, preliminary results showed reduced dehydrogenase activities of several soil organisms due to herbicide treatments. This effect is highly depending on the soil type. Relation between the dehydrogenase activity and the amount of microbial carbon showed higher variability on the test side with loamy Brown Earth, based on Bunter than on those with sandy-loamy Brown Earth, based on calciferous Sandstone.Keywords: cropping system, dehydrogenase activity, herbicides, mechanical weed control, oilseed rape
Procedia PDF Downloads 2497225 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability
Procedia PDF Downloads 4147224 Effects of Tillage and Poultry Manure on Soil Properties and Yam Performance on Alfisol in Southwest Nigeria
Authors: Adeleye Ebenezer Omotayo
Abstract:
The main effects of tillage, poultry manure and interaction effects of tillage-poultry manure combinations on soil characteristics and yam yield were investigated in a factorial experiment involving four tillage techniques namely (ploughing (p), ploughing plus harrowing (PH), manual ridging (MR), manual heaping (MH) and poultry manure at two levels 0 t ha-1 and 10 t ha-1 arranged in split-plot design. Data obtained were subjected to analysis of variance using Statistical Analysis System (SAS) Institute Package. Soil moisture content, bulk density and total porosity were significantly (p>0.05) influenced by soil tillage techniques. Manually heaped and ridged plots had the lowest soil bulk density, moisture content and highest total porosity. The soil total N, exchangeable Mg, k, base saturation and CEC were better enhanced in manually tilled plots. Soil nutrients status declined at the end of the second cropping for all the tillage techniques in the order PH>P>MH>MR. Yam tuber yields were better enhanced in manually tilled plots than mechanically tilled plots. Poultry manure application reduced soil bulk density, temperature, increased total porosity and soil moisture content. It also improved soil organic matter, total N, available P, exchangeable Mg, Ca, K and lowered exchange acidity. It also increased yam tuber yield significantly. Tillage techniques plots amended with poultry manure enhanced yam tuber yield relative to tillage techniques plots without poultry manure application. It is concluded that yam production on alfisol in Southwest Nigeria requires loose soil structure for tuber development and that the use of poultry manure in combination with tillage is recommended as it will ensure stability of soil structure, improve soil organic matter status, nutrient availability and high yam tuber yield. Also, it will help to reduce the possible deleterious effects of tillage on soil properties and yam performance.Keywords: ploughing, poultry manure, yam, yield
Procedia PDF Downloads 2727223 Physical Properties of Rice Field Receiving Irrigation Polluted by Gold Mine Tailing: Case Study in Dharmasraya, West Sumatra, Indonesia
Authors: Yulna Yulnafatmawita, Syafrimen Yasin, Lusi Maira
Abstract:
Irrigation source is one of the factors affecting physical properties of rice field. This research was aimed to determine the impact of polluted irrigation wáter on soil physical properties of rice field. The study site was located in Koto Nan IV, Dharmasraya Regency, West Sumatra, Indonesia. The rice field was irrigated with wáter from Momongan river in which people do gold mining. The soil was sampled vertically from the top to 100 cm depth with 20 cm increment of soil profile from 2 year-fallowed rice field, as well as from the top 20 cm of cultivated rice field from the terrace-1 (the highest terrace) to terrace-5 (the lowest terrace) position. Soil samples were analysed in laboratory. For comparison, rice field receiving irrigation wáter from non-polluted source was also sampled at the top 20 cm and anaysed for the physical properties. The result showed that there was a change in soil physical properties of rice field after 9 years of getting irrigation from the river. Based on laboratory analyses, the total suspended solid (TSS) in the tailing reached 10,736 mg/L. The texture of rice field at polluted rice field (PRF) was dominated (>55%) by sand particles at the top 100 cm soil depth, and it tended to linearly decrease (R2=0.65) from the top 20 cm to 100 cm depth. Likewise, the sand particles also linearly decreased (R2=0.83), but clay particles linearly increased (R2=0.74) horizontally as the distance from the wáter input (terrace-1) was fartherst. Compared to nonpolluted rice field (NPRF), percentage of sand was higher, and clay was lower at PRF. This sandy texture of soil in PRF increased soil hydraulic conductivity (up to 19.1 times), soil bulk density (by 38%), and sharply decreased SOM (by 88.5 %), as well as soil total pore (by 22.1%) compared to the NPRF at the top 20 cm soil. The rice field was suggested to be reclaimed before reusing it. Otherwise the soil characteristics requirement, especially soil wáter retention, for rice field could not be fulfilled.Keywords: gold mine tailing, polluted irrigation, rice field, soil physical properties
Procedia PDF Downloads 2867222 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus
Authors: Ehsan Mehryaar, Reza Bushehri
Abstract:
One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response
Procedia PDF Downloads 2037221 Effect of Extraction Method, Soil Media on Germination and Seedling Establishment of Chrysophyllum Albidum
Authors: Peace Nnadi
Abstract:
This research was aimed at using seed extraction methods, soil media and planting density to enhance seed germination and seedling growth of Chrysophyllum albidum commonly known as star apple. The experiment was conducted in two stages, mature, healthy ripe fruits were used and the seeds were extracted from the fruits. The experiment involves the extraction of uniform number of seeds of pulpled and depulped, planted into the various soil media. Result on planting density also showed that Depulped seeds/ seedlings at (p=0.05), recorded significant increase in germination percentage and seedling growth. The finding shows that when seeds are depulped, they enhance germination percentage and addition of poultry manure to the soil media encourages plant growth.Keywords: germination, seedling, soil media, extraction
Procedia PDF Downloads 3207220 Spatial Assessment of Soil Contamination from Informal E-Waste Recycling Site in Agbogbloshie, Ghana
Authors: Kyere Vincent Nartey, Klaus Greve, Atiemo Sampson
Abstract:
E-waste is discarded electrical electronic equipment inclusive of all components, sub-assemblies and consumables which are part of the product at the time of discarding and known to contain both hazardous and valuable fractions. E-waste is recycled within the proposed ecological restoration of the Agbogbloshie enclave using crude and rudimental recycling procedures such as open burning and manual dismantling which result in pollution and contamination of soil, water and air. Using GIS, this study was conducted to examine the spatial distribution and extent of soil contamination by heavy metals from the e-waste recycling site in Agbogbloshie. From the month of August to November 2013, 146 soil samples were collected in addition to their coordinates using GPS. Elemental analysis performed on the collected soil samples using X-Ray fluorescence revealed over 30 elements including, Ni, Cr, Zn, Cu, Pb and Mn. Using geostatistical techniques in ArcGIS 10.1 spatial assessment and distribution maps were generated. Mathematical models or equations were used to estimate the degree of contamination and pollution index. Results from soil analysis from the Agbogbloshie enclave showed that levels of measured or observed elements were significantly higher than the Canadian EPA and Dutch environmental standards.Keywords: e-waste, geostatistics, soil contamination, spatial distribution
Procedia PDF Downloads 5157219 Anlaytical Studies on Subgrade Soil Using Jute Geotextile
Authors: A. Vinod Kumar, G. Sunny Deol, Rakesh Kumar, B. Chandra
Abstract:
Application of fiber reinforcement in road construction is gaining some interest in enhancing soil strength. In this paper, the natural geotextile material obtained from gunny bags was used due to its vast local availability. Construction of flexible pavement on weaker soil such as clay soils is a significant problem in construction as well as in design due to its expansive characteristics. Jute geotextile (JGT) was used on a foundation layer of flexible pavement on rural roads. This problem will be conquered by increasing the subgrade strength by decreasing sub-base layer thickness by improving their overall pavement strength characteristics which ultimately reduces the cost of construction and leads to an economical design. California Bearing Ratio (CBR), unconfined compressive strength (UCS) and triaxial laboratory tests were conducted on two different soil samples, CI and MI. Weaker soil is reinforced with JGT, JGT+Bitumen. JGT+polythene sheet was varied with heights while performing the laboratory tests. Subgrade strength evaluation was investigated by conducting soak CBR test in the laboratory for clayey and silt soils. Laboratory results reveal that reinforced soak CBR value of clayey soil (CI) observed was 10.35%, and silty soil (MI) was 15.6%. This study intends to develop new technique for reinforcing weaker soil with JGT varying parameters for the need of low volume flexible pavements. It was observed that the performance of JGT is inferior when used with bitumen and polyethylene sheets.Keywords: CBR, jute geotextile, low volume road, weaker soil
Procedia PDF Downloads 4427218 Effect of Rice Cultivars and Water Regimes Application as Mitigation Strategy for Greenhouse Gases in Paddy Fields
Authors: Mthiyane Pretty, Mitsui Toshiake, Aycan Murat, Nagano Hirohiko
Abstract:
Methane (CH₄) is one of the most dangerous greenhouse gases (GHG) emitted into the atmosphere by terrestrial ecosystems, with a global warming potential (GWP) 25-34 times that of CO2 on a centennial scale. Paddy rice cultivations are a major source of methane emission and is the major driving force for climate change. Thus, it is necessary to find out GHG emissions mitigation strategies from rice cultivation. A study was conducted at Niigata University. And the prime objective of this research was to determine the effects of rice varieties CH4 lowland (NU1, YNU, Nipponbare, Koshihikari) and upland (Norin 1, Norin 24, Hitachihatamochi) japonica rice varieties using different growth media which was paddy field soil and artificial soil. The treatments were laid out in a split plot design. The soil moisture was kept at 40-50% and 70%, respectively. The CH₄ emission rates were determined by collecting air samples using the closed chamber technique and measuring CH₄ concentrations using a gas chromatograph. CH₄ emission rates varied with the growth, growth media type and development of the rice varieties. The soil moisture was monitored at a soil depth of 5–10 cm with an HydraGO portable soil sensor system every three days for each pot, and temperatures were be recorded by a sensitive thermometer. The lowest cumulative CH4 emission rate was observed in Norin 24, particularly under 40 to 50% soil moisture. Across the rice genotypes, 40-50% significantly reduced the cumulative CH4 , followed by irrigation of 70% soil moisture. During the tillering stage, no significant variation in tillering and plant height was observed between and 70% soil moisture. This study suggests that the cultivation of Norin 24 and Norin 1 under 70% soil irrigation could be effective at reducing the CH4 in rice fields.Keywords: methane, paddy fields, rice varieties, soil moisture
Procedia PDF Downloads 93