Search results for: data mining technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30225

Search results for: data mining technique

25485 Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis

Authors: Yoshio Kurosawa

Abstract:

The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.

Keywords: vibration, noise, road noise, statistical energy analysis

Procedia PDF Downloads 355
25484 Dominant Correlation Effects in Atomic Spectra

Authors: Hubert Klar

Abstract:

High double excitation of two-electron atoms has been investigated using hyperpherical coordinates within a modified adiabatic expansion technique. This modification creates a novel fictitious force leading to a spontaneous exchange symmetry breaking at high double excitation. The Pauli principle must therefore be regarded as approximation valid only at low excitation energy. Threshold electron scattering from high Rydberg states shows an unexpected time reversal symmetry breaking. At threshold for double escape we discover a broad (few eV) Cooper pair.

Keywords: correlation, resonances, threshold ionization, Cooper pair

Procedia PDF Downloads 349
25483 Infrastructural Investment and Economic Growth in Indian States: A Panel Data Analysis

Authors: Jonardan Koner, Basabi Bhattacharya, Avinash Purandare

Abstract:

The study is focused to find out the impact of infrastructural investment on economic development in Indian states. The study uses panel data analysis to measure the impact of infrastructural investment on Real Gross Domestic Product in Indian States. Panel data analysis incorporates Unit Root Test, Cointegration Teat, Pooled Ordinary Least Squares, Fixed Effect Approach, Random Effect Approach, Hausman Test. The study analyzes panel data (annual in frequency) ranging from 1991 to 2012 and concludes that infrastructural investment has a desirable impact on economic development in Indian. Finally, the study reveals that the infrastructural investment significantly explains the variation of economic indicator.

Keywords: infrastructural investment, real GDP, unit root test, cointegration teat, pooled ordinary least squares, fixed effect approach, random effect approach, Hausman test

Procedia PDF Downloads 405
25482 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models

Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana

Abstract:

The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.

Keywords: electricity demand forecasting, load shedding, demand side management, data science

Procedia PDF Downloads 66
25481 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health-related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores to text, ranging from positive, neutral, and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing and tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial, and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced, and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process and substituting the Naive Bayes for a deep learning neural network model.

Keywords: sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model

Procedia PDF Downloads 101
25480 Assessment of Heavy Metal Contamination for the Sustainable Management of Vulnerable Mangrove Ecosystem, the Sundarbans

Authors: S. Begum, T. Biswas, M. A. Islam

Abstract:

The present research investigates the distribution and contamination of heavy metals in core sediments collected from three locations of the Sundarbans mangrove forest. In this research, quality of the analysis is evaluated by analyzing certified reference materials IAEA-SL-1 (lake sediment), IAEA-Soil-7, and NIST-1633b (coal fly ash). Total concentrations of 28 heavy metals (Na, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, Ga, As, Sb, Cs, La, Ce, Sm, Eu, Tb, Dy, Ho, Yb, Hf, Ta, Th, and U) have determined in core sediments of the Sundarbans mangrove by neutron activation analysis (NAA) technique. When compared with upper continental crustal (UCC) values, it is observed that mean concentrations of K, Ti, Zn, Cs, La, Ce, Sm, Hf, and Th show elevated values in the research area is high. In this research, the assessments of metal contamination levels using different environmental contamination indices (EF, Igeo, CF) indicate that Ti, Sb, Cs, REEs, and Th have minor enrichment of the sediments of the Sundarbans. The modified degree of contamination (mCd) of studied samples of the Sundarbans ecosystem show low contamination. The pollution load index (PLI) values for the cores suggested that sampling points are moderately polluted. The possible sources of the deterioration of the sediment quality can be attributed to the different chemical carrying cargo accidents, port activities, ship breaking, agricultural and aquaculture run-off of the area. Pearson correlation matrix (PCM) established relationships among elements. The PCM indicates that most of the metal's distributions have been controlled by the same factors such as Fe-oxy-hydroxides and clay minerals, and also they have a similar origin. The poor correlations of Ca with most of the elements in the sediment cores indicate that calcium carbonate has a less significant role in this mangrove sediment. Finally, the data from this research will be used as a benchmark for future research and help to quantify levels of metal pollutions, as well as to manage future ecological risks of the vulnerable mangrove ecosystem, the Sundarbans.

Keywords: contamination, core sediment, trace element, sundarbans, vulnerable

Procedia PDF Downloads 127
25479 Corporate Governance and Share Prices: Firm Level Review in Turkey

Authors: Raif Parlakkaya, Ahmet Diken, Erkan Kara

Abstract:

This paper examines the relationship between corporate governance rating and stock prices of 26 Turkish firms listed in Turkish stock exchange (Borsa Istanbul) by using panel data analysis over five-year period. The paper also investigates the stock performance of firms with governance rating with regards to the market portfolio (i.e. BIST 100 Index) both prior and after governance scoring began. The empirical results show that there is no relation between corporate governance rating and stock prices when using panel data for annual variation in both rating score and stock prices. Further analysis indicates surprising results that while the selected firms outperform the market significantly prior to rating, the same performance does not continue afterwards.

Keywords: corporate governance, stock price, performance, panel data analysis

Procedia PDF Downloads 395
25478 Influence of Security on Fan Attendance during Nigeria Professional Football League Matches

Authors: B. O. Diyaolu

Abstract:

The stadium transcends a field of play to cultural heritage of a club especially when there is security of life and property and a conducive environment with exciting media facilities, CCTV and adequate field of play. Football fans love watching their clubs’ matches especially when nothing discourages their presence in the stadium. This study investigated the influence of security on fans’ attendance during Nigeria Professional Football League matches. Descriptive survey research design was used and the population consists of all Nigeria Professional Football League fans. Simple random sampling technique was used to pick a state from the six geo-political zones. 600 respondents comprising male and female fans were sampled from the ten selected vendors’ stands in each selected state. A structured questionnaire on Security and Fan attendance scale (SFAS) was used. The instrument consists of two sections. Section A seeks information on demographic data of the respondents, while section B was used to elicit information on security and fans’ attendance. The modified instrument which consists of 20 items has a reliability coefficient of 0.73. The hypothesis was tested at 0.05 significance level. The completed questionnaire was collated, coded and analyzed using descriptive statistics of frequency counts and percentage and inferential statistics of chi-square (X2). Findings of this study revealed that adequate security significantly influences fan attendance during Nigeria Professional Football League matches. There is no sport that can develop if the facilities in use are inadequate. Improving the condition of the stadium in Nigeria is paramount to the development of the Nigeria Professional Football League. All stakeholders in the organization of the League must put into consideration the need to improve the standard of the stadium as it will help to increase the attendance of fans during matches. Only the standard ones should be used during matches.

Keywords: adequate security, fans attendance, football fans, football stadium, Nigeria professional football league

Procedia PDF Downloads 121
25477 Handling Damage to the Glendeng Bridge Abutment in Tuban Regency

Authors: Alfanditya Ghazanfar

Abstract:

The damage to the Glendeng Bridge on November 3, 2020, involved a landslide on the retaining wall of the approach road in the Tuban Regency area, suspected to be caused by erosion of the Bengawan Solo River. Subsequently, the bridge pillars experienced shifts, leading to the settlement of the bridge's superstructure (steel frame). This study aims to evaluate and identify the causes of abutment damage to develop a protection system to prevent future abutment failures. The methodology for this case study includes inventorying secondary data such as cone penetration test data, machine boring data, topographic measurements, and water surface elevation data, followed by data interpretation to analyze the damage. The interpretation activities include soil data, water surface elevation data, and slope stability analysis using PLAXIS software to obtain the Factor of Safety (FoS) values in evaluating the damage to the existing abutment. Based on the analysis of slope stability using PLAXIS software, it was found that in 2020, under pre-flood conditions (Low Water Level - LWL), the operational load stage yielded a minimum FoS of 1.184. After the flood, during the operational load stage, the condition was classified as "Structural Failure." The cause was soil infiltration during water levels reaching the LWL; soil submerged in floodwater experienced landslides as it became saturated upon water recession. In 2021, reinforcement efforts produced a minimum FoS of 1.097 during the construction stage due to the inability of the retaining wall foundation, placed in soft soil, to support the embankment load. The 2022 reinforcement evaluation yielded a minimum FoS of 1.8, categorized as "safe" due to rehabilitation measures, including extending the span and installing 48-meter-deep foundations to reach hard soil layers.

Keywords: slope stability, abutment damage, bridge abutment, bridge

Procedia PDF Downloads 13
25476 The Predictive Value of Micro Rna 451 on the Outcome of Imatinib Treatment in Chronic Myeloid Leukemia Patients

Authors: Nehal Adel Khalil, Amel Foad Ketat, Fairouz Elsayed Mohamed Ali, Nahla Abdelmoneim Hamid, Hazem Farag Manaa

Abstract:

Background: Chronic myeloid leukemia (CML) represents 15% of adult leukemias. Imatinib Mesylate (IM) is the gold standard treatment for new cases of CML. Treatment with IM results in improvement of the majority of cases. However, about 25% of cases may develop resistance. Sensitive and specific early predictors of IM resistance in CML patients have not been established to date. Aim: To investigate the value of miR-451 in CML as an early predictor for IM resistance in Egyptian CML patients. Methods: The study employed Real time Polymerase Reaction (qPCR) technique to investigate the leucocytic expression of miR-451 in fifteen newly diagnosed CML patients (group I), fifteen IM responder CML patients (group II), fifteen IM resistant CML patients (group III) and fifteen healthy subjects of matched age and sex as a control group (group IV). The response to IM was defined as < 10% BCR-ABL transcript level after 3 months of therapy. The following parameters were assessed in subjects of all the studied groups: 1- Complete blood count (CBC). 2- Measurement of plasma level of miRNA 451 using real-time Polymerase Chain Reaction (qPCR). 3- Detection of BCR-ABL gene mutation in CML using qPCR. Results: The present study revealed that miR-451 was significantly down-regulated in leucocytes of newly diagnosed CML patients as compared to healthy subjects. IM responder CML patients showed an up-regulation of miR- 451 compared with IM resistant CML patients. Conclusion: According to the data from the present study, it can be concluded that leucocytic miR- 451 expression is a useful additional follow-up marker for the response to IM and a promising prognostic biomarker for CML.

Keywords: chronic myeloid leukemia, imatinib resistance, microRNA 451, Polymerase Chain Reaction

Procedia PDF Downloads 299
25475 Laboratory Scale Experimental Studies on CO₂ Based Underground Coal Gasification in Context of Clean Coal Technology

Authors: Geeta Kumari, Prabu Vairakannu

Abstract:

Coal is the largest fossil fuel. In India, around 37 % of coal resources found at a depth of more than 300 meters. In India, more than 70% of electricity production depends on coal. Coal on combustion produces greenhouse and pollutant gases such as CO₂, SOₓ, NOₓ, and H₂S etc. Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts these unmineable coals into valuable calorific gases. The UCG syngas (mainly H₂, CO, CH₄ and some lighter hydrocarbons) which can utilized for the production of electricity and manufacturing of various useful chemical feedstock. It is an inherent clean coal technology as it avoids ash disposal, mining, transportation and storage problems. Gasification of underground coal using steam as a gasifying medium is not an easy process because sending superheated steam to deep underground coal leads to major transportation difficulties and cost effective. Therefore, for reducing this problem, we have used CO₂ as a gasifying medium, which is a major greenhouse gas. This paper focus laboratory scale underground coal gasification experiment on a coal block by using CO₂ as a gasifying medium. In the present experiment, first, we inject oxygen for combustion for 1 hour and when the temperature of the zones reached to more than 1000 ºC, and then we started supplying of CO₂ as a gasifying medium. The gasification experiment was performed at an atmospheric pressure of CO₂, and it was found that the amount of CO produced due to Boudouard reaction (C+CO₂  2CO) is around 35%. The experiment conducted to almost 5 hours. The maximum gas composition observed, 35% CO, 22 % H₂, and 11% CH4 with LHV 248.1 kJ/mol at CO₂/O₂ ratio 0.4 by volume.

Keywords: underground coal gasification, clean coal technology, calorific value, syngas

Procedia PDF Downloads 233
25474 Surgical Treatment of Glaucoma – Literature and Video Review of Blebs, Tubes, and Micro-Invasive Glaucoma Surgeries (MIGS)

Authors: Ana Miguel

Abstract:

Purpose: Glaucoma is the second cause of worldwide blindness and the first cause of irreversible blindness. Trabeculectomy, the standard glaucoma surgery, has a success rate between 36.0% and 98.0% at three years and a high complication rate, leading to the development of different surgeries, micro-invasive glaucoma surgeries (MIGS). MIGS devices are diverse and have various indications, risks, and effectiveness. We intended to review MIGS’ surgical techniques, indications, contra-indications, and IOP effect. Methods: We performed a literature review of MIGS to differentiate the devices and their reported effectiveness compared to traditional surgery (tubes and blebs). We also conducted a video review of the last 1000 glaucoma surgeries of the author (including MIGS, but also trabeculectomy, deep sclerectomy, and tubes of Ahmed and Baerveldt) performed at glaucoma and advanced anterior segment fellowship in Canada and France, to describe preferred surgical techniques for each. Results: We present the videos with surgical techniques and pearls for each surgery. Glaucoma surgeries included: 1- bleb surgery (namely trabeculectomy, with releasable sutures or with slip knots, deep sclerectomy, Ahmed valve, Baerveldt tube), 2- MIGS with bleb, also known as MIBS (including XEN 45, XEN 63, and Preserflo), 3- MIGS increasing supra-choroidal flow (iStar), 4-MIGS increasing trabecular flow (iStent, gonioscopy-assisted transluminal trabeculotomy - GATT, goniotomy, excimer laser trabeculostomy -ELT), and 5-MIGS decreasing aqueous humor production (endocyclophotocoagulation, ECP). There was also needling (ab interno and ab externo) performed at the operating room and irido-zonulo-hyaloïdectomy (IZHV). Each technique had different indications and contra-indications. Conclusion: MIGS are valuable in glaucoma surgery, such as traditional surgery with trabeculectomy and tubes. All glaucoma surgery can be combined with phacoemulsification (there may be a synergistic effect on MIGS + cataract surgery). In addition, some MIGS may be combined for further intraocular pressure lowering effect (for example, iStents with goniotomy and ECP). A good surgical technique and postoperative management are fundamental to increasing success and good practice in all glaucoma surgery.

Keywords: glaucoma, migs, surgery, video, review

Procedia PDF Downloads 85
25473 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition

Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu

Abstract:

Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.

Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal

Procedia PDF Downloads 203
25472 Special Education Teachers’ Knowledge and Application of the Concept of Curriculum Adaptation for Learners with Special Education Needs in Zambia

Authors: Kenneth Kapalu Muzata, Dikeledi Mahlo, Pinkie Mabunda Mabunda

Abstract:

This paper presents results of a study conducted to establish special education teachers’ knowledge and application of curriculum adaptation of the 2013 revised curriculum in Zambia. From a sample of 134 respondents (120 special education teachers, 12 education officers, and 2 curriculum specialists), the study collected both quantitative and qualitative data to establish whether teachers understood and applied the concept of curriculum adaptation in teaching learners with special education needs. To obtain data validity and reliability, the researchers collected data by use of mixed methods. Semi-structured questionnaires and interviews were administered. Lesson Observations and post-lesson discussions were conducted on 12 selected teachers from the 120 sample that answered the questionnaires. Frequencies, percentages, and significant differences were derived through the statistical package for social sciences. Qualitative data were analyzed with the help of NVIVO qualitative software to create themes and obtain coding density to help with conclusions. Both quantitative and qualitative data were concurrently compared and related. The results revealed that special education teachers lacked a thorough understanding of the concept of curriculum adaptation, thus denying learners with special education needs the opportunity to benefit from the revised curriculum. The teachers were not oriented on the revised curriculum and hence facing numerous challenges trying to adapt the curriculum. The study recommended training of special education teachers in curriculum adaptation.

Keywords: curriculum adaptation, special education, learners with special education needs, special education teachers

Procedia PDF Downloads 181
25471 Gender Specific Differences in Clinical Outcomes of Knee Osteoarthritis Treated with Micro-Fragmented Adipose Tissue

Authors: Tiffanie-Marie Borg, Yasmin Zeinolabediny, Nima Heidari, Ali Noorani, Mark Slevin, Angel Cullen, Stefano Olgiati, Alberto Zerbi, Alessandro Danovi, Adrian Wilson

Abstract:

Knee Osteoarthritis (OA) is a critical cause of disability globally. In recent years, there has been growing interest in non-invasive treatments, such as intra-articular injection of micro-fragmented fat (MFAT), showing great potential in treating OA. Mesenchymal stem cells (MSCs), originating from pericytes of micro-vessels in MFAT, can differentiate into mesenchymal lineage cells such as cartilage, osteocytes, adipocytes, and osteoblasts. Secretion of growth factor and cytokines from MSCs have the capability to inhibit T cell growth, reduced pain and inflammation, and create a micro-environment that through paracrine signaling, can promote joint repair and cartilage regeneration. Here we have shown, for the first time, data supporting the hypothesis that women respond better in terms of improvements in pain and function to MFAT injection compared to men. Historically, women have been underrepresented in studies, and studies with both sexes regularly fail to analyse the results by sex. To mitigate this bias and quantify it, we describe a technique using reproducible statistical analysis and replicable results with Open Access statistical software R to calculate the magnitude of this difference. Genetic, hormonal, environmental, and age factors play a role in our observed difference between the sexes. This observational, intention-to-treat study included the complete sample of 456 patients who agreed to be scored for pain (visual analogue scale (VAS)) and function (Oxford knee score (OKS)) at baseline regardless of subsequent changes to adherence or status during follow-up. We report that a significantly larger number of women responded to treatment than men: [90% vs. 60% change in VAS scores with 87% vs. 65% change in OKS scores, respectively]. Women overall had a stronger positive response to treatment with reduced pain and improved mobility and function. Pre-injection, our cohort of women were in more pain with worse joint function which is quite common to see in orthopaedics. However, during the 2-year follow-up, they consistently maintained a lower incidence of discomfort with superior joint function. This data clearly identifies a clear need for further studies to identify the cell and molecular biological and other basis for these differences and be able to utilize this information for stratification in order to improve outcome for both women and men.

Keywords: gender differences, micro-fragmented adipose tissue, knee osteoarthritis, stem cells

Procedia PDF Downloads 185
25470 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method

Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary

Abstract:

Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.

Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method

Procedia PDF Downloads 432
25469 Adopting Structured Mini Writing Retreats as a Tool for Undergraduate Researchers

Authors: Clare Cunningham

Abstract:

Whilst there is a strong global research base on the benefits of structured writing retreats and similar provisions, such as Shut Up and Write events, for academic staff and postgraduate researchers, very little has been published about the worth of such events for undergraduate students. This is despite the fact that, internationally, undergraduate student researchers experience similar pressures, distractions and feelings towards writing as those who are at more senior levels within the academy. This paper reports on a mixed-methods study with cohorts of third-year undergraduate students over the course of four academic years. This involved a range of research instruments adopted over the four years of the study. They include the administration of four questionnaires across three academic years, a collection of ethnographic recordings in the second year, and the collation of reflective journal entries and evaluations from all four years. The final two years of data collection took place during the period of Covid-19 restrictions when writing retreats moved to the virtual space which adds an additional dimension of interest to the analysis. The analysis involved the collation of quantitative questionnaire data to observe patterns in expressions of attitudes towards writing. Qualitative data were analysed thematically and used to corroborate and support the quantitative data when appropriate. The resulting data confirmed that one of the biggest challenges for undergraduate students mirrors those reported in the findings of studies focused on more experienced researchers. This is not surprising, especially given the number of undergraduate students who now work alongside their studies, as well as the increasing number who have caring responsibilities, but it has, as yet, been under-reported. The data showed that the groups of writing retreat participants all had very positive experiences, with accountability, a sense of community and procrastination avoidance some of the key aspects. The analysis revealed the sometimes transformative power of these events for a number of these students in terms of changing the way they viewed writing and themselves as writers. The data presented in this talk will support the proposal that retreats should much more widely be offered to undergraduate students across the world.

Keywords: academic writing, students, undergraduates, writing retreat

Procedia PDF Downloads 207
25468 Assessment of Air Quality Around Western Refinery in Libya: Mobile Monitoring

Authors: A. Elmethnani, A. Jroud

Abstract:

This coastal crude oil refinery is situated north of a big city west of Tripoli; the city then could be highly prone to downwind refinery emissions where the NNE wind direction is prevailing through most seasons of the year. Furthermore, due to the absence of an air quality monitoring network and scarce emission data available for the neighboring community, nearby residents have serious worries about the impacts of the oil refining operations on local air quality. In responding to these concerns, a short term survey has performed for three consecutive days where a semi-continues mobile monitoring approach has developed effectively in this study; the monitoring station (Compact AQM 65 AeroQual) was mounted on a vehicle to move quickly between locations, measurements of 10 minutes averaging of 60 seconds then been taken at each fixed sampling point. The downwind ambient concentration of CO, H₂S, NOₓ, NO₂, SO₂, PM₁, PM₂.₅ PM₁₀, and TSP were measured at carefully chosen sampling locations, ranging from 200m nearby the fence-line passing through the city center up to 4.7 km east to attain best spatial coverage. Results showed worrying levels of PM₂.₅ PM₁₀, and TSP at one sampling location in the city center, southeast of the refinery site, with an average mean of 16.395μg/m³, 33.021μg/m³, and 42.426μg/m³ respectively, which could be attributed to road traffic. No significant concentrations have been detected for other pollutants of interest over the study area, as levels observed for CO, SO₂, H₂S, NOₓ, and NO₂ haven’t respectively exceeded 1.707 ppm, 0.021ppm, 0.134 ppm, 0.4582 ppm, and 0.0018 ppm, which was at the same sampling locations as well. Although it wasn’t possible to compare the results with the Libyan air quality standards due to the difference in the averaging time period, the technique was adequate for the baseline air quality screening procedure. Overall, findings primarily suggest modeling of dispersion of the refinery emissions to assess the likely impact and spatial-temporal distribution of air pollutants.

Keywords: air quality, mobil monitoring, oil refinery

Procedia PDF Downloads 102
25467 Adaptation of Projection Profile Algorithm for Skewed Handwritten Text Line Detection

Authors: Kayode A. Olaniyi, Tola. M. Osifeko, Adeola A. Ogunleye

Abstract:

Text line segmentation is an important step in document image processing. It represents a labeling process that assigns the same label using distance metric probability to spatially aligned units. Text line detection techniques have successfully been implemented mainly in printed documents. However, processing of the handwritten texts especially unconstrained documents has remained a key problem. This is because the unconstrained hand-written text lines are often not uniformly skewed. The spaces between text lines may not be obvious, complicated by the nature of handwriting and, overlapping ascenders and/or descenders of some characters. Hence, text lines detection and segmentation represents a leading challenge in handwritten document image processing. Text line detection methods that rely on the traditional global projection profile of the text document cannot efficiently confront with the problem of variable skew angles between different text lines. Hence, the formulation of a horizontal line as a separator is often not efficient. This paper presents a technique to segment a handwritten document into distinct lines of text. The proposed algorithm starts, by partitioning the initial text image into columns, across its width into chunks of about 5% each. At each vertical strip of 5%, the histogram of horizontal runs is projected. We have worked with the assumption that text appearing in a single strip is almost parallel to each other. The algorithm developed provides a sliding window through the first vertical strip on the left side of the page. It runs through to identify the new minimum corresponding to a valley in the projection profile. Each valley would represent the starting point of the orientation line and the ending point is the minimum point on the projection profile of the next vertical strip. The derived text-lines traverse around any obstructing handwritten vertical strips of connected component by associating it to either the line above or below. A decision of associating such connected component is made by the probability obtained from a distance metric decision. The technique outperforms the global projection profile for text line segmentation and it is robust to handle skewed documents and those with lines running into each other.

Keywords: connected-component, projection-profile, segmentation, text-line

Procedia PDF Downloads 127
25466 Detecting Overdispersion for Mortality AIDS in Zero-inflated Negative Binomial Death Rate (ZINBDR) Co-infection Patients in Kelantan

Authors: Mohd Asrul Affedi, Nyi Nyi Naing

Abstract:

Overdispersion is present in count data, and basically when a phenomenon happened, a Negative Binomial (NB) is commonly used to replace a standard Poisson model. Analysis of count data event, such as mortality cases basically Poisson regression model is appropriate. Hence, the model is not appropriate when existing a zero values. The zero-inflated negative binomial model is appropriate. In this article, we modelled the mortality cases as a dependent variable by age categorical. The objective of this study to determine existing overdispersion in mortality data of AIDS co-infection patients in Kelantan.

Keywords: negative binomial death rate, overdispersion, zero-inflation negative binomial death rate, AIDS

Procedia PDF Downloads 467
25465 Real-Time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data-set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: temporal graph network, anomaly detection, cyber security, IDS

Procedia PDF Downloads 106
25464 Diabetes Diagnosis Model Using Rough Set and K- Nearest Neighbor Classifier

Authors: Usiobaifo Agharese Rosemary, Osaseri Roseline Oghogho

Abstract:

Diabetes is a complex group of disease with a variety of causes; it is a disorder of the body metabolism in the digestion of carbohydrates food. The application of machine learning in the field of medical diagnosis has been the focus of many researchers and the use of recognition and classification model as a decision support tools has help the medical expert in diagnosis of diseases. Considering the large volume of medical data which require special techniques, experience, and high diagnostic skill in the diagnosis of diseases, the application of an artificial intelligent system to assist medical personnel in order to enhance their efficiency and accuracy in diagnosis will be an invaluable tool. In this study will propose a diabetes diagnosis model using rough set and K-nearest Neighbor classifier algorithm. The system consists of two modules: the feature extraction module and predictor module, rough data set is used to preprocess the attributes while K-nearest neighbor classifier is used to classify the given data. The dataset used for this model was taken for University of Benin Teaching Hospital (UBTH) database. Half of the data was used in the training while the other half was used in testing the system. The proposed model was able to achieve over 80% accuracy.

Keywords: classifier algorithm, diabetes, diagnostic model, machine learning

Procedia PDF Downloads 339
25463 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 126
25462 Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents

Authors: M. Masroor Akhtar Khan, Moin Uddin, Lalit Varshney

Abstract:

Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers.

Keywords: essential oil, medicinal and aromatic plants, plant production, radiation processed polysaccharides, active constituents

Procedia PDF Downloads 446
25461 Triangular Hesitant Fuzzy TOPSIS Approach in Investment Projects Management

Authors: Irina Khutsishvili

Abstract:

The presented study develops a decision support methodology for multi-criteria group decision-making problem. The proposed methodology is based on the TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) approach in the hesitant fuzzy environment. The main idea of decision-making problem is a selection of one best alternative or several ranking alternatives among a set of feasible alternatives. Typically, the process of decision-making is based on an evaluation of certain criteria. In many MCDM problems (such as medical diagnosis, project management, business and financial management, etc.), the process of decision-making involves experts' assessments. These assessments frequently are expressed in fuzzy numbers, confidence intervals, intuitionistic fuzzy values, hesitant fuzzy elements and so on. However, a more realistic approach is using linguistic expert assessments (linguistic variables). In the proposed methodology both the values and weights of the criteria take the form of linguistic variables, given by all decision makers. Then, these assessments are expressed in triangular fuzzy numbers. Consequently, proposed approach is based on triangular hesitant fuzzy TOPSIS decision-making model. Following the TOPSIS algorithm, first, the fuzzy positive ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS) are defined. Then the ranking of alternatives is performed in accordance with the proximity of their distances to the both FPIS and FNIS. Based on proposed approach the software package has been developed, which was used to rank investment projects in the real investment decision-making problem. The application and testing of the software were carried out based on the data provided by the ‘Bank of Georgia’.

Keywords: fuzzy TOPSIS approach, investment project, linguistic variable, multi-criteria decision making, triangular hesitant fuzzy set

Procedia PDF Downloads 432
25460 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 65
25459 A Critical Analysis on Gaps Associated with Culture Policy Milieu Governing Traditional Male Circumcision in the Eastern Cape, South Africa

Authors: Thanduxolo Nomngcoyiya, Simon M. Kang’ethe

Abstract:

The paper aimed to critically analyse gaps pertaining to the cultural policy environments governing traditional male circumcision in the Eastern Cape as exemplified by an empirical case study. The original study which this paper is derived from utilized qualitative paradigm; and encompassed 28 participants. It used in-depth one-on-one interviews complemented by focus group discussions and key informants as a method of data collection. It also adopted interview guide as a data collection instrument. The original study was cross-sectional in nature, and the data was audio recorded and transcribed later during the data analysis and coding process. The study data analysis was content thematic analysis and identified the following key major findings on the culture of male circumcision policy: Lack of clarity on culture of male circumcision policy operations; Myths surrounding procedures on culture of male circumcision; Divergent views on cultural policies between government and male circumcision custodians; Unclear cultural policies on selection criteria of practitioners; and Lack of policy enforcement and implementation on transgressors of culture of male circumcision. It recommended: a stringent selection criteria of practitioners; a need to carry out death-free male circumcision; a need for male circumcision stakeholders to work with other culture and tradition-friendly stakeholders.

Keywords: human rights, policy enforcement, traditional male circumcision, traditional surgeons and nurses

Procedia PDF Downloads 303
25458 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data

Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple

Abstract:

In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.

Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network

Procedia PDF Downloads 143
25457 Dynamic Communications Mapping in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina

Abstract:

In this paper, we propose heuristic for dynamic communications mapping that considers the placement of communications in order to optimize the overall performance. The mapping technique uses a newly proposed Algorithm to place communications between the tasks. The placement we propose of the communications leads to a better optimization of several performance metrics (time and energy consumption). Experimental results show that the proposed mapping approach provides significant performance improvements when compared to those using static routing.

Keywords: Multi-Processor Systems-on-Chip (MPSoCs), Network-on-Chip (NoC), heterogeneous architectures, dynamic mapping heuristics

Procedia PDF Downloads 540
25456 Development of Electroencephalograph Collection System in Language-Learning Self-Study System That Can Detect Learning State of the Learner

Authors: Katsuyuki Umezawa, Makoto Nakazawa, Manabu Kobayashi, Yutaka Ishii, Michiko Nakano, Shigeichi Hirasawa

Abstract:

This research aims to develop a self-study system equipped with an artificial teacher who gives advice to students by detecting the learners and to evaluate language learning in a unified framework. 'Detecting the learners' means that the system understands the learners' learning conditions, such as each learner’s degree of understanding, the difference in each learner’s thinking process, the degree of concentration or boredom in learning, and problem solving for each learner, which can be interpreted from learning behavior. In this paper, we propose a system to efficiently collect brain waves from learners by focusing on only the brain waves among the biological information for 'detecting the learners'. The conventional Electroencephalograph (EEG) measurement method during learning using a simple EEG has the following disadvantages. (1) The start and end of EEG measurement must be done manually by the experiment participant or staff. (2) Even when the EEG signal is weak, it may not be noticed, and the data may not be obtained. (3) Since the acquired EEG data is stored in each PC, there is a possibility that the time of data acquisition will be different in each PC. This time, we developed a system to collect brain wave data on the server side. This system overcame the above disadvantages.

Keywords: artificial teacher, e-learning, self-study system, simple EEG

Procedia PDF Downloads 149