Search results for: nano on-chip network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5887

Search results for: nano on-chip network

1147 The Classification Accuracy of Finance Data through Holder Functions

Authors: Yeliz Karaca, Carlo Cattani

Abstract:

This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).

Keywords: artificial neural networks, finance data, Holder regularity, multifractals

Procedia PDF Downloads 252
1146 Achieving Sustainable Lifestyles Based on the Spiritual Teaching and Values of Buddhism from Lumbini, Nepal

Authors: Purna Prasad Acharya, Madhav Karki, Sunta B. Tamang, Uttam Basnet, Chhatra Katwal

Abstract:

The paper outlines the idea behind achieving sustainable lifestyles based on the spiritual values and teachings of Lord Buddha. This objective is to be achieved by spreading the tenets and teachings of Buddhism throughout the Asia Pacific region and the world from the sacred birth place of Buddha - Lumbini, Nepal. There is an urgent need to advance the relevance of Buddhist philosophy in tackling the triple planetary crisis of climate change, nature’s decline, and pollution. Today, the world is facing an existential crisis due to the above crises, exasperated by hunger, poverty and armed conflict. To address multi-dimensional impacts, the global communities have to adopt simple life styles that respect nature and universal human values. These were the basic teachings of Gautam Buddha. Lumbini, Nepal has the moral obligation to widely disseminate Buddha’s teaching to the world and receive constant feedback and learning to develop human and ecosystem resilience by molding the lifestyles of current and future generations through adaptive learning and simplicity across the geography and nationality based on spirituality and environmental stewardship. By promoting Buddhism, Nepal has developed a pro-nature tourism industry that focuses on both its spiritual and bio-cultural heritage. Nepal is a country rich in ancient wisdom, where sages have sought knowledge, practiced meditation, and followed spiritual paths for thousands of years. It can spread the teachings of Buddha in a way people can search for and adopt ways to live, creating harmony with nature. Using tools of natural sciences and social sciences, the team will package knowledge and share the idea of community well-being within the framework of environmental sustainability, social harmony and universal respect for nature and people in a more holistic manner. This notion takes into account key elements of sustainable development such as food-energy-water-biodiversity interconnections, environmental conservation, ecological integrity, ecosystem health, community resiliency, adaptation capacity, and indigenous culture, knowledge and values. This inclusive concept has garnered a strong network of supporters locally, regionally, and internationally. The key objectives behind this concept are: a) to leverage expertise and passion of a network of global collaborators to advance research, education, and policy outreach in the areas of human sustainability based on lifestyle change using the power of spirituality and Buddha’s teaching, resilient lifestyles, and adaptive living; b) help develop creative short courses for multi-disciplinary teaching in educational institutions worldwide in collaboration with Lumbini Buddha University and other relevant partners in Nepal; c) help build local and regional intellectual and cultural teaching and learning capacity by improving professional collaborations to promote nature based and Buddhist value-based lifestyles by connecting Lumbini to Nepal’s rich nature; d) promote research avenues to provide policy relevant knowledge that is creative, innovative, as well as practical and locally viable; and e) connect local research and outreach work with academic and cultural partners in South Korea so as to open up Lumbini based Buddhist heritage and Nepal’s Karnali River basin’s unique natural landscape to Korean scholars and students to promote sustainable lifestyles leading to human living in harmony with nature.

Keywords: triple planetary crisis, spirituality, sustainable lifestyles, living in harmony with nature, resilience

Procedia PDF Downloads 41
1145 An Exploratory Study on the Difference between Online and Offline Conformity Behavior among Chinese College Students

Authors: Xinyue Ma, Dishen Zhang, Yijun Liu, Yutian Jiang, Huiyan Yu, Chufeng Gu

Abstract:

Conformity is defined as one in a social group changing his or her behavior to match the others’ behavior in the group. It is used to find that people show a higher level of online conformity behavior than offline. However, as anonymity can decrease the level of online conformity behavior, the difference between online and offline conformity behavior among Chinese college students still needs to be tested. In this study, college students (N = 60) have been randomly assigned into three groups: control group, offline experimental group, and online experimental group. Through comparing the results of offline experimental group and online experimental group with the Mann-Whitney U test, this study verified the results of Asch’s experiment, and found out that people show a lower level of online conformity behavior than offline, which contradicted the previous finding found in China. These results can be used to explain why some people make a lot of vicious remarks and radical ideas on the Internet but perform normally in their real life: the anonymity of the network makes the online group pressure less than offline, so people are less likely to conform to social norms and public opinions on the Internet. What is more, these results support the importance and relevance of online voting, because fewer online group pressures make it easier for people to expose their true ideas, thus gathering more comprehensive and truthful views and opinions.

Keywords: anonymity, Asch’s group conformity, Chinese college students, online conformity

Procedia PDF Downloads 162
1144 Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens

Authors: Banu Pradheepa Kamarajan, Muthusamy Ananthasubramanian

Abstract:

Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens.

Keywords: biofilm, nanopillars, Pseudomonas aeruginosa, survival rate

Procedia PDF Downloads 180
1143 Comparative Analysis of Motor Insurance Claims using Machine Learning

Authors: Francis Kwame Bukari, Maclean Acheampong Yeboah

Abstract:

From collective hunting to contemporary financial markets, the concept of risk sharing in insurance has evolved significantly. In today's insurance landscape, statistical analysis plays a pivotal role in determining premiums and assessing the likelihood of insurance claims. Accurately estimating motor insurance claims remains a challenge, allowing insurance companies to pull much of their money to cover claims, which in the long run will affect their reserves and impact their profitability. Advanced machine learning algorithms can enhance accuracy and profitability. The primary objectives of this study encompassed the prediction of motor insurance claims through the utilization of Artificial Neural Networks (ANN) and Random Forest (RF). Additionally, a comparative analysis was conducted to assess the performance of these two models in the domain of claim prediction. The study drew upon secondary data derived from motor insurance claims, employing a range of techniques, including data preprocessing, model training, and model evaluation. To mitigate potential biases, a random over-sampler was used to balance the target variable within the preprocessed dataset. The Random Forest model outperformed the ANN model, achieving an accuracy rate of 90.33% compared to the ANN model's accuracy of 86.33%. This study highlights the importance of modern data-driven approaches in enhancing accuracy and profitability in the insurance industry.

Keywords: risk, insurance claims, artificial neural network, random forest, over-sampler, profitability

Procedia PDF Downloads 12
1142 Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs

Authors: Nebila Lichiheb, LaToya Myles, William Pendergrass, Bruce Hicks, Dawson Cagle

Abstract:

Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation.

Keywords: meteorological data, Washington D.C., DCNet data, NAM model

Procedia PDF Downloads 237
1141 Anti-Fibrillation Propensity of a Flavonoid Baicalein against the Fibrils of Hen Egg White Lysozyme: Potential Therapeutics for Lysozyme Amyloidosis

Authors: Naveed Ahmad Fazili

Abstract:

More than 20 human diseases involve the fibrillation of a specific protein/peptide which forms pathological deposits at various sites. Hereditary lysozyme amyloidosis is a systemic disorder which mostly affects liver, spleen and kidney. This conformational disorder is featured by lysozyme fibril formation. In vivo lysozyme fibrillation was simulated under in vitro conditions using a strong denaturant GdHCl at 3M concentration. Sharp decline in the ANS fluorescence intensity compared to the partially unfolded states, almost 20 fold increase in ThT fluorescence intensity, increase in absorbance at 450 nm suggesting turbidity, negative ellipticity peak in the far-UVCD at 217 nm, red shift of 50 nm compared to the native state in congo red assay and appearance of a network of long rope like fibrils in TEM analysis suggested HEWL fibrillation. Anti-fibrillation potency of baicalein against the preformed fibrils of HEWL was investigated following ThT assay in which there was a dose dependent decrease in ThT fluorescence intensity compared to the fibrillar state of HEWL with the maximum effect observed at 150 μM baicalein concentration, loss of negative ellipticity peak in the far-UVCD region, dip in the Rayleigh scattering intensity and absorbance at 350 nm and 450 nm respectively together with a reduction in the density of fibrillar structure in TEM imaging. Thus, it could be suggested that baicalein could prove to be a positive therapeutics for hereditary human lysozyme amyloidosis.

Keywords: amyloid fibrils, baicalein, congo red, negative ellipticity, therapeutics

Procedia PDF Downloads 297
1140 Design and Optimization of Sustainable Buildings by Combined Cooling, Heating and Power System (CCHP) Based on Exergy Analysis

Authors: Saeed Karimi, Ali Behbahaninia

Abstract:

In this study, the design and optimization of combined cooling, heating, and power system (CCHP) for a sustainable building are dealt with. Sustainable buildings are environmentally responsible and help us to save energy also reducing waste, pollution and environmental degradation. CCHP systems are widely used to save energy sources. In these systems, electricity, cooling, and heating are generating using just one primary energy source. The selection of the size of components based on the maximum demand of users will lead to an increase in the total cost of energy and equipment for the building complex. For this purpose, a system was designed in which the prime mover (gas turbine), heat recovery boiler, and absorption chiller are lower than the needed maximum. The difference in months with peak consumption is supplied with the help of electrical absorption chiller and auxiliary boiler (and the national electricity network). In this study, the optimum capacities of each of the equipment are determined based on Thermo economic method, in a way that the annual capital cost and energy consumption will be the lowest. The design was done for a gas turbine prime mover, and finally, the optimum designs were investigated using exergy analysis and were compared with a traditional energy supply system.

Keywords: sustainable building, CCHP, energy optimization, gas turbine, exergy, thermo-economic

Procedia PDF Downloads 96
1139 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study

Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari

Abstract:

In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.

Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO

Procedia PDF Downloads 423
1138 A Study of Cost and Revenue Earned from Tourist Walking Street Activities in Songkhla City Municipality, Thailand

Authors: Weerawan Marangkun

Abstract:

This study is a survey intended to investigate cost, revenue and factors affecting changes in revenue and to provide guidelines for improving factors affecting changes in revenue from tourist walking street activities in Songkhla City Municipality. Instruments used in this study were structured interviews, using Yaman table (1973) where the random sampling error was+ 10%. The sample consisting of 83 entrepreneurs were drawn from a total population of 272. The purposive sampling method was used. Data were collected during the 6-month period from December 2011 until May 2012. The findings indicate that the cost paid by an entrepreneur in connection with his/her services for tourists is mainly for travel, which stands at about 290 Baht per day. Each entrepreneur earns about 3,850 Baht per day, which means about 400,000 Baht per year. The combined total revenue from walking street tourist activities is about 108.8 million Baht per year. Such activities add economic value to tourist facilities due to expenditures by tourists and provide the entrepreneurs with considerable income. Factors affecting changes in revenue from tourist walking street activities are: the increase in the number of entrepreneurs; the holding of trade fairs, events or interesting shows in the vicinity; and weather conditions (e.g. abundant rainfall, which can contribute to a decrease in the number of tourists). Suggested measures to improve factors affecting changes in the income are: addition or creation of new activities; regulation of operations of the stalls and parking area; and generation of greater publicity through the social network.

Keywords: cost, revenue, tourist, walking street

Procedia PDF Downloads 365
1137 Functionalized Carbon-Base Fluorescent Nanoparticles for Emerging Contaminants Targeted Analysis

Authors: Alexander Rodríguez-Hernández, Arnulfo Rojas-Perez, Liz Diaz-Vazquez

Abstract:

The rise in consumerism over the past century has resulted in the creation of higher amounts of plasticizers, personal care products and other chemical substances, which enter and accumulate in water systems. Other sources of pollutants in Neotropical regions experience large inputs of nutrients with these pollutants resulting in eutrophication of water which consume large quantities of oxygen, resulting in high fish mortality. This dilemma has created a need for the development of targeted detection in complex matrices and remediation of emerging contaminants. We have synthesized carbon nanoparticles from macro algae (Ulva fasciata) by oxidizing the graphitic carbon network under extreme acidic conditions. The resulting material was characterized by STEM, yielding a spherical 12 nm average diameter nanoparticles, which can be fixed into a polysaccharide aerogel synthesized from the same macro algae. Spectrophotometer analyses show a pH dependent fluorescent behavior varying from 450-620 nm in aqueous media. Heavily oxidized edges provide for easy functionalization with enzymes for a more targeted analysis and remediation technique. Given the optical properties of the carbon base nanoparticles and the numerous possibilities of functionalization, we have developed a selective and robust targeted bio-detection and bioremediation technique for the treatment of emerging contaminants in complex matrices like estuarine embayment.

Keywords: aerogels, carbon nanoparticles, fluorescent, targeted analysis

Procedia PDF Downloads 246
1136 Wind Velocity Climate Zonation Based on Observation Data in Indonesia Using Cluster and Principal Component Analysis

Authors: I Dewa Gede Arya Putra

Abstract:

Principal Component Analysis (PCA) is a mathematical procedure that uses orthogonal transformation techniques to change a set of data with components that may be related become components that are not related to each other. This can have an impact on clustering wind speed characteristics in Indonesia. This study uses data daily wind speed observations of the Site Meteorological Station network for 30 years. Multicollinearity tests were also performed on all of these data before doing clustering with PCA. The results show that the four main components have a total diversity of above 80% which will be used for clusters. Division of clusters using Ward's method obtained 3 types of clusters. Cluster 1 covers the central part of Sumatra Island, northern Kalimantan, northern Sulawesi, and northern Maluku with the climatological pattern of wind speed that does not have an annual cycle and a weak speed throughout the year with a low-speed ranging from 0 to 1,5 m/s². Cluster 2 covers the northern part of Sumatra Island, South Sulawesi, Bali, northern Papua with the climatological pattern conditions of wind speed that have annual cycle variations with low speeds ranging from 1 to 3 m/s². Cluster 3 covers the eastern part of Java Island, the Southeast Nusa Islands, and the southern Maluku Islands with the climatological pattern of wind speed conditions that have annual cycle variations with high speeds ranging from 1 to 4.5 m/s².

Keywords: PCA, cluster, Ward's method, wind speed

Procedia PDF Downloads 201
1135 Alpha: A Groundbreaking Avatar Merging User Dialogue with OpenAI's GPT-3.5 for Enhanced Reflective Thinking

Authors: Jonas Colin

Abstract:

Standing at the vanguard of AI development, Alpha represents an unprecedented synthesis of logical rigor and human abstraction, meticulously crafted to mirror the user's unique persona and personality, a feat previously unattainable in AI development. Alpha, an avant-garde artefact in the realm of artificial intelligence, epitomizes a paradigmatic shift in personalized digital interaction, amalgamating user-specific dialogic patterns with the sophisticated algorithmic prowess of OpenAI's GPT-3.5 to engender a platform for enhanced metacognitive engagement and individualized user experience. Underpinned by a sophisticated algorithmic framework, Alpha integrates vast datasets through a complex interplay of neural network models and symbolic AI, facilitating a dynamic, adaptive learning process. This integration enables the system to construct a detailed user profile, encompassing linguistic preferences, emotional tendencies, and cognitive styles, tailoring interactions to align with individual characteristics and conversational contexts. Furthermore, Alpha incorporates advanced metacognitive elements, enabling real-time reflection and adaptation in communication strategies. This self-reflective capability ensures continuous refinement of its interaction model, positioning Alpha not just as a technological marvel but as a harbinger of a new era in human-computer interaction, where machines engage with us on a deeply personal and cognitive level, transforming our interaction with the digital world.

Keywords: chatbot, GPT 3.5, metacognition, symbiose

Procedia PDF Downloads 75
1134 Highly Accurate Target Motion Compensation Using Entropy Function Minimization

Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani

Abstract:

One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.

Keywords: automatic target recognition (ATR), high resolution range profile (HRRP), motion compensation, stepped frequency waveform technique (SFW), target motion parameters (TMPs)

Procedia PDF Downloads 155
1133 Designing Floor Planning in 2D and 3D with an Efficient Topological Structure

Authors: V. Nagammai

Abstract:

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. Development of technology increases the complexity in IC manufacturing which may vary the power consumption, increase the size and latency period. Topology defines a number of connections between network. In this project, NoC topology is generated using atlas tool which will increase performance in turn determination of constraints are effective. The routing is performed by XY routing algorithm and wormhole flow control. In NoC topology generation, the value of power, area and latency are predetermined. In previous work, placement, routing and shortest path evaluation is performed using an algorithm called floor planning with cluster reconstruction and path allocation algorithm (FCRPA) with the account of 4 3x3 switch, 6 4x4 switch, and 2 5x5 switches. The usage of the 4x4 and 5x5 switch will increase the power consumption and area of the block. In order to avoid the problem, this paper has used one 8x8 switch and 4 3x3 switches. This paper uses IPRCA which of 3 steps they are placement, clustering, and shortest path evaluation. The placement is performed using min – cut placement and clustering are performed using an algorithm called cluster generation. The shortest path is evaluated using an algorithm called Dijkstra's algorithm. The power consumption of each block is determined. The experimental result shows that the area, power, and wire length improved simultaneously.

Keywords: application specific noc, b* tree representation, floor planning, t tree representation

Procedia PDF Downloads 396
1132 Saudi Arabia Border Security Informatics: Challenges of a Harsh Environment

Authors: Syed Ahsan, Saleh Alshomrani, Ishtiaq Rasool, Ali Hassan

Abstract:

In this oral presentation, we will provide an overview of the technical and semantic architecture of a desert border security and critical infrastructure protection security system. Modern border security systems are designed to reduce the dependability and intrusion of human operators. To achieve this, different types of sensors are use along with video surveillance technologies. Application of these technologies in a harsh desert environment of Saudi Arabia poses unique challenges. Environmental and geographical factors including high temperatures, desert storms, temperature variations and remoteness adversely affect the reliability of surveillance systems. To successfully implement a reliable, effective system in a harsh desert environment, the following must be achieved: i) Selection of technology including sensors, video cameras, and communication infrastructure that suit desert environments. ii) Reduced power consumption and efficient usage of equipment to increase the battery life of the equipment. iii) A reliable and robust communication network with efficient usage of bandwidth. Also, to reduce the expert bottleneck, an ontology-based intelligent information systems needs to be developed. Domain knowledge unique and peculiar to Saudi Arabia needs to be formalized to develop an expert system that can detect abnormal activities and any intrusion.

Keywords: border security, sensors, abnormal activity detection, ontologies

Procedia PDF Downloads 483
1131 Importance of Human Factors on Cybersecurity within Organizations: A Study of Attitudes and Behaviours

Authors: Elham Rajabian

Abstract:

The ascent of cybersecurity incidents is a rising threat to most organisations in general, while the impact of the incidents is unique to each of the organizations. It is a need for behavioural sciences to concentrate on employees’ behaviour in order to prepare key security mitigation opinions versus cybersecurity incidents. There are noticeable differences among users of a computer system in terms of complying with security behaviours. We can discuss the people's differences under several subjects such as delaying tactics on something that must be done, the tendency to act without thinking, future thinking about unexpected implications of present-day issues, and risk-taking behaviours in security policies compliance. In this article, we introduce high-profile cyber-attacks and their impacts on weakening cyber resiliency in organizations. We also give attention to human errors that influence network security. Human errors are discussed as a part of psychological matters to enhance compliance with the security policies. The organizational challenges are studied in order to shape a sustainable cyber risks management approach in the related work section. Insiders’ behaviours are viewed as a cyber security gap to draw proper cyber resiliency in section 3. We carry out the best cybersecurity practices by discussing four CIS challenges in section 4. In this regard, we provide a guideline and metrics to measure cyber resilience in organizations in section 5. In the end, we give some recommendations in order to build a cybersecurity culture based on individual behaviours.

Keywords: cyber resilience, human factors, cybersecurity behavior, attitude, usability, security culture

Procedia PDF Downloads 101
1130 Neural Changes Associated with Successful Antidepressant Treatment in Adolescents with Major Depressive Disorder

Authors: Dung V. H. Pham, Kathryn Cullen

Abstract:

Introduction: 40% of adolescents with major depression (MDD) are unresponsive to 1st line antidepressant treatment. The neural mechanism underlying treatment-responsive and treatment-resistant depression in adolescent are unclear. Amygdala is important for emotion processing and has been implicated in mood disorders. Past research has shown abnormal amygdala connectivity in adolescents with MDD. This research study changes in amygdala resting-state functional connectivity to find neural correlates of successful antidepressant treatment. Methods: Thirteen adolescents aged 12-19 underwent rfMRI before and after 8-week antidepressant treatment and completed BDI-II at each scan. A whole-brain approach, using anatomically defined amygdala ROIs (1) identified brain regions that are highly synchronous with the amygdala, (2) correlated neural changes with changes in overall depression and specific symptom clusters within depression. Results: Some neural correlates were common across domains: (1) decreased amygdala RSFC with the default mode network (posterior cingulate, precuneus) is associated with improvement in overall depression and many symptom clusters, (2) increased amygdala RSFC with fusiform gyrus is associated with symptom improvement across many symptom clusters. We also found unique neural changes associated with symptom improvement in each symptom cluster. Conclusion: This is the first preliminary study that looks at neural correlates of antidepressant treatment response to overall depression as well as different clusters of symptoms of depression. The finding suggests both overlapping and distinct neural mechanisms underlying improvement in each symptom clusters within depression. Some brain regions found are also implicated in MDD among adults in previous literature.

Keywords: depression, adolescents, fMRI, antidepressants

Procedia PDF Downloads 256
1129 A Small Graphic Lie. The Photographic Quality of Pierre Bourdieu’s Correspondance Analysis

Authors: Lene Granzau Juel-Jacobsen

Abstract:

The problem of beautification is an obvious concern of photography, claiming reference to reality, but it also lies at the very heart of social theory. As we become accustomed to sophisticated visualizations of statistical data in pace with the development of software programs, we should not only be inclined to ask new types of research questions, but we also need to confront social theories based on such visualization techniques with new types of questions. Correspondence Analysis, GIS analysis, Social Network Analysis, and Perceptual Maps are current examples of visualization techniques popular within the social sciences and neighboring disciplines. This article discusses correspondence analysis, arguing that the graphic plot of correspondence analysis is to be interpreted much similarly to a photograph. It refers no more evidently or univocally to reality than a photograph, representing social life no more truthfully than a photograph documents. Pierre Bourdieu’s theoretical corpus, especially his theory of fields, relies heavily on correspondence analysis. While much attention has been directed towards critiquing the somewhat vague conceptualization of habitus, limited focus has been placed on the equally problematic concepts of social space and field. Based on a re-reading of the Distinction, the article argues that the concepts rely on ‘a small graphic lie’ very similar to a photograph. Like any other piece of art, as Bourdieu himself recognized, the graphic display is a politically and morally loaded representation technique. However, the correspondence analysis does not necessarily serve the purpose he intended. In fact, it tends towards the pitfalls he strove to overcome.

Keywords: datavisualization, correspondance analysis, bourdieu, Field, visual representation

Procedia PDF Downloads 71
1128 Analysis of Cardiac Health Using Chaotic Theory

Authors: Chandra Mukherjee

Abstract:

The prevalent knowledge of the biological systems is based on the standard scientific perception of natural equilibrium, determination and predictability. Recently, a rethinking of concepts was presented and a new scientific perspective emerged that involves complexity theory with deterministic chaos theory, nonlinear dynamics and theory of fractals. The unpredictability of the chaotic processes probably would change our understanding of diseases and their management. The mathematical definition of chaos is defined by deterministic behavior with irregular patterns that obey mathematical equations which are critically dependent on initial conditions. The chaos theory is the branch of sciences with an interest in nonlinear dynamics, fractals, bifurcations, periodic oscillations and complexity. Recently, the biomedical interest for this scientific field made these mathematical concepts available to medical researchers and practitioners. Any biological network system is considered to have a nominal state, which is recognized as a homeostatic state. In reality, the different physiological systems are not under normal conditions in a stable state of homeostatic balance, but they are in a dynamically stable state with a chaotic behavior and complexity. Biological systems like heart rhythm and brain electrical activity are dynamical systems that can be classified as chaotic systems with sensitive dependence on initial conditions. In biological systems, the state of a disease is characterized by a loss of the complexity and chaotic behavior, and by the presence of pathological periodicity and regulatory behavior. The failure or the collapse of nonlinear dynamics is an indication of disease rather than a characteristic of health.

Keywords: HRV, HRVI, LF, HF, DII

Procedia PDF Downloads 435
1127 An Investigation into Computer Vision Methods to Identify Material Other Than Grapes in Harvested Wine Grape Loads

Authors: Riaan Kleyn

Abstract:

Mass wine production companies across the globe are provided with grapes from winegrowers that predominantly utilize mechanical harvesting machines to harvest wine grapes. Mechanical harvesting accelerates the rate at which grapes are harvested, allowing grapes to be delivered faster to meet the demands of wine cellars. The disadvantage of the mechanical harvesting method is the inclusion of material-other-than-grapes (MOG) in the harvested wine grape loads arriving at the cellar which degrades the quality of wine that can be produced. Currently, wine cellars do not have a method to determine the amount of MOG present within wine grape loads. This paper seeks to find an optimal computer vision method capable of detecting the amount of MOG within a wine grape load. A MOG detection method will encourage winegrowers to deliver MOG-free wine grape loads to avoid penalties which will indirectly enhance the quality of the wine to be produced. Traditional image segmentation methods were compared to deep learning segmentation methods based on images of wine grape loads that were captured at a wine cellar. The Mask R-CNN model with a ResNet-50 convolutional neural network backbone emerged as the optimal method for this study to determine the amount of MOG in an image of a wine grape load. Furthermore, a statistical analysis was conducted to determine how the MOG on the surface of a grape load relates to the mass of MOG within the corresponding grape load.

Keywords: computer vision, wine grapes, machine learning, machine harvested grapes

Procedia PDF Downloads 101
1126 Web Proxy Detection via Bipartite Graphs and One-Mode Projections

Authors: Zhipeng Chen, Peng Zhang, Qingyun Liu, Li Guo

Abstract:

With the Internet becoming the dominant channel for business and life, many IPs are increasingly masked using web proxies for illegal purposes such as propagating malware, impersonate phishing pages to steal sensitive data or redirect victims to other malicious targets. Moreover, as Internet traffic continues to grow in size and complexity, it has become an increasingly challenging task to detect the proxy service due to their dynamic update and high anonymity. In this paper, we present an approach based on behavioral graph analysis to study the behavior similarity of web proxy users. Specifically, we use bipartite graphs to model host communications from network traffic and build one-mode projections of bipartite graphs for discovering social-behavior similarity of web proxy users. Based on the similarity matrices of end-users from the derived one-mode projection graphs, we apply a simple yet effective spectral clustering algorithm to discover the inherent web proxy users behavior clusters. The web proxy URL may vary from time to time. Still, the inherent interest would not. So, based on the intuition, by dint of our private tools implemented by WebDriver, we examine whether the top URLs visited by the web proxy users are web proxies. Our experiment results based on real datasets show that the behavior clusters not only reduce the number of URLs analysis but also provide an effective way to detect the web proxies, especially for the unknown web proxies.

Keywords: bipartite graph, one-mode projection, clustering, web proxy detection

Procedia PDF Downloads 250
1125 A Multi-Science Study of Modern Synergetic War and Its Information Security Component

Authors: Alexander G. Yushchenko

Abstract:

From a multi-science point of view, we analyze threats to security resulting from globalization of international information space and information and communication aggression of Russia. A definition of Ruschism is formulated as an ideology supporting aggressive actions of modern Russia against the Euro-Atlantic community. Stages of the hybrid war Russia is leading against Ukraine are described, including the elements of subversive activity of the special services, the activation of the military phase and the gradual shift of the focus of confrontation to the realm of information and communication technologies. We reveal an emergence of a threat for democratic states resulting from the destabilizing impact of a target state’s mass media and social networks being exploited by Russian secret services under freedom-of-speech disguise. Thus, we underline the vulnerability of cyber- and information security of the network society in regard of hybrid war. We propose to define the latter a synergetic war. Our analysis is supported with a long-term qualitative monitoring of representation of top state officials on popular TV channels and Facebook. From the memetics point of view, we have detected a destructive psycho-information technology used by the Kremlin, a kind of information catastrophe, the essence of which is explained in detail. In the conclusion, a comprehensive plan for information protection of the public consciousness and mentality of Euro-Atlantic citizens from the aggression of the enemy is proposed.

Keywords: cyber and information security, hybrid war, psycho-information technology, synergetic war, Ruschism

Procedia PDF Downloads 137
1124 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems

Authors: Messaoud Eljamai, Sami Hidouri

Abstract:

Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.

Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency

Procedia PDF Downloads 153
1123 Deep Vision: A Robust Dominant Colour Extraction Framework for T-Shirts Based on Semantic Segmentation

Authors: Kishore Kumar R., Kaustav Sengupta, Shalini Sood Sehgal, Poornima Santhanam

Abstract:

Fashion is a human expression that is constantly changing. One of the prime factors that consistently influences fashion is the change in colour preferences. The role of colour in our everyday lives is very significant. It subconsciously explains a lot about one’s mindset and mood. Analyzing the colours by extracting them from the outfit images is a critical study to examine the individual’s/consumer behaviour. Several research works have been carried out on extracting colours from images, but to the best of our knowledge, there were no studies that extract colours to specific apparel and identify colour patterns geographically. This paper proposes a framework for accurately extracting colours from T-shirt images and predicting dominant colours geographically. The proposed method consists of two stages: first, a U-Net deep learning model is adopted to segment the T-shirts from the images. Second, the colours are extracted only from the T-shirt segments. The proposed method employs the iMaterialist (Fashion) 2019 dataset for the semantic segmentation task. The proposed framework also includes a mechanism for gathering data and analyzing India’s general colour preferences. From this research, it was observed that black and grey are the dominant colour in different regions of India. The proposed method can be adapted to study fashion’s evolving colour preferences.

Keywords: colour analysis in t-shirts, convolutional neural network, encoder-decoder, k-means clustering, semantic segmentation, U-Net model

Procedia PDF Downloads 117
1122 Heterogeneity of Soil Moisture and Its Impacts on the Mountainous Watershed Hydrology in Northwest China

Authors: Chansheng He, Zhongfu Wang, Xiao Bai, Jie Tian, Xin Jin

Abstract:

Heterogeneity of soil hydraulic properties directly affects hydrological processes at different scales. Understanding heterogeneity of soil hydraulic properties such as soil moisture is therefore essential for modeling watershed ecohydrological processes, particularly in hard to access, topographically complex mountainous watersheds. This study maps spatial variations of soil moisture by in situ observation network that consists of sampling points, zones, and tributaries, and monitors corresponding hydrological variables of air and soil temperatures, evapotranspiration, infiltration, and runoff in the Upper Reach of the Heihe River Watershed, a second largest inland river (terminal lake) with a drainage area of over 128,000 km² in Northwest China. Subsequently, the study uses a hydrological model, SWAT (Soil and Water Assessment Tool) to simulate the effects of heterogeneity of soil moisture on watershed hydrological processes. The spatial clustering method, Full-Order-CLK was employed to derive five soil heterogeneous zones (Configuration 97, 80, 65, 40, and 20) for soil input to SWAT. Results show the simulations by the SWAT model with the spatially clustered soil hydraulic information from the field sampling data had much better representation of the soil heterogeneity and more accurate performance than the model using the average soil property values for each soil type derived from the coarse soil datasets. Thus, incorporating detailed field sampling soil heterogeneity data greatly improves performance in hydrologic modeling.

Keywords: heterogeneity, soil moisture, SWAT, up-scaling

Procedia PDF Downloads 351
1121 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition

Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov

Abstract:

Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.

Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset

Procedia PDF Downloads 105
1120 Design of Multiband Microstrip Antenna Using Stepped Cut Method for WLAN/WiMAX and C/Ku-Band Applications

Authors: Ahmed Boutejdar, Bishoy I. Halim, Soumia El Hani, Larbi Bellarbi, Amal Afyf

Abstract:

In this paper, a planar monopole antenna for multi band applications is proposed. The antenna structure operates at three operating frequencies at 3.7, 6.2, and 13.5 GHz which cover different communication frequency ranges. The antenna consists of a quasi-modified rectangular radiating patch with a partial ground plane and two parasitic elements (open-loop-ring resonators) to serve as coupling-bridges. A stepped cut at lower corners of the radiating patch and the partial ground plane are used, to achieve the multiband features. The proposed antenna is manufactured on the FR4 substrate and is simulated and optimized using High Frequency Simulation System (HFSS). The antenna topology possesses an area of 30.5 x 30 x 1.6 mm3. The measured results demonstrate that the candidate antenna has impedance bandwidths for 10 dB return loss and operates from 3.80 – 3.90 GHz, 4.10 – 5.20 GHz, 11.2 – 11.5 GHz and from 12.5 – 14.0 GHz, which meet the requirements of the wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), C- (Uplink) and Ku- (Uplink) band applications. Acceptable agreement is obtained between measurement and simulation results. Experimental results show that the antenna is successfully simulated and measured, and the tri-band antenna can be achieved by adjusting the lengths of the three elements and it gives good gains across all the operation bands.

Keywords: planar monopole antenna, FR4 substrate, HFSS, WLAN, WiMAX, C and Ku

Procedia PDF Downloads 196
1119 Quasiperiodic Magnetic Chains as Spin Filters

Authors: Arunava Chakrabarti

Abstract:

A one-dimensional chain of magnetic atoms, representative of a quantum gas in an artificial quasi-periodic potential and modeled by the well-known Aubry-Andre function and its variants are studied in respect of its capability of working as a spin filter for arbitrary spins. The basic formulation is explained in terms of a perfectly periodic chain first, where it is shown that a definite correlation between the spin S of the incoming particles and the magnetic moment h of the substrate atoms can open up a gap in the energy spectrum. This is crucial for a spin filtering action. The simple one-dimensional chain is shown to be equivalent to a 2S+1 strand ladder network. This equivalence is exploited to work out the condition for the opening of gaps. The formulation is then applied for a one-dimensional chain with quasi-periodic variation in the site potentials, the magnetic moments and their orientations following an Aubry-Andre modulation and its variants. In addition, we show that a certain correlation between the system parameters can generate absolutely continuous bands in such systems populated by Bloch like extended wave functions only, signaling the possibility of a metal-insulator transition. This is a case of correlated disorder (a deterministic one), and the results provide a non-trivial variation to the famous Anderson localization problem. We have worked within a tight binding formalism and have presented explicit results for the spin half, spin one, three halves and spin five half particles incident on the magnetic chain to explain our scheme and the central results.

Keywords: Aubry-Andre model, correlated disorder, localization, spin filter

Procedia PDF Downloads 359
1118 Prediction of Distillation Curve and Reid Vapor Pressure of Dual-Alcohol Gasoline Blends Using Artificial Neural Network for the Determination of Fuel Performance

Authors: Leonard D. Agana, Wendell Ace Dela Cruz, Arjan C. Lingaya, Bonifacio T. Doma Jr.

Abstract:

The purpose of this paper is to study the predict the fuel performance parameters, which include drivability index (DI), vapor lock index (VLI), and vapor lock potential using distillation curve and Reid vapor pressure (RVP) of dual alcohol-gasoline fuel blends. Distillation curve and Reid vapor pressure were predicted using artificial neural networks (ANN) with macroscopic properties such as boiling points, RVP, and molecular weights as the input layers. The ANN consists of 5 hidden layers and was trained using Bayesian regularization. The training mean square error (MSE) and R-value for the ANN of RVP are 91.4113 and 0.9151, respectively, while the training MSE and R-value for the distillation curve are 33.4867 and 0.9927. Fuel performance analysis of the dual alcohol–gasoline blends indicated that highly volatile gasoline blended with dual alcohols results in non-compliant fuel blends with D4814 standard. Mixtures of low-volatile gasoline and 10% methanol or 10% ethanol can still be blended with up to 10% C3 and C4 alcohols. Intermediate volatile gasoline containing 10% methanol or 10% ethanol can still be blended with C3 and C4 alcohols that have low RVPs, such as 1-propanol, 1-butanol, 2-butanol, and i-butanol. Biography: Graduate School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, Manila, 1002, Philippines

Keywords: dual alcohol-gasoline blends, distillation curve, machine learning, reid vapor pressure

Procedia PDF Downloads 106