Search results for: analytical network design model
29894 Quantum Decision Making with Small Sample for Network Monitoring and Control
Authors: Tatsuya Otoshi, Masayuki Murata
Abstract:
With the development and diversification of applications on the Internet, applications that require high responsiveness, such as video streaming, are becoming mainstream. Application responsiveness is not only a matter of communication delay but also a matter of time required to grasp changes in network conditions. The tradeoff between accuracy and measurement time is a challenge in network control. We people make countless decisions all the time, and our decisions seem to resolve tradeoffs between time and accuracy. When making decisions, people are known to make appropriate choices based on relatively small samples. Although there have been various studies on models of human decision-making, a model that integrates various cognitive biases, called ”quantum decision-making,” has recently attracted much attention. However, the modeling of small samples has not been examined much so far. In this paper, we extend the model of quantum decision-making to model decision-making with a small sample. In the proposed model, the state is updated by value-based probability amplitude amplification. By analytically obtaining a lower bound on the number of samples required for decision-making, we show that decision-making with a small number of samples is feasible.Keywords: quantum decision making, small sample, MPEG-DASH, Grover's algorithm
Procedia PDF Downloads 7929893 Applications of Analytical Probabilistic Approach in Urban Stormwater Modeling in New Zealand
Authors: Asaad Y. Shamseldin
Abstract:
Analytical probabilistic approach is an innovative approach for urban stormwater modeling. It can provide information about the long-term performance of a stormwater management facility without being computationally very demanding. This paper explores the application of the analytical probabilistic approach in New Zealand. The paper presents the results of a case study aimed at development of an objective way of identifying what constitutes a rainfall storm event and the estimation of the corresponding statistical properties of storms using two selected automatic rainfall stations located in the Auckland region in New Zealand. The storm identification and the estimation of the storm statistical properties are regarded as the first step in the development of the analytical probabilistic models. The paper provides a recommendation about the definition of the storm inter-event time to be used in conjunction with the analytical probabilistic approach.Keywords: hydrology, rainfall storm, storm inter-event time, New Zealand, stormwater management
Procedia PDF Downloads 34429892 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments
Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing
Abstract:
Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.Keywords: central composite design, CO2 liquefaction, latin hypercube sampling, simulation-based optimization
Procedia PDF Downloads 16629891 Preliminary Composite Overwrapped Pressure Vessel Design for Hydrogen Storage Using Netting Analysis and American Society of Mechanical Engineers Section X
Authors: Natasha Botha, Gary Corderely, Helen M. Inglis
Abstract:
With the move to cleaner energy applications the transport industry is working towards on-board hydrogen, or compressed natural gas-fuelled vehicles. A popular method for storage is to use composite overwrapped pressure vessels (COPV) because of their high strength to weight ratios. The proper design of these COPVs are according to international standards; this study aims to provide a preliminary design for a 350 Bar Type IV COPV (i.e. a polymer liner with a composite overwrap). Netting analysis, a popular analytical approach, is used as a first step to generate an initial design concept for the composite winding. This design is further improved upon by following the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel standards, Section X: Fibre-reinforced composite pressure vessels. A design program based on these two approaches is developed using Python. A numerical model of a burst test simulation is developed based on the two approaches and compared. The results indicate that the netting analysis provides a good preliminary design, while the ASME-based design is more robust and accurate as it includes a better approximation of the material behaviour. Netting analysis is an easy method to follow when considering an initial concept design for the composite winding when not all the material characteristics are known. Once these characteristics have been fully defined with experimental testing, an ASME-based design should always be followed to ensure that all designs conform to international standards and practices. Future work entails more detailed numerical testing of the design for improvement, this will include the boss design. Once finalised prototype manufacturing and experimental testing will be conducted, and the results used to improve on the COPV design.Keywords: composite overwrapped pressure vessel, netting analysis, design, American Society of Mechanical Engineers section x, fiber-reinforced, hydrogen storage
Procedia PDF Downloads 24729890 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge
Authors: T. Alghamdi, G. Alaghband
Abstract:
In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.Keywords: Convolution Neural Network, Edges, Face Recognition , Support Vector Machine.
Procedia PDF Downloads 15329889 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection
Authors: Ashkan Zakaryazad, Ekrem Duman
Abstract:
A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent
Procedia PDF Downloads 47529888 Mathematical Modelling and AI-Based Degradation Analysis of the Second-Life Lithium-Ion Battery Packs for Stationary Applications
Authors: Farhad Salek, Shahaboddin Resalati
Abstract:
The production of electric vehicles (EVs) featuring lithium-ion battery technology has substantially escalated over the past decade, demonstrating a steady and persistent upward trajectory. The imminent retirement of electric vehicle (EV) batteries after approximately eight years underscores the critical need for their redirection towards recycling, a task complicated by the current inadequacy of recycling infrastructures globally. A potential solution for such concerns involves extending the operational lifespan of electric vehicle (EV) batteries through their utilization in stationary energy storage systems during secondary applications. Such adoptions, however, require addressing the safety concerns associated with batteries’ knee points and thermal runaways. This paper develops an accurate mathematical model representative of the second-life battery packs from a cell-to-pack scale using an equivalent circuit model (ECM) methodology. Neural network algorithms are employed to forecast the degradation parameters based on the EV batteries' aging history to develop a degradation model. The degradation model is integrated with the ECM to reflect the impacts of the cycle aging mechanism on battery parameters during operation. The developed model is tested under real-life load profiles to evaluate the life span of the batteries in various operating conditions. The methodology and the algorithms introduced in this paper can be considered the basis for Battery Management System (BMS) design and techno-economic analysis of such technologies.Keywords: second life battery, electric vehicles, degradation, neural network
Procedia PDF Downloads 6529887 Secure Network Coding-Based Named Data Network Mutual Anonymity Transfer Protocol
Authors: Tao Feng, Fei Xing, Ye Lu, Jun Li Fang
Abstract:
NDN is a kind of future Internet architecture. Due to the NDN design introduces four privacy challenges,Many research institutions began to care about the privacy issues of naming data network(NDN).In this paper, we are in view of the major NDN’s privacy issues to investigate privacy protection,then put forwards more effectively anonymous transfer policy for NDN.Firstly,based on mutual anonymity communication for MP2P networks,we propose NDN mutual anonymity protocol.Secondly,we add interest package authentication mechanism in the protocol and encrypt the coding coefficient, security of this protocol is improved by this way.Finally, we proof the proposed anonymous transfer protocol security and anonymity.Keywords: NDN, mutual anonymity, anonymous routing, network coding, authentication mechanism
Procedia PDF Downloads 45129886 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform
Procedia PDF Downloads 51229885 Margin-Based Feed-Forward Neural Network Classifiers
Authors: Xiaohan Bookman, Xiaoyan Zhu
Abstract:
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labeled samples and flexible network. We have conducted experiments on four UCI open data sets and achieved good results as expected. In conclusion, our model could handle more sparse labeled and more high-dimension data set in a high accuracy while modification from old ANN method to our method is easy and almost free of work.Keywords: Max-Margin Principle, Feed-Forward Neural Network, classifier, structural risk
Procedia PDF Downloads 34129884 Real Time Traffic Performance Study over MPLS VPNs with DiffServ
Authors: Naveed Ghani
Abstract:
With the arrival of higher speed communication links and mature application running over the internet, the requirement for reliable, efficient and robust network designs rising day by day. Multi-Protocol Label Switching technology (MPLS) Virtual Private Networks (VPNs) have committed to provide optimal network services. They are gaining popularity in industry day by day. Enterprise customers are moving to service providers that offer MPLS VPNs. The main reason for this shifting is the capability of MPLS VPN to provide built in security features and any-to-any connectivity. MPLS VPNs improved the network performance due to fast label switching as compare to traditional IP Forwarding but traffic classification and policing was still required on per hop basis to enhance the performance of real time traffic which is delay sensitive (particularly voice and video). QoS (Quality of service) is the most important factor to prioritize enterprise networks’ real time traffic such as voice and video. This thesis is focused on the study of QoS parameters (e.g. delay, jitter and MOS (Mean Opinion Score)) for the real time traffic over MPLS VPNs. DiffServ (Differentiated Services) QoS model will be used over MPLS VPN network to get end-to-end service quality.Keywords: network, MPLS, VPN, DiffServ, MPLS VPN, DiffServ QoS, QoS Model, GNS2
Procedia PDF Downloads 42629883 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm
Procedia PDF Downloads 56329882 Series Network-Structured Inverse Models of Data Envelopment Analysis: Pitfalls and Solutions
Authors: Zohreh Moghaddas, Morteza Yazdani, Farhad Hosseinzadeh
Abstract:
Nowadays, data envelopment analysis (DEA) models featuring network structures have gained widespread usage for evaluating the performance of production systems and activities (Decision-Making Units (DMUs)) across diverse fields. By examining the relationships between the internal stages of the network, these models offer valuable insights to managers and decision-makers regarding the performance of each stage and its impact on the overall network. To further empower system decision-makers, the inverse data envelopment analysis (IDEA) model has been introduced. This model allows the estimation of crucial information for estimating parameters while keeping the efficiency score unchanged or improved, enabling analysis of the sensitivity of system inputs or outputs according to managers' preferences. This empowers managers to apply their preferences and policies on resources, such as inputs and outputs, and analyze various aspects like production, resource allocation processes, and resource efficiency enhancement within the system. The results obtained can be instrumental in making informed decisions in the future. The top result of this study is an analysis of infeasibility and incorrect estimation that may arise in the theory and application of the inverse model of data envelopment analysis with network structures. By addressing these pitfalls, novel protocols are proposed to circumvent these shortcomings effectively. Subsequently, several theoretical and applied problems are examined and resolved through insightful case studies.Keywords: inverse models of data envelopment analysis, series network, estimation of inputs and outputs, efficiency, resource allocation, sensitivity analysis, infeasibility
Procedia PDF Downloads 5129881 Measurement and Analysis of Building Penetration Loss for Mobile Networks in Tripoli Area
Authors: Tammam A. Benmusa, Mohamed A. Shlibek, Rawad M. Swesi
Abstract:
The investigation of Buildings Penetration Loss (BPL) of radio signal is getting more and more important. It plays an important role in calculating the indoor coverage for wireless communication networks. In this paper, the theory behind BPL and its mechanisms have been reviewed. The operating frequency, coverage area type, climate condition, time of measurement, and other factors affecting the values of BPL have been discussed. The practical part of this work was conducting 4000 measurements of BPL in different areas in the Libyan capital, Tripoli, to get empirical model for this loss. The measurements were taken for 2 different types of wireless communication networks; mobile telephone network (for Almadar company), which operates at 900 MHz and WiMAX network (LTT company) which operates at 2500 MHz. The results for each network were summarized and presented in several graphs. The graphs are showing how the BPL affected by: time of measurement, morphology (type of area), and climatic environment.Keywords: building penetration loss, wireless network, mobile network, link budget, indoor network performance
Procedia PDF Downloads 38429880 Isogeometric Topology Optimization in Cracked Structures Design
Authors: Dongkyu Lee, Thanh Banh Thien, Soomi Shin
Abstract:
In the present study, the isogeometric topology optimization is proposed for cracked structures through using Solid Isotropic Material with Penalization (SIMP) as a design model. Design density variables defined in the variable space are used to approximate the element analysis density by the bivariate B-spline basis functions. The mathematical formulation of topology optimization problem solving minimum structural compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to strain energy of cracked structure are proposed in terms of design density variables. Numerical examples demonstrate interactions of topology optimization to structures design with cracks.Keywords: topology optimization, isogeometric, NURBS, design
Procedia PDF Downloads 49229879 Multi Agent System Architecture Oriented Prometheus Methodology Design for Reverse Logistics
Authors: F. Lhafiane, A. Elbyed, M. Bouchoum
Abstract:
The design of Reverse logistics Network has attracted growing attention with the stringent pressures from both environmental awareness and business sustainability. Reverse logistical activities include return, remanufacture, disassemble and dispose of products can be quite complex to manage. In addition, demand can be difficult to predict, and decision making is one of the challenges tasks. This complexity has amplified the need to develop an integrated architecture for product return as an enterprise system. The main purpose of this paper is to design Multi agent system (MAS) architecture using the Prometheus methodology to efficiently manage reverse logistics processes. The proposed MAS architecture includes five types of agents: Gate keeping Agent, Collection Agent, Sorting Agent, Processing Agent and Disposal Agent which act respectively during the five steps of reverse logistics Network.Keywords: reverse logistics, multi agent system, prometheus methodology
Procedia PDF Downloads 47129878 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 22829877 Numerical and Analytical Approach for Film Condensation on Different Forms of Surfaces
Authors: A. Kazemi Jouybari, A. Mirabdolah Lavasani
Abstract:
This paper seeks to the solution of condensation around of a flat plate, circular and elliptical tube in way of numerical and analytical methods. Also, it calculates the entropy production rates. The first, problem was solved by using mesh dynamic and rational assumptions, next it was compared with the numerical solution that the result had acceptable errors. An additional supporting relation was applied based on a characteristic of condensation phenomenon for condensing elements. As it has been shown here, due to higher rates of heat transfer for elliptical tubes, they have more entropy production rates, in comparison to circular ones. Findings showed that two methods were efficient. Furthermore, analytical methods can be used to optimize the problem and reduce the entropy production rate.Keywords: condensation, numerical solution, analytical solution, entropy rate
Procedia PDF Downloads 21629876 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates
Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes
Abstract:
The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.Keywords: composites materials, laminated composite plate, finite-element analysis, free vibration
Procedia PDF Downloads 29029875 Evaluation of Kabul BRT Route Network with Application of Integrated Land-use and Transportation Model
Authors: Mustafa Mutahari, Nao Sugiki, Kojiro Matsuo
Abstract:
The four decades of war, lack of job opportunities, poverty, lack of services, and natural disasters in different provinces of Afghanistan have contributed to a rapid increase in the population of Kabul, the capital city of Afghanistan. Population census has not been conducted since 1979, the first and last population census in Afghanistan. However, according to population estimations by Afghan authorities, the population of Kabul has been estimated at more than 4 million people, whereas the city was designed for two million people. Although the major transport mode of Kabul residents is public transport, responsible authorities within the country failed to supply the required means of transportation systems for the city. Besides, informal resettlement, lack of intersection control devices, presence of illegal vendors on streets, presence of illegal and unstandardized on-street parking and bus stops, driver`s unprofessional behavior, weak traffic law enforcement, and blocked roads and sidewalks have contributed to the extreme traffic congestion of Kabul. In 2018, the government of Afghanistan approved the Kabul city Urban Design Framework (KUDF), a vision towards the future of Kabul, which provides strategies and design guidance at different scales to direct urban development. Considering traffic congestion of the city and its budget limitations, the KUDF proposes a BRT route network with seven lines to reduce the traffic congestion, and it is said to facilitate more than 50% of Kabul population to benefit from this service. Based on the KUDF, it is planned to increase the BRT mode share from 0% to 17% and later to 30% in medium and long-term planning scenarios, respectively. Therefore, a detailed research study is needed to evaluate the proposed system before the implementation stage starts. The integrated land-use transport model is an effective tool to evaluate the Kabul BRT because of its future assessment capabilities that take into account the interaction between land use and transportation. This research aims to analyze and evaluate the proposed BRT route network with the application of an integrated land-use and transportation model. The research estimates the population distribution and travel behavior of Kabul within small boundary scales. The actual road network and land-use detailed data of the city are used to perform the analysis. The BRT corridors are evaluated not only considering its impacts on the spatial interactions in the city`s transportation system but also on the spatial developments. Therefore, the BRT are evaluated with the scenarios of improving the Kabul transportation system based on the distribution of land-use or spatial developments, planned development typology and population distribution of the city. The impacts of the new improved transport system on the BRT network are analyzed and the BRT network is evaluated accordingly. In addition, the research also focuses on the spatial accessibility of BRT stops, corridors, and BRT line beneficiaries, and each BRT stop and corridor are evaluated in terms of both access and geographic coverage, as well.Keywords: accessibility, BRT, integrated land-use and transport model, travel behavior, spatial development
Procedia PDF Downloads 22229874 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism
Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li
Abstract:
Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.Keywords: keypoint detection, feature fusion, attention, semantic segmentation
Procedia PDF Downloads 11929873 A Novel Multi-Attribute Green Decision Making Model for Environmental Supply Chain Sustainability
Authors: Amirhossein Mahlouji
Abstract:
In current business market, the concept of integrating environmental sustainability into long-term as well as routine operations is becoming a prevailing trend. Therefore, several stimuli are helping organization to move toward environmental sustainability. The concept of green supply chain management can help provide a strategic framework to develop a customized sustainability roadmap for each organization. In this regard, this paper is mainly focused on presenting a strategic decision making framework that will assist top level decision-making issues. This decision-making tool is based on literature and practice in the area of environmentally conscious business practices. The goal of this paper will be on the components and parameters of green supply chain management and how they serve as a baseline for the decision framework. Later, the applicability of a multi-input multi-output decision model (MIMO), will be analyzed as the analytical network process, within the green supply chain.Keywords: Multi-attribute, Green Supply Chain, Environmental, Sustainability
Procedia PDF Downloads 15129872 Bi-objective Network Optimization in Disaster Relief Logistics
Authors: Katharina Eberhardt, Florian Klaus Kaiser, Frank Schultmann
Abstract:
Last-mile distribution is one of the most critical parts of a disaster relief operation. Various uncertainties, such as infrastructure conditions, resource availability, and fluctuating beneficiary demand, render last-mile distribution challenging in disaster relief operations. The need to balance critical performance criteria like response time, meeting demand and cost-effectiveness further complicates the task. The occurrence of disasters cannot be controlled, and the magnitude is often challenging to assess. In summary, these uncertainties create a need for additional flexibility, agility, and preparedness in logistics operations. As a result, strategic planning and efficient network design are critical for an effective and efficient response. Furthermore, the increasing frequency of disasters and the rising cost of logistical operations amplify the need to provide robust and resilient solutions in this area. Therefore, we formulate a scenario-based bi-objective optimization model that integrates pre-positioning, allocation, and distribution of relief supplies extending the general form of a covering location problem. The proposed model aims to minimize underlying logistics costs while maximizing demand coverage. Using a set of disruption scenarios, the model allows decision-makers to identify optimal network solutions to address the risk of disruptions. We provide an empirical case study of the public authorities’ emergency food storage strategy in Germany to illustrate the potential applicability of the model and provide implications for decision-makers in a real-world setting. Also, we conduct a sensitivity analysis focusing on the impact of varying stockpile capacities, single-site outages, and limited transportation capacities on the objective value. The results show that the stockpiling strategy needs to be consistent with the optimal number of depots and inventory based on minimizing costs and maximizing demand satisfaction. The strategy has the potential for optimization, as network coverage is insufficient and relies on very high transportation and personnel capacity levels. As such, the model provides decision support for public authorities to determine an efficient stockpiling strategy and distribution network and provides recommendations for increased resilience. However, certain factors have yet to be considered in this study and should be addressed in future works, such as additional network constraints and heuristic algorithms.Keywords: humanitarian logistics, bi-objective optimization, pre-positioning, last mile distribution, decision support, disaster relief networks
Procedia PDF Downloads 7929871 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 13429870 A Neural Network Model to Simulate Urban Air Temperatures in Toulouse, France
Authors: Hiba Hamdi, Thomas Corpetti, Laure Roupioz, Xavier Briottet
Abstract:
Air temperatures are generally higher in cities than in their rural surroundings. The overheating of cities is a direct consequence of increasing urbanization, characterized by the artificial filling of soils, the release of anthropogenic heat, and the complexity of urban geometry. This phenomenon, referred to as urban heat island (UHI), is more prevalent during heat waves, which have increased in frequency and intensity in recent years. In the context of global warming and urban population growth, helping urban planners implement UHI mitigation and adaptation strategies is critical. In practice, the study of UHI requires air temperature information at the street canyon level, which is difficult to obtain. Many urban air temperature simulation models have been proposed (mostly based on physics or statistics), all of which require a variety of input parameters related to urban morphology, land use, material properties, or meteorological conditions. In this paper, we build and evaluate a neural network model based on Urban Weather Generator (UWG) model simulations and data from meteorological stations that simulate air temperature over Toulouse, France, on days favourable to UHI.Keywords: air temperature, neural network model, urban heat island, urban weather generator
Procedia PDF Downloads 9129869 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development
Authors: Nigar Kantarci Carsibasi
Abstract:
Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.Keywords: cancer, drug design, elastic network model, MDM2
Procedia PDF Downloads 13029868 A Topological Study of an Urban Street Network and Its Use in Heritage Areas
Authors: Jose L. Oliver, Taras Agryzkov, Leandro Tortosa, Jose F. Vicent, Javier Santacruz
Abstract:
This paper aims to demonstrate how a topological study of an urban street network can be used as a tool to be applied to some heritage conservation areas in a city. In the last decades, we find different kinds of approaches in the discipline of Architecture and Urbanism based in the so-called Sciences of Complexity. In this context, this paper uses mathematics from the Network Theory. Hence, it proposes a methodology based in obtaining information from a graph, which is created from a network of urban streets. Then, it is used an algorithm that establishes a ranking of importance of the nodes of that network, from its topological point of view. The results are applied to a heritage area in a particular city, confronting the data obtained from the mathematical model, with the ones from the field work in the case study. As a result of this process, we may conclude the necessity of implementing some actions in the area, and where those actions would be more effective for the whole heritage site.Keywords: graphs, heritage cities, spatial analysis, urban networks
Procedia PDF Downloads 39629867 Anomaly Detection Based on System Log Data
Authors: M. Kamel, A. Hoayek, M. Batton-Hubert
Abstract:
With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.Keywords: logs, anomaly detection, ML, scoring, NLP
Procedia PDF Downloads 9429866 Using Mixed Methods in Studying Classroom Social Network Dynamics
Authors: Nashrawan Naser Taha, Andrew M. Cox
Abstract:
In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.Keywords: mixed methods, social network analysis, multi-cultural learning, social network dynamics
Procedia PDF Downloads 51029865 Spatial Behavioral Model-Based Dynamic Data-Driven Diagram Information Model
Authors: Chiung-Hui Chen
Abstract:
Diagram and drawing are important ways to communicate and the reproduce of architectural design, Due to the development of information and communication technology, the professional thinking of architecture and interior design are also change rapidly. In development process of design, diagram always play very important role. This study is based on diagram theories, observe and record interaction between man and objects, objects and space, and space and time in a modern nuclear family. Construct a method for diagram to systematically and visualized describe the space plan of a modern nuclear family toward a intelligent design, to assist designer to retrieve information and check/review event pattern of past and present.Keywords: digital diagram, information model, context aware, data analysis
Procedia PDF Downloads 333