Search results for: wave transformation matrix
493 Comparison of Equivalent Linear and Non-Linear Site Response Model Performance in Kathmandu Valley
Authors: Sajana Suwal, Ganesh R. Nhemafuki
Abstract:
Evaluation of ground response under earthquake shaking is crucial in geotechnical earthquake engineering. Damage due to seismic excitation is mainly correlated to local geological and geotechnical conditions. It is evident from the past earthquakes (e.g. 1906 San Francisco, USA, 1923 Kanto, Japan) that the local geology has strong influence on amplitude and duration of ground motions. Since then significant studies has been conducted on ground motion amplification revealing the importance of influence of local geology on ground. Observations from the damaging earthquakes (e.g. Nigata and San Francisco, 1964; Irpinia, 1980; Mexico, 1985; Kobe, 1995; L’Aquila, 2009) divulged that non-uniform damage pattern, particularly in soft fluvio-lacustrine deposit is due to the local amplification of seismic ground motion. Non-uniform damage patterns are also observed in Kathmandu Valley during 1934 Bihar Nepal earthquake and recent 2015 Gorkha earthquake seemingly due to the modification of earthquake ground motion parameters. In this study, site effects resulting from amplification of soft soil in Kathmandu are presented. A large amount of subsoil data was collected and used for defining the appropriate subsoil model for the Kathamandu valley. A comparative study of one-dimensional total-stress equivalent linear and non-linear site response is performed using four strong ground motions for six sites of Kathmandu valley. In general, one-dimensional (1D) site-response analysis involves the excitation of a soil profile using the horizontal component and calculating the response at individual soil layers. In the present study, both equivalent linear and non-linear site response analyses were conducted using the computer program DEEPSOIL. The results show that there is no significant deviation between equivalent linear and non-linear site response models until the maximum strain reaches to 0.06-0.1%. Overall, it is clearly observed from the results that non-linear site response model perform better as compared to equivalent linear model. However, the significant deviation between two models is resulted from other influencing factors such as assumptions made in 1D site response, lack of accurate values of shear wave velocity and nonlinear properties of the soil deposit. The results are also presented in terms of amplification factors which are predicted to be around four times more in case of non-linear analysis as compared to equivalent linear analysis. Hence, the nonlinear behavior of soil prevails the urgent need of study of dynamic characteristics of the soft soil deposit that can specifically represent the site-specific design spectra for the Kathmandu valley for building resilient structures from future damaging earthquakes.Keywords: deep soil, equivalent linear analysis, non-linear analysis, site response
Procedia PDF Downloads 292492 The Effect of Interpersonal Relationships on Eating Patterns and Physical Activity among Asian-American and European-American Adolescents
Authors: Jamil Lane, Jason Freeman
Abstract:
Background: The role of interpersonal relationships is vital predictors of adolescents’ eating habits, exercise activity, and health problems including obesity. The effect of interpersonal relationships (i.e. family, friends, and intimate partners) on individual health behaviors and development have gained considerable attention during the past 10 years. Teenagers eating habits and exercise activities are established through a dynamic course involving internal and external factors such as food preferences, body weight perception, and parental and peer influence. When conceptualizing one’s interpersonal relationships, it is important to understand that how one relates to others is shaped by their culture. East-Asian culture has been characterized as collectivistic, which describes the significant role intergroup relationships play in their construction of the self. Cultures found in North America, on the other hand, can be characterized as individualistic, meaning that these cultures encourage individuals to prioritize their interest over the needs and want of their compatriots. Individuals from collectivistic cultures typically have stronger boundaries between in-group and out-group membership, whereas those from individualistic cultures see themselves as distinct and separate from strangers as well as family or friends. Objective: The purpose of this study is to examine the effect of collectivism and individualism on interpersonal relationships that shapes eating patterns and physical activity among Asian-American and European-American adolescents. Design/Methods: Analyses were based on data from the National Longitudinal Study of Adolescent Health, a nationally representative sample of adolescents in the United States who were surveyed from 1994 through 2008. This data will be used to examine interpersonal relationship factors that shape dietary intake and physical activity patterns within the Asian-American and European-American population in the United States. Factors relating to relationship strength, eating, and exercise behaviors were reported by participants in this first wave of data collection (1995). We plan to analyze our data using intragroup comparisons among those who identified as 'Asian-American' (n = 270) and 'White or European American' (n = 4,294) among the domains of positivity of peer influence and level of physical activity / healthy eating. Further, intergroup comparisons of these relationships will be made to extricate how the role positive peer influence in maintaining healthy eating and exercise habits differs with cultural variation. Results: We hypothesize that East-Asian participants with a higher degree of positivity in their peer and family relationships will experience a significantly greater rise in healthy eating and exercise behaviors than European-American participants with similar degrees of relationship positivity.Keywords: interpersonal relationships, eating patterns, physical activity, adolescent health
Procedia PDF Downloads 200491 Smart Contracts: Bridging the Divide Between Code and Law
Authors: Abeeb Abiodun Bakare
Abstract:
The advent of blockchain technology has birthed a revolutionary innovation: smart contracts. These self-executing contracts, encoded within the immutable ledger of a blockchain, hold the potential to transform the landscape of traditional contractual agreements. This research paper embarks on a comprehensive exploration of the legal implications surrounding smart contracts, delving into their enforceability and their profound impact on traditional contract law. The first section of this paper delves into the foundational principles of smart contracts, elucidating their underlying mechanisms and technological intricacies. By harnessing the power of blockchain technology, smart contracts automate the execution of contractual terms, eliminating the need for intermediaries and enhancing efficiency in commercial transactions. However, this technological marvel raises fundamental questions regarding legal enforceability and compliance with traditional legal frameworks. Moving beyond the realm of technology, the paper proceeds to analyze the legal validity of smart contracts within the context of traditional contract law. Drawing upon established legal principles, such as offer, acceptance, and consideration, we examine the extent to which smart contracts satisfy the requirements for forming a legally binding agreement. Furthermore, we explore the challenges posed by jurisdictional issues as smart contracts transcend physical boundaries and operate within a decentralized network. Central to this analysis is the examination of the role of arbitration and dispute resolution mechanisms in the context of smart contracts. While smart contracts offer unparalleled efficiency and transparency in executing contractual terms, disputes inevitably arise, necessitating mechanisms for resolution. We investigate the feasibility of integrating arbitration clauses within smart contracts, exploring the potential for decentralized arbitration platforms to streamline dispute resolution processes. Moreover, this paper explores the implications of smart contracts for traditional legal intermediaries, such as lawyers and judges. As smart contracts automate the execution of contractual terms, the role of legal professionals in contract drafting and interpretation may undergo significant transformation. We assess the implications of this paradigm shift for legal practice and the broader legal profession. In conclusion, this research paper provides a comprehensive analysis of the legal implications surrounding smart contracts, illuminating the intricate interplay between code and law. While smart contracts offer unprecedented efficiency and transparency in commercial transactions, their legal validity remains subject to scrutiny within traditional legal frameworks. By navigating the complex landscape of smart contract law, we aim to provide insights into the transformative potential of this groundbreaking technology.Keywords: smart-contracts, law, blockchain, legal, technology
Procedia PDF Downloads 48490 Development of Agomelatine Loaded Proliposomal Powders for Improved Intestinal Permeation: Effect of Surface Charge
Authors: Rajasekhar Reddy Poonuru, Anusha Parnem
Abstract:
Purpose: To formulate proliposome powder of agomelatine, an antipsychotic drug, and to evaluate physicochemical, in vitro characters and effect of surface charge on ex vivo intestinal permeation. Methods: Film deposition technique was employed to develop proliposomal powders of agomelatin with varying molar ratios of lipid Hydro Soy PC L-α-phosphatidylcholine (HSPC) and cholesterol with fixed sum of drug. With the aim to derive free flowing and stable proliposome powder, fluid retention potential of various carriers was examined. Liposome formation and number of vesicles formed for per mm3 up on hydration, vesicle size, and entrapment efficiency was assessed to deduce an optimized formulation. Sodium cholate added to optimized formulation to induce surface charge on formed vesicles. Solid-state characterization (FTIR, DSC, and XRD) was performed with the intention to assess native crystalline and chemical behavior of drug. The in vitro dissolution test of optimized formulation along with pure drug was evaluated to estimate dissolution efficiency (DE) and relative dissolution rate (RDR). Effective permeability co-efficient (Peff(rat)) in rat and enhancement ratio (ER) of drug from formulation and pure drug dispersion were calculated from ex vivo permeation studies in rat ileum. Results: Proliposomal powder formulated with equimolar ratio of HSPC and cholesterol ensued in higher no. of vesicles (3.95) with 90% drug entrapment up on hydration. Neusilin UFL2 was elected as carrier because of its high fluid retention potential (4.5) and good flow properties. Proliposome powder exhibited augmentation in DE (60.3 ±3.34) and RDR (21.2±01.02) of agomelation over pure drug. Solid state characterization studies demonstrated the transformation of native crystalline form of drug to amorphous and/or molecular state, which was in correlation with results obtained from in vitro dissolution test. The elevated Peff(rat) of 46.5×10-4 cm/sec and ER of 2.65 of drug from charge induced proliposome formulation with respect to pure drug dispersion was assessed from ex vivo intestinal permeation studies executed in ileum of wistar rats. Conclusion: Improved physicochemical characters and ex vivo intestinal permeation of drug from charge induced proliposome powder with Neusilin UFL2 unravels the potentiality of this system in enhancing oral delivery of agomelatin.Keywords: agomelatin, proliposome, sodium cholate, neusilin
Procedia PDF Downloads 140489 Minimizing Unscheduled Maintenance from an Aircraft and Rolling Stock Maintenance Perspective: Preventive Maintenance Model
Authors: Adel A. Ghobbar, Varun Raman
Abstract:
The Corrective maintenance of components and systems is a problem plaguing almost every industry in the world today. Train operators’ and the maintenance repair and overhaul subsidiary of the Dutch railway company is also facing this problem. A considerable portion of the maintenance activities carried out by the company are unscheduled. This, in turn, severely stresses and stretches the workforce and resources available. One possible solution is to have a robust preventive maintenance plan. The other possible solution is to plan maintenance based on real-time data obtained from sensor-based ‘Health and Usage Monitoring Systems.’ The former has been investigated in this paper. The preventive maintenance model developed for train operator will subsequently be extended, to tackle the unscheduled maintenance problem also affecting the aerospace industry. The extension of the model to the aerospace sector will be dealt with in the second part of the research, and it would, in turn, validate the soundness of the model developed. Thus, there are distinct areas that will be addressed in this paper, including the mathematical modelling of preventive maintenance and optimization based on cost and system availability. The results of this research will help an organization to choose the right maintenance strategy, allowing it to save considerable sums of money as opposed to overspending under the guise of maintaining high asset availability. The concept of delay time modelling was used to address the practical problem of unscheduled maintenance in this paper. The delay time modelling can be used to help with support planning for a given asset. The model was run using MATLAB, and the results are shown that the ideal inspection intervals computed using the extended from a minimal cost perspective were 29 days, and from a minimum downtime, perspective was 14 days. Risk matrix integration was constructed to represent the risk in terms of the probability of a fault leading to breakdown maintenance and its consequences in terms of maintenance cost. Thus, the choice of an optimal inspection interval of 29 days, resulted in a cost of approximately 50 Euros and the corresponding value of b(T) was 0.011. These values ensure that the risk associated with component X being maintained at an inspection interval of 29 days is more than acceptable. Thus, a switch in maintenance frequency from 90 days to 29 days would be optimal from the point of view of cost, downtime and risk.Keywords: delay time modelling, unscheduled maintenance, reliability, maintainability, availability
Procedia PDF Downloads 132488 Peculiar Mineralogical and Chemical Evolution of Contaminated Igneous Rocks at a Gabbro-Carbonate Contact, Wadai Bayhan, Yemen
Authors: Murad Ali, Shoji Arai, Mohamed Khedr, Mukhtar Nasher, Shawki Nasr
Abstract:
The Wadi Bayhan area of southeastern Yemen is about 60 km NW of Al-Bayda city in the Al-Bayda uplift terrane at the southeast margin of the Arabian-Nubian Shield. Intrusion of alkali gabbro into carbonate rocks apparently produced an 8m to 10 m thick reaction zone at the contact. This had been identified as nepheline pyroxenite. We have observed this to be mineralogically zoned with calc-silicate assemblages (e.g. pyroxene, calcite, spinel, garnet and melilite). The presence of melilite implies a skarn. The sinuous embayed pyroxenite-skarn contact, the presence of skarn minerals in pyroxenite, and textural evidence for growth of calc-silicate skarn by replacement of both carbonate rocks and solid pyroxenite indicate that reaction involved assimilation of carbonate wall rock by magma and loss of Al and Si to the skarn. Textural relationships between minerals provide evidence for a metasomatic development of the skarn at the expense of the pyroxenite. This process, related to the circulation of fluids equilibrated with carbonates, is responsible for those pyroxenite-spinel (± calcite) skarns. The uneven modal distribution of euhedral pyroxenite and enveloping nepheline in pyroxenite, the restricted occurrence of alkali gabbro as dikes in pyroxenite and skarn and the leucocratic matrix of pyroxenite suggest that pyroxenite represents an accumulation of titanaugite cemented by an alkali-rich residual magma and that alkali gabbro represents a part of the residual contaminated magma that was squeezed out of the pyroxene crystal mush. Carbonate assimilation is modeled by reaction of calcite and magmatic plagioclase, which results in resorption of plagioclase, growth of pyroxene enriched in Ca, Fe, Ti, and Al, and solution of nepheline in residual contaminated magma. The composition of nepheline pyroxenite evolved by addition of Ca from dissolved carbonate rocks, loss of Al and Si to skarn, and local segregation of solid pyroxene and alkali gabbro magma. The predominance of pyroxenite among contaminated rocks and their restriction to a large zone along the intrusive contact provide little evidence for the genesis of a significant volume of alkaline magmatic surroundings by carbonate assimilation.Keywords: Yemen, Wadi Bayhan, skarn, pyroxenite, carbonatite, metasomatic
Procedia PDF Downloads 323487 Biopolymer Nanoparticles Loaded with Calcium as a Source of Fertilizer
Authors: Erwin San Juan Martinez, Miguel Angel Aguilar Mendez, Manuel Sandoval Villa, Libia Iris Trejo Tellez
Abstract:
Some nanomaterials may improve the vegetal growth in certain concentration intervals, and could be used as nanofertilizers in order to increase crops yield, and decreasing the environmental pollution due to non-controlled use of conventional fertilizers, therefore the present investigation’s objective was to synthetize and characterize gelatin nanoparticles loaded with calcium generated through pulverization technique and be used as nanofertilizers. To obtain these materials, a fractional factorial design 27-4 was used in order to evaluate the largest number of factors (concentration of Ca2+, temperature and agitation time of the solution and calcium concentration, drying temperature, and % spray) with a possible effect on the size, distribution and morphology of nanoparticles. For the formation of nanoparticles, a Nano Spray-Dryer B - 90® (Buchi, Flawil, Switzerland), equipped with a spray cap of 4 µm was used. Size and morphology of the obtained nanoparticles were evaluated using a scanning electron microscope (JOEL JSM-6390LV model; Tokyo, Japan) equipped with an energy dispersive x-ray X (EDS) detector. The total quantification of Ca2+ as well as its release by the nanoparticles was carried out in an equipment of induction atomic emission spectroscopy coupled plasma (ICP-ES 725, Agilent, Mulgrave, Australia). Of the seven factors evaluated, only the concentration of fertilizer, % spray and concentration of polymer presented a statistically significant effect on particle size. Micrographs of SEM from six of the eight conditions evaluated in this research showed particles separated and with a good degree of sphericity, while in the other two particles had amorphous morphology and aggregation. In all treatments, most of the particles showed smooth surfaces. The average size of smallest particle obtained was 492 nm, while EDS results showed an even distribution of Ca2+ in the polymer matrix. The largest concentration of Ca2+ in ICP was 10.5%, which agrees with the theoretical value calculated, while the release kinetics showed an upward trend within 24 h. Using the technique employed in this research, it was possible to obtain nanoparticles loaded with calcium, of good size, sphericity and with release controlled properties. The characteristics of nanoparticles resulted from manipulation of the conditions of synthesis which allow control of the size and shape of the particles, and provides the means to adapt the properties of the materials to an specific application.Keywords: calcium, controlled release, gelatin, nano spraydryer, nanofertilizer
Procedia PDF Downloads 182486 Syntheses in Polyol Medium of Inorganic Oxides with Various Smart Optical Properties
Authors: Shian Guan, Marie Bourdin, Isabelle Trenque, Younes Messaddeq, Thierry Cardinal, Nicolas Penin, Issam Mjejri, Aline Rougier, Etienne Duguet, Stephane Mornet, Manuel Gaudon
Abstract:
At the interface of the studies performed by 3 Ph.D. students: Shian Guan (2017-2020), Marie Bourdin (2016-2019) and Isabelle Trenque (2012-2015), a single synthesis route: polyol-mediated process, was used with success for the preparation of different inorganic oxides. Both of these inorganic oxides were elaborated for their potential application as smart optical compounds. This synthesis route has allowed us to develop nanoparticles of zinc oxide, vanadium oxide or tungsten oxide. This route is with easy implementation, inexpensive and with large-scale production potentialities and leads to materials of high purity. The obtaining by this route of nanometric particles, however perfectly crystalline, has notably led to the possibility of doping these matrix materials with high doping ion concentrations (high solubility limits). Thus, Al3+ or Ga3+ doped-ZnO powder, with high doping rate in comparison with the literature, exhibits remarkable infrared absorption properties thanks to their high free carrier density. Note also that due to the narrow particle size distribution of the as-prepared nanometric doped-ZnO powder, the original correlation between crystallite size and unit-cell parameters have been established. Also, depending on the annealing atmosphere use to treat vanadium precursors, VO2, V2O3 or V2O5 oxides with thermochromic or electrochromic properties can be obtained without any impurity, despite the versatility of the oxidation state of vanadium. This is of more particular interest on vanadium dioxide, a relatively difficult-to-prepare oxide, whose first-order metal-insulator phase transition is widely explored in the literature for its thermochromic behavior (in smart windows with optimal thermal insulation). Finally, the reducing nature of the polyol solvents ensures the production of oxygen-deficient tungsten oxide, thus conferring to the nano-powders exotic colorimetric properties, as well as optimized photochromic and electrochromic behaviors.Keywords: inorganic oxides, electrochromic, photochromic, thermochromic
Procedia PDF Downloads 221485 Analysis of Environmental Sustainability in Post- Earthquake Reconstruction : A Case of Barpak, Nepal
Authors: Sudikshya Bhandari, Jonathan K. London
Abstract:
Barpak in northern Nepal represents a unique identity expressed through the local rituals, values, lifeways and the styles of vernacular architecture. The traditional residential buildings and construction practices adopted by the dominant ethnic groups: Ghales and Gurungs, reflect environmental, social, cultural and economic concerns. However, most of these buildings did not survive the Gorkha earthquake in 2015 that made many residents skeptical about their strength to resist future disasters. This led Barpak residents to prefer modern housing designs primarily for the strength but additionally for convenience and access to earthquake relief funds. Post-earthquake reconstruction has transformed the cohesive community, developed over hundreds of years into a haphazard settlement with the imposition of externally-driven building models. Housing guidelines provided for the community reconstruction and earthquake resilience have been used as a singular template, similar to other communities on different geographical locations. The design and construction of these buildings do not take into account the local, historical, environmental, social, cultural and economic context of Barpak. In addition to the physical transformation of houses and the settlement, the consequences continue to develop challenges to sustainability. This paper identifies the major challenges for environmental sustainability with the construction of new houses in post-earthquake Barpak. Mixed methods such as interviews, focus groups, site observation, and documentation, and analysis of housing and neighborhood design have been used for data collection. The discernible changing situation of this settlement due to the new housing has included reduced climatic adaptation and thermal comfort, increased consumption of agricultural land and water, minimized use of local building materials, and an increase in energy demand. The research has identified that reconstruction housing practices happening in Barpak, while responding to crucial needs for disaster recovery and resilience, are also leading this community towards an unsustainable future. This study has also integrated environmental, social, cultural and economic parameters into an assessment framework that could be used to develop place-based design guidelines in the context of other post-earthquake reconstruction efforts. This framework seeks to minimize the unintended repercussions of unsustainable reconstruction interventions, support the vitality of vernacular architecture and traditional lifeways and respond to context-based needs in coordination with residents.Keywords: earthquake, environment, reconstruction, sustainability
Procedia PDF Downloads 115484 Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids
Authors: Ayalew Yimam Ali
Abstract:
The Y-shaped microchannel is used to mix both miscible or immiscible fluids with different viscosities. However, mixing at the entrance of the Y-junction microchannel can be a difficult mixing phenomena due to micro-scale laminar flow aspects with the two miscible high-viscosity water-glycerol fluids. One of the most promising methods to improve mixing performance and diffusion mass transfer in laminar flow phenomena is acoustic streaming (AS), which is a time-averaged, second-order steady streaming that can produce rolling motion in the microchannel by oscillating a low-frequency range acoustic transducer and inducing an acoustic wave in the flow field. The developed 3D trapezoidal, triangular structure spine used in this study was created using sophisticated CNC machine cutting tools used to create microchannel mold with a 3D trapezoidal triangular structure spine alone the Y-junction longitudinal mixing region. In order to create the molds for the 3D trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm trapezoidal triangular sharp edge tip depth from PMMA glass (Polymethylmethacrylate) with advanced CNC machine and the channel manufactured using PDMS (Polydimethylsiloxane) which is grown up longitudinally on top surface of the Y-junction microchannel using soft lithography nanofabrication strategies. Flow visualization of 3D rolling steady acoustic streaming and mixing enhancement with high-viscosity miscible fluids with different trapezoidal, triangular structure longitudinal length, channel width, high volume flow rate, oscillation frequency, and amplitude using micro-particle image velocimetry (μPIV) techniques were used to study the 3D acoustic streaming flow patterns and mixing enhancement. The streaming velocity fields and vorticity flow fields show 16 times more high vorticity maps than in the absence of acoustic streaming, and mixing performance has been evaluated at various amplitudes, flow rates, and frequencies using the grayscale value of pixel intensity with MATLAB software. Mixing experiments were performed using fluorescent green dye solution with de-ionized water in one inlet side of the channel, and the de-ionized water-glycerol mixture on the other inlet side of the Y-channel and degree of mixing was found to have greatly improved from 67.42% without acoustic streaming to 0.96.83% with acoustic streaming. The results show that the creation of a new 3D steady streaming rolling motion with a high volume flowrate around the entrance was enhanced by the formation of a new, three-dimensional, intense streaming rolling motion with a high-volume flowrate around the entrance junction mixing zone with the two miscible high-viscous fluids which are influenced by laminar flow fluid transport phenomena.Keywords: micro fabrication, 3d acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement
Procedia PDF Downloads 23483 EverPro as the Missing Piece in the Plant Protein Portfolio to Aid the Transformation to Sustainable Food Systems
Authors: Aylin W Sahin, Alice Jaeger, Laura Nyhan, Gregory Belt, Steffen Münch, Elke K. Arendt
Abstract:
Our current food systems cause an increase in malnutrition resulting in more people being overweight or obese in the Western World. Additionally, our natural resources are under enormous pressure and the greenhouse gas emission increases yearly with a significant contribution to climate change. Hence, transforming our food systems is of highest priority. Plant-based food products have a lower environmental impact compared to their animal-based counterpart, representing a more sustainable protein source. However, most plant-based protein ingredients, such as soy and pea, are lacking indispensable amino acids and extremely limited in their functionality and, thus, in their food application potential. They are known to have a low solubility in water and change their properties during processing. The low solubility displays the biggest challenge in the development of milk alternatives leading to inferior protein content and protein quality in dairy alternatives on the market. Moreover, plant-based protein ingredients often possess an off-flavour, which makes them less attractive to consumers. EverPro, a plant-protein isolate originated from Brewer’s Spent Grain, the most abundant by-product in the brewing industry, represents the missing piece in the plant protein portfolio. With a protein content of >85%, it is of high nutritional value, including all indispensable amino acids which allows closing the protein quality gap of plant proteins. Moreover, it possesses high techno-functional properties. It is fully soluble in water (101.7 ± 2.9%), has a high fat absorption capacity (182.4 ± 1.9%), and a foaming capacity which is superior to soy protein or pea protein. This makes EverPro suitable for a vast range of food applications. Furthermore, it does not cause changes in viscosity during heating and cooling of dispersions, such as beverages. Besides its outstanding nutritional and functional characteristics, the production of EverPro has a much lower environmental impact compared to dairy or other plant protein ingredients. Life cycle assessment analysis showed that EverPro has the lowest impact on global warming compared to soy protein isolate, pea protein isolate, whey protein isolate, and egg white powder. It also contributes significantly less to freshwater eutrophication, marine eutrophication and land use compared the protein sources mentioned above. EverPro is the prime example of sustainable ingredients, and the type of plant protein the food industry was waiting for: nutritious, multi-functional, and environmentally friendly.Keywords: plant-based protein, upcycled, brewers' spent grain, low environmental impact, highly functional ingredient
Procedia PDF Downloads 80482 A Systematic Analysis of Knowledge Development Trends in Industrial Maintenance Projects
Authors: Lilian Ogechi Iheukwumere-Esotu, Akilu Yunusa-Kaltungo, Paul Chan
Abstract:
Industrial assets are prone to degradation and eventual failures due to repetitive loads and harsh environments in which they operate. These failures often lead to costly downtimes, which may involve loss of critical assets and/or human lives. The rising pressures from stakeholders for optimized systems’ outputs have further placed strains on business organizations. Traditional means of combating such failures are by adopting strategies capable of predicting, controlling, and/or reducing the likelihood of systems’ failures. Turnarounds, shutdowns, and outages (TSOs) projects are popular maintenance management activities conducted over a certain period of time. However, despite the critical and significant cost implications of TSOs, the management of the interface of knowledge between academia and industry to our best knowledge has not been fully explored in comparison to other aspects of industrial operations. This is perhaps one of the reasons for the limited knowledge transfer between academia and industry, which has affected the outcomes of most TSOs. Prior to now, the study of knowledge development trends as a failure analysis tool in the management of TSOs projects have not gained the required level of attention. Hence, this review provides useful references and their implications for future studies in this field. This study aims to harmonize the existing research trends of TSOs through a systematic review of more than 3,000 research articles published over 7 decades (1940- till date) which were extracted using very specific research criteria and later streamlined using nominated inclusion and exclusion parameters. The information obtained from the analysis were then synthesized and coded into 8 parameters, thereby allowing for a transformation into actionable outputs. The study revealed a variety of information, but the most critical findings can be classified into 4 folds: (1) Empirical validation of available conceptual frameworks and models is still a far cry in practice, (2) traditional project management views for managing uncertainties are still dominant, (3) Inconsistent approaches towards the adoption and promotion of knowledge management systems which supports creation, transfer and application of knowledge within and outside the project organization and, (4) exploration of social practices in industrial maintenance project environments are under-represented within the existing body of knowledge. Thus, the intention of this study is to depict the usefulness of a framework which incorporates fact findings emanating from careful analysis and illustrations of evidence based results as a suitable approach which can tackle reoccurring failures in industrial maintenance projects.Keywords: industrial maintenance, knowledge management, maintenance projects, systematic review, TSOs
Procedia PDF Downloads 118481 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams
Authors: Nidhi Sharotri, Dhiraj Sud
Abstract:
Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.Keywords: quinalphos, doped-TiO2, mineralization, EPR
Procedia PDF Downloads 328480 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria
Authors: Amina Naidja, Zedira Khammar, Ines Soltani
Abstract:
This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception
Procedia PDF Downloads 43479 Hybrid Materials Obtained via Sol-Gel Way, by the Action of Teraethylorthosilicate with 1, 3, 4-Thiadiazole 2,5-Bifunctional Compounds
Authors: Afifa Hafidh, Fathi Touati, Ahmed Hichem Hamzaoui, Sayda Somrani
Abstract:
The objective of the present study has been to synthesize and to characterize silica hybrid materials using sol-gel technic and to investigate their properties. Silica materials were successfully fabricated using various bi-functional 1,3,4-thiadiazoles and tetraethoxysilane (TEOS) as co-precursors via a facile one-pot sol-gel pathway. TEOS was introduced at room temperature with 1,3,4-thiadiazole 2,5-difunctiunal adducts, in ethanol as solvent and using HCl acid as catalyst. The sol-gel process lead to the formation of monolithic, coloured and transparent gels. TEOS was used as a principal network forming agent. The incorporation of 1,3,4-thiadiazole molecules was realized by attachment of these later onto a silica matrix. This allowed covalent linkage between organic and inorganic phases and lead to the formation of Si-N and Si-S bonds. The prepared hybrid materials were characterized by Fourier transform infrared, NMR ²⁹Si and ¹³C, scanning electron microscopy and nitrogen absorption-desorption measurements. The optic and magnetic properties of hybrids are studied respectively by ultra violet-visible spectroscopy and electron paramagnetic resonance. It was shown in this work, that heterocyclic moieties were successfully attached in the hybrid skeleton. The formation of the Si-network composed of cyclic units (Q3 structures) connected by oxygen bridges (Q4 structures) was proved by ²⁹Si NMR spectroscopy. The Brunauer-Elmet-Teller nitrogen adsorption-desorption method shows that all the prepared xerogels have isotherms type IV and are mesoporous solids. The specific surface area and pore volume of these materials are important. The obtained results show that all materials are paramagnetic semiconductors. The data obtained by Nuclear magnetic resonance ²⁹Si and Fourier transform infrared spectroscopy, show that Si-OH and Si-NH groups existing in silica hybrids can participate in adsorption interactions. The obtained materials containing reactive centers could exhibit adsorption properties of metal ions due to the presence of OH and NH functionality in the mesoporous frame work. Our design of a simple method to prepare hybrid materials may give interest of the development of mesoporous hybrid systems and their use within the domain of environment in the future.Keywords: hybrid materials, sol-gel process, 1, 3, 4-thiadaizole, TEOS
Procedia PDF Downloads 183478 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites
Authors: Jifeng Zhang , Yongpeng Lei
Abstract:
Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface
Procedia PDF Downloads 122477 Surge in U. S. Citizens Expatriation: Testing Structual Equation Modeling to Explain the Underlying Policy Rational
Authors: Marco Sewald
Abstract:
Comparing present to past the numbers of Americans expatriating U. S. citizenship have risen. Even though these numbers are small compared to the immigrants, U. S. citizens expatriations have historically been much lower, making the uptick worrisome. In addition, the published lists and numbers from the U.S. government seems incomplete, with many not counted. Different branches of the U. S. government report different numbers and no one seems to know exactly how big the real number is, even though the IRS and the FBI both track and/or publish numbers of Americans who renounce. Since there is no single explanation, anecdotal evidence suggests this uptick is caused by global tax law and increased compliance burdens imposed by the U.S. lawmakers on U.S. citizens abroad. Within a research project the question arose about the reasons why a constant growing number of U.S. citizens are expatriating – the answers are believed helping to explain the underlying governmental policy rational, leading to such activities. While it is impossible to locate former U.S. citizens to conduct a survey on the reasons and the U.S. government is not commenting on the reasons given within the process of expatriation, the chosen methodology is Structural Equation Modeling (SEM), in the first step by re-using current surveys conducted by different researchers within the population of U. S. citizens residing abroad during the last years. Surveys questioning the personal situation in the context of tax, compliance, citizenship and likelihood to repatriate to the U. S. In general SEM allows: (1) Representing, estimating and validating a theoretical model with linear (unidirectional or not) relationships. (2) Modeling causal relationships between multiple predictors (exogenous) and multiple dependent variables (endogenous). (3) Including unobservable latent variables. (4) Modeling measurement error: the degree to which observable variables describe latent variables. Moreover SEM seems very appealing since the results can be represented either by matrix equations or graphically. Results: the observed variables (items) of the construct are caused by various latent variables. The given surveys delivered a high correlation and it is therefore impossible to identify the distinct effect of each indicator on the latent variable – which was one desired result. Since every SEM comprises two parts: (1) measurement model (outer model) and (2) structural model (inner model), it seems necessary to extend the given data by conducting additional research and surveys to validate the outer model to gain the desired results.Keywords: expatriation of U. S. citizens, SEM, structural equation modeling, validating
Procedia PDF Downloads 222476 Sacred Echoes: The Shamanic Journey of Hushahu and the Empowerment of Indigenous Women
Authors: Nadia K. Thalji
Abstract:
The shamanic odyssey of Hushahu, a courageous indigenous woman from the Amazon, reverberates with profound significance, resonating far beyond the confines of her tribal boundaries. This abstract explores Hushahu's transformative journey, which serves as a beacon of empowerment for indigenous women across the Amazon region. Hushahu's narrative unfolds against the backdrop of entrenched gender norms and colonial legacies that have historically marginalized women from spiritual leadership and ritual practices. Despite societal expectations and entrenched traditions, Hushahu boldly embraces her calling as a shaman, defying cultural constraints and challenging prevailing gender norms. Her journey represents a symbolic uprising against centuries of patriarchal dominance, offering a glimpse into the resilience and strength of indigenous women. Drawing upon Jungian psychology, Hushahu's quest can be understood as a profound exploration of the symbolic dimensions of the psyche. Through Hushahu’s initiation rituals and visionary experiences, the initiate embarks on a transformative journey of self-discovery, encountering archetypal symbols and tapping into the collective unconscious. Symbolism permeates the path, guiding Hushahu through the depths of the rainforest and illuminating the hidden realms of consciousness. Central to Hushahu's narrative is the theme of empowerment—a theme that transcends individual experience to catalyze broader social change. As Hushahu finds a voice amidst the echoes of ancestral wisdom, the journey inspires a ripple effect of empowerment throughout indigenous communities. Other women within Hushahu's tribe and neighboring societies are emboldened to challenge traditional gender roles, stepping into leadership positions and reclaiming their rightful place in spiritual practices. The resonance of Hushahu's journey extends beyond the Amazon, reverberating across cultural boundaries and igniting conversations about gender equality and indigenous rights. Through courageous defiance of cultural norms, Hushahu emerges as a symbol of resilience and empowerment, offering hope and inspiration to marginalized women around the world. In conclusion, Hushahu's shamanic journey embodies the sacred echoes of empowerment, echoing across generations and landscapes. The story serves as a testament to the enduring power of the human spirit and the transformative potential of reclaiming one's voice in the face of adversity. As indigenous women continue to rise, Hushahu's legacy stands as a beacon of hope, illuminating the path towards a more equitable and inclusive world.Keywords: shamanic leadership, indigenous empowerment, gender norms, cultural transformation
Procedia PDF Downloads 48475 Urban and Building Information Modeling’s Applications for Environmental Education: Case Study of Educational Campuses
Authors: Samar Alarif
Abstract:
Smart sustainable educational campuses are the latest paradigm of innovation in the education domain. Campuses become a hub for sustainable environmental innovations. University has a vital role in paving the road for digital transformations in the infrastructure domain by preparing skilled engineers and specialists. The open digital platform enables smart campuses to simulate real education experience by managing their infrastructure within the curriculums. Moreover, it allows the engagement between governments, businesses, and citizens to push for innovation and sustainable services. Urban and building information modeling platforms have recently attained widespread attention in smart campuses due to their applications and benefits for creating the campus's digital twin in the form of an open digital platform. Qualitative and quantitative strategies were used in directing this research to develop and validate the UIM/BIM platform benefits for smart campuses FM and its impact on the institution's sustainable vision. The research findings are based on literature reviews and case studies of the TU berlin El-Gouna campus. Textual data will be collected using semi-structured interviews with actors, secondary data like BIM course student projects, documents, and publications related to the campus actors. The study results indicated that UIM/BIM has several benefits for the smart campus. Universities can achieve better capacity-building by integrating all the actors in the UIM/BIM process. Universities would achieve their community outreach vision by launching an online outreach of UIM/BIM course for the academic and professional community. The UIM/BIM training courses would integrate students from different disciplines and alumni graduated as well as engineers and planners and technicians. Open platforms enable universities to build a partnership with the industry; companies should be involved in the development of BIM technology courses. The collaboration between academia and the industry would fix the gap, promote the academic courses to reply to the professional requirements, and transfer the industry's academic innovations. In addition to that, the collaboration between academia, industry, government vocational and training centers, and civil society should be promoted by co-creation workshops, a series of seminars, and conferences. These co-creation activities target the capacity buildings and build governmental strategies and policies to support expanding the sustainable innovations and to agree on the expected role of all the stakeholders to support the transformation.Keywords: smart city, smart educational campus, UIM, urban platforms, sustainable campus
Procedia PDF Downloads 123474 Building Environmental Citizenship in Spain: Urban Movements and Ecologist Protest in Las Palmas De Gran Canaria, 1970-1983
Authors: Juan Manuel Brito-Diaz
Abstract:
The emergence of urban environmentalism in Spain is related to the processes of economic transformation and growing urbanization that occurred during the end of the Franco regime and the democratic transition. This paper analyzes the urban environmental mobilizations and their impacts as relevant democratizing agents in the processes of political change in cities. It’s an under-researched topic and studies on environmental movements in Spain have paid little attention to it. This research takes as its starting point the close link between democratization and environmentalism, since it considers that environmental conflicts are largely a consequence of democratic problems, and that the impacts of environmental movements are directly linked to the democratization. The study argues that the environmental movements that emerged in Spain at the end of the dictatorship and the democratic transition are an important part of the broad and complex associative fabric that promoted the democratization process. The research focuses on investigating the environmental protest in Las Palmas de Gran Canaria—the most important city in the Canary Islands—between 1970 and 1983, concurrently with the last local governments of the dictatorship and the first democratic city councils. As it is a case study, it opens up the possibility to ask multiple specific questions and assess each of the responses obtained. Although several research methodologies have been applied, such as the analysis of historical archives documentation or oral history interviews, mainly a very widespread methodology in the sociology of social movements, although very little used by social historians, has been used: the Protest Event Analysis (PEA). This methodology, which consists of generating a catalog of protest events by coding data around previously established variables, has allowed me to map, analyze and interpret the occurrence of protests over time and space, and associated factors, through content analysis. For data collection, news from local newspapers have provided a large enough sample to analyze the properties of social protest -frequency, size, demands, forms, organizers, etc.—and relate them to another type of information related to political structures and mobilization repertoires, encouraging the establishment of connections between the protest and the political impacts of urban movements. Finally, the study argues that the environmental movements of this period were essential to the construction of the new democratic city in Spain, not only because they established the issues of sustainability and urban environmental justice on the public agenda, but also because they proposed that conflicts derived from such matters should ultimately be resolved through public deliberation and citizen participation.Keywords: democratization, environmental movements, political impacts, social movements
Procedia PDF Downloads 181473 A Proposal for an Excessivist Social Welfare Ordering
Authors: V. De Sandi
Abstract:
In this paper, we characterize a class of rank-weighted social welfare orderings that we call ”Excessivist.” The Excessivist Social Welfare Ordering (eSWO) judges incomes above a fixed threshold θ as detrimental to society. To accomplish this, the identification of a richness or affluence line is necessary. We employ a fixed, exogenous line of excess. We define an eSWF in the form of a weighted sum of individual’s income. This requires introducing n+1 vectors of weights, one for all possible numbers of individuals below the threshold. To do this, the paper introduces a slight modification of the class of rank weighted class of social welfare function. Indeed, in our excessivist social welfare ordering, we allow the weights to be both positive (for individuals below the line) and negative (for individuals above). Then, we introduce ethical concerns through an axiomatic approach. The following axioms are required: continuity above and below the threshold (Ca, Cb), anonymity (A), absolute aversion to excessive richness (AER), pigou dalton positive weights preserving transfer (PDwpT), sign rank preserving full comparability (SwpFC) and strong pareto below the threshold (SPb). Ca, Cb requires that small changes in two income distributions above and below θ do not lead to changes in their ordering. AER suggests that if two distributions are identical in any respect but for one individual above the threshold, who is richer in the first, then the second should be preferred by society. This means that we do not care about the waste of resources above the threshold; the priority is the reduction of excessive income. According to PDwpT, a transfer from a better-off individual to a worse-off individual despite their relative position to the threshold, without reversing their ranks, leads to an improved distribution if the number of individuals below the threshold is the same after the transfer or the number of individuals below the threshold has increased. SPb holds only for individuals below the threshold. The weakening of strong pareto and our ethics need to be justified; we support them through the notion of comparative egalitarianism and income as a source of power. SwpFC is necessary to ensure that, following a positive affine transformation, an individual does not become excessively rich in only one distribution, thereby reversing the ordering of the distributions. Given the axioms above, we can characterize the class of the eSWO, getting the following result through a proof by contradiction and exhaustion: Theorem 1. A social welfare ordering satisfies the axioms of continuity above and below the threshold, anonymity, sign rank preserving full comparability, aversion to excessive richness, Pigou Dalton positive weight preserving transfer, and strong pareto below the threshold, if and only if it is an Excessivist-social welfare ordering. A discussion about the implementation of different threshold lines reviewing the primary contributions in this field follows. What the commonly implemented social welfare functions have been overlooking is the concern for extreme richness at the top. The characterization of Excessivist Social Welfare Ordering, given the axioms above, aims to fill this gap.Keywords: comparative egalitarianism, excess income, inequality aversion, social welfare ordering
Procedia PDF Downloads 65472 Gender-Transformative Education: A Pathway to Nourishing and Evolving Gender Equality in the Higher Education of Iran
Authors: Sepideh Mirzaee
Abstract:
Gender-transformative (G-TE) education is a challenging concept in the field of education and it is a matter of hot debate in the contemporary world. Paulo Freire as the prominent advocate of transformative education considers it as an alternative to conventional banking model of education. Besides, a more inclusive concept has been introduced, namely, G-TE, as an unbiased education fostering an environment of gender justice. As its main tenet, G-TE eliminates obstacles to education and improves social shifts. A plethora of contemporary research indicates that G-TE could completely revolutionize education systems by displacing inequalities and changing gender stereotypes. Despite significant progress in female education and its effects on gender equality in Iran, challenges persist. There are some deficiencies regarding gender disparities in the society and, education, specifically. As an example, the number of women with university degrees is on the rise; thus, there will be an increasing demand for employment in the society by them. Instead, many job opportunities remain occupied by men and it is seen as intolerable for the society to assign such occupations to women. In fact, Iran is regarded as a patriarchal society where educational contexts can play a critical role to assign gender ideology to its learners. Thus, such gender ideologies in the education can become the prevailing ideologies in the entire society. Therefore, improving education in this regard, can lead to a significant change in a society subsequently influencing the status of women not only within their own country but also on a global scale. Notably, higher education plays a vital role in this empowerment and social change. Particularly higher education can have a crucial part in imparting gender neutral ideologies to its learners and bringing about substantial change. It has the potential to alleviate the detrimental effects of gender inequalities. Therefore, this study aims to conceptualize the pivotal role of G-TE and its potential power in developing gender equality within the higher educational system of Iran presented within a theoretical framework. The study emphasizes the necessity of stablishing a theoretical grounding for citizenship, and transformative education while distinguishing gender related issues including gender equality, equity and parity. This theoretical foundation will shed lights on the decisions made by policy-makers, syllabus designers, material developers, and specifically professors and students. By doing so, they will be able to promote and implement gender equality recognizing the determinants, obstacles, and consequences of sustaining gender-transformative approaches in their classes within the Iranian higher education system. The expected outcomes include the eradication of gender inequality, transformation of gender stereotypes and provision of equal opportunities for both males and females in education.Keywords: citizenship education, gender inequality, higher education, patriarchal society, transformative education
Procedia PDF Downloads 65471 Looking at Women’s Status in India through Different Lenses: Evidence from Second Wave of IHDS Data
Authors: Vidya Yadav
Abstract:
In every society, males and females are expected to behave in certain ways, and in every culture, those expectation, values and norms are different and vary accordingly. Many of the inequalities between men and women are rooted in institutional structure such as in educational field, labour market, wages, decision-making power, access to services as well as in accessing the health and well-being care also. The marriage and kinship pattern shape both men’s and women’s lives. Earlier many studies have highlighted the gender disparities which vary tremendously between regions, social classes, and communities. This study will try to explore the prominent indicators to show the status of women and well-being condition in Indian society. Primarily this paper concern with firstly identification of indicators related to gender in each area like education, work status, mobility, women participation in public and private decision making, autonomy and domestic violence etc. And once the indicators are identified next task is to define them. The indicators which are selected here are for a comparison of women’s status across Indian states. Recent Indian Human Development Survey, 2011-12 has been procured to show the current situation of women. Result shows that in spite of rising levels of education and images of growing westernization in India, love marriages remain in rarity even among urban elite. In India marriage is universal, and most of the men and women marry at relatively young age. Even though the legal age of marriage is 18, but more than 60 percent are married before the legal age. Not surprisingly, but Bihar and Rajasthan are the states with earliest age at marriage. Most of them reported that they have very limited contact with their husband before marriages. Around 69 percent of women met their husbands on the day of the wedding or shortly before. In spite of decline in fertility, still childbearing remains essential to women’s lives. Mostly women aged 25 and older had at least one child. Women’s control over household resources, physical space and mobility is also limited. Indian women’s, mostly rely on men to purchase day to day necessities, as well as medicines, as well as other necessary items. This ultimately reduces the likelihood that women have cash in hand for such purchases. The story is quite different when it comes to have control over decision over purchasing household assets such as TVs or refrigerator, names on the bank account, and home ownership papers. However, the likelihood of ownership rises among urbanite educated women’s. Women’s still have to the cultural norms and the practice of purdah or ghunghat, familial control over women’s physical movement. Wife beating and domestic violence still remain pervasive, and beaten for minor transgression like going out without permission. Development of India cannot be realized without the very significant component of gender. Therefore detailed examinations of different indicators are required to understand, strategize, plan and formulate programmes.Keywords: autonomy, empowerment, gender, violence
Procedia PDF Downloads 300470 Designing Form, Meanings, and Relationships for Future Industrial Products. Case Study Observation of PAD
Authors: Elisabetta Cianfanelli, Margherita Tufarelli, Paolo Pupparo
Abstract:
The dialectical mediation between desires and objects or between mass production and consumption continues to evolve over time. This relationship is influenced both by variable geometries of contexts that are distant from the mere design of product form and by aspects rooted in the very definition of industrial design. In particular, the overcoming of macro-areas of innovation in the technological, social, cultural, formal, and morphological spheres, supported by recent theories in critical and speculative design, seems to be moving further and further away from the design of the formal dimension of advanced products. The articulated fabric of theories and practices that feed the definition of “hyperobjects”, and no longer objects describes a common tension in all areas of design and production of industrial products. The latter are increasingly detached from the design of the form and meaning of the same in mass productions, thus losing the quality of products capable of social transformation. For years we have been living in a transformative moment as regards the design process in the definition of the industrial product. We are faced with a dichotomy in which there is, on the one hand, a reactionary aversion to the new techniques of industrial production and, on the other hand, a sterile adoption of the techniques of mass production that we can now consider traditional. This ambiguity becomes even more evident when we talk about industrial products, and we realize that we are moving further and further away from the concepts of "form" as a synthesis of a design thought aimed at the aesthetic-emotional component as well as the functional one. The design of forms and their contents, as statutes of social acts, allows us to investigate the tension on mass production that crosses seasons, trends, technicalities, and sterile determinisms. The design culture has always determined the formal qualities of objects as a sum of aesthetic characteristics functional and structural relationships that define a product as a coherent unit. The contribution proposes a reflection and a series of practical experiences of research on the form of advanced products. This form is understood as a kaleidoscope of relationships through the search for an identity, the desire for democratization, and between these two, the exploration of the aesthetic factor. The study of form also corresponds to the study of production processes, technological innovations, the definition of standards, distribution, advertising, the vicissitudes of taste and lifestyles. Specifically, we will investigate how the genesis of new forms for new meanings introduces a change in the relative innovative production techniques. It becomes, therefore, fundamental to investigate, through the reflections and the case studies exposed inside the contribution, also the new techniques of production and elaboration of the forms of the products, as new immanent and determining element inside the planning process.Keywords: industrial design, product advanced design, mass productions, new meanings
Procedia PDF Downloads 123469 Numerical Investigation of the Boundary Conditions at Liquid-Liquid Interfaces in the Presence of Surfactants
Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji
Abstract:
Liquid-liquid interfacial flow is an important process that has applications across many spheres. One such applications are residual oil mobilization, where crude oil and low salinity water are emulsified due to lowered interfacial tension under the condition of low shear rates. The amphiphilic components (asphaltenes and resins) in crude oil are considered to assemble at the interface between the two immiscible liquids. To justify emulsification, drag and snap-off suppression as the main effects of low salinity water, mobilization of residual oil is visualized as thickening and slip of the wetting phase at the brine/crude oil interface which results in the squeezing and drag of the non-wetting phase to the pressure sinks. Meanwhile, defining the boundary conditions for such a system can be very challenging since the interfacial dynamics do not only depend on interfacial tension but also the flow rate. Hence, understanding the flow boundary condition at the brine/crude oil interface is an important step towards defining the influence of low salinity water composition on residual oil mobilization. This work presents a numerical evaluation of three slip boundary conditions that may apply at liquid-liquid interfaces. A mathematical model was developed to describe the evolution of a viscoelastic interfacial thin liquid film. The base model is developed by the asymptotic expansion of the full Navier-Stokes equations for fluid motion due to gradients of surface tension. This model was upscaled to describe the dynamics of the film surface deformation. Subsequently, Jeffrey’s model was integrated into the formulations to account for viscoelastic stress within a long wave approximation of the Navier-Stokes equations. To study the fluid response to a prescribed disturbance, a linear stability analysis (LSA) was performed. The dispersion relation and the corresponding characteristic equation for the growth rate were obtained. Three slip (slip, 1; locking, -1; and no-slip, 0) boundary conditions were examined using the resulted characteristic equation. Also, the dynamics of the evolved interfacial thin liquid film were numerically evaluated by considering the influence of the boundary conditions. The linear stability analysis shows that the boundary conditions of such systems are greatly impacted by the presence of amphiphilic molecules when three different values of interfacial tension were tested. The results for slip and locking conditions are consistent with the fundamental solution representation of the diffusion equation where there is film decay. The interfacial films at both boundary conditions respond to exposure time in a similar manner with increasing growth rate which resulted in the formation of more droplets with time. Contrarily, no-slip boundary condition yielded an unbounded growth and it is not affected by interfacial tension.Keywords: boundary conditions, liquid-liquid interfaces, low salinity water, residual oil mobilization
Procedia PDF Downloads 130468 Preparation and Characterization of Poly(L-Lactic Acid)/Oligo(D-Lactic Acid) Grafted Cellulose Composites
Authors: Md. Hafezur Rahaman, Mohd. Maniruzzaman, Md. Shadiqul Islam, Md. Masud Rana
Abstract:
With the growth of environmental awareness, enormous researches are running to develop the next generation materials based on sustainability, eco-competence, and green chemistry to preserve and protect the environment. Due to biodegradability and biocompatibility, poly (L-lactic acid) (PLLA) has a great interest in ecological and medical applications. Also, cellulose is one of the most abundant biodegradable, renewable polymers found in nature. It has several advantages such as low cost, high mechanical strength, biodegradability and so on. Recently, an immense deal of attention has been paid for the scientific and technological development of α-cellulose based composite material. PLLA could be used for grafting of cellulose to improve the compatibility prior to the composite preparation. Here it is quite difficult to form a bond between lower hydrophilic molecules like PLLA and α-cellulose. Dimmers and oligomers can easily be grafted onto the surface of the cellulose by ring opening or polycondensation method due to their low molecular weight. In this research, α-cellulose extracted from jute fiber is grafted with oligo(D-lactic acid) (ODLA) via graft polycondensation reaction in presence of para-toluene sulphonic acid and potassium persulphate in toluene at 130°C for 9 hours under 380 mmHg. Here ODLA is synthesized by ring opening polymerization of D-lactides in the presence of stannous octoate (0.03 wt% of lactide) and D-lactic acids at 140°C for 10 hours. Composites of PLLA with ODLA grafted α-cellulose are prepared by solution mixing and film casting method. Confirmation of grafting was carried out through FTIR spectroscopy and SEM analysis. A strongest carbonyl peak of FTIR spectroscopy at 1728 cm⁻¹ of ODLA grafted α-cellulose confirms the grafting of ODLA onto α-cellulose which is absent in α-cellulose. It is also observed from SEM photographs that there are some white areas (spot) on ODLA grafted α-cellulose as compared to α-cellulose may indicate the grafting of ODLA and consistent with FTIR results. Analysis of the composites is carried out by FTIR, SEM, WAXD and thermal gravimetric analyzer. Most of the FTIR characteristic absorption peak of the composites shifted to higher wave number with increasing peak area may provide a confirmation that PLLA and grafted cellulose have better compatibility in composites via intermolecular hydrogen bonding and this supports previously published results. Grafted α-cellulose distributions in composites are uniform which is observed by SEM analysis. WAXD studied show that only homo-crystalline structures of PLLA present in the composites. Thermal stability of the composites is enhanced with increasing the percentages of ODLA grafted α-cellulose in composites. As a consequence, the resultant composites have a resistance toward the thermal degradation. The effects of length of the grafted chain and biodegradability of the composites will be studied in further research.Keywords: α-cellulose, composite, graft polycondensation, oligo(D-lactic acid), poly(L-lactic acid)
Procedia PDF Downloads 120467 Flow Visualization and Mixing Enhancement in Y-Junction Microchannel with 3D Acoustic Streaming Flow Patterns Induced by Trapezoidal Triangular Structure using High-Viscous Liquids
Authors: Ayalew Yimam Ali
Abstract:
The Y-shaped microchannel system is used to mix up low or high viscosities of different fluids, and the laminar flow with high-viscous water-glycerol fluids makes the mixing at the entrance Y-junction region a challenging issue. Acoustic streaming (AS) is time-average, a steady second-order flow phenomenon that could produce rolling motion in the microchannel by oscillating low-frequency range acoustic transducer by inducing acoustic wave in the flow field is the promising strategy to enhance diffusion mass transfer and mixing performance in laminar flow phenomena. In this study, the 3D trapezoidal Structure has been manufactured with advanced CNC machine cutting tools to produce the molds of trapezoidal structure with the 3D sharp edge tip angles of 30° and 0.3mm spine sharp-edge tip depth from PMMA glass (Polymethylmethacrylate) and the microchannel has been fabricated using PDMS (Polydimethylsiloxane) which could be grown-up longitudinally in Y-junction microchannel mixing region top surface to visualized 3D rolling steady acoustic streaming and mixing performance evaluation using high-viscous miscible fluids. The 3D acoustic streaming flow patterns and mixing enhancement were investigated using the micro-particle image velocimetry (μPIV) technique with different spine depth lengths, channel widths, high volume flow rates, oscillation frequencies, and amplitude. The velocity and vorticity flow fields show that a pair of 3D counter-rotating streaming vortices were created around the trapezoidal spine structure and observing high vorticity maps up to 8 times more than the case without acoustic streaming in Y-junction with the high-viscosity water-glycerol mixture fluids. The mixing experiments were performed by using fluorescent green dye solution with de-ionized water on one inlet side, de-ionized water-glycerol with different mass-weight percentage ratios on the other inlet side of the Y-channel and evaluated its performance with the degree of mixing at different amplitudes, flow rates, frequencies, and spine sharp-tip edge angles using the grayscale value of pixel intensity with MATLAB Software. The degree of mixing (M) characterized was found to significantly improved to 0.96.8% with acoustic streaming from 67.42% without acoustic streaming, in the case of 0.0986 μl/min flow rate, 12kHz frequency and 40V oscillation amplitude at y = 2.26 mm. The results suggested the creation of a new 3D steady streaming rolling motion with a high volume flow rate around the entrance junction mixing region, which promotes the mixing of two similar high-viscosity fluids inside the microchannel, which is unable to mix by the laminar flow with low viscous conditions.Keywords: nano fabrication, 3D acoustic streaming flow visualization, micro-particle image velocimetry, mixing enhancement
Procedia PDF Downloads 34466 Screening of Antagonistic/Synergistic Effect between Lactic Acid Bacteria (LAB) and Yeast Strains Isolated from Kefir
Authors: Mihriban Korukluoglu, Goksen Arik, Cagla Erdogan, Selen Kocakoglu
Abstract:
Kefir is a traditional fermented refreshing beverage which is known for its valuable and beneficial properties for human health. Mainly yeast species, lactic acid bacteria (LAB) strains and fewer acetic acid bacteria strains live together in a natural matrix named “kefir grain”, which is formed from various proteins and polysaccharides. Different microbial species live together in slimy kefir grain and it has been thought that synergetic effect could take place between microorganisms, which belong to different genera and species. In this research, yeast and LAB were isolated from kefir samples obtained from Uludag University Food Engineering Department. The cell morphology of isolates was screened by microscopic examination. Gram reactions of bacteria isolates were determined by Gram staining method, and as well catalase activity was examined. After observing the microscopic/morphological and physical, enzymatic properties of all isolates, they were divided into the groups as LAB and/or yeast according to their physicochemical responses to the applied examinations. As part of this research, the antagonistic/synergistic efficacy of the identified five LAB and five yeast strains to each other were determined individually by disk diffusion method. The antagonistic or synergistic effect is one of the most important properties in a co-culture system that different microorganisms are living together. The synergistic effect should be promoted, whereas the antagonistic effect is prevented to provide effective culture for fermentation of kefir. The aim of this study was to determine microbial interactions between identified yeast and LAB strains, and whether their effect is antagonistic or synergistic. Thus, if there is a strain which inhibits or retards the growth of other strains found in Kefir microflora, this circumstance shows the presence of antagonistic effect in the medium. Such negative influence should be prevented, whereas the microorganisms which have synergistic effect on each other should be promoted by combining them in kefir grain. Standardisation is the most desired property for industrial production. Each microorganism found in the microbial flora of a kefir grain should be identified individually. The members of the microbial community found in the glue-like kefir grain may be redesigned as a starter culture regarding efficacy of each microorganism to another in kefir processing. The main aim of this research was to shed light on more effective production of kefir grain and to contribute a standardisation of kefir processing in the food industry.Keywords: antagonistic effect, kefir, lactic acid bacteria (LAB), synergistic, yeast
Procedia PDF Downloads 280465 Transformations of River Zones in Hanoi, Vietnam: Problems of Urban Drainage and Environmental Pollution
Authors: Phong Le Ha
Abstract:
In many cities the entire world, the relationship between cities and rivers is always considered as a fundament of urban history research because of their profound interactions. This kind of relationship makes the river zones become extremely sensitive in many aspects. One of the most important aspect is their roles in the drainage of cities. In this paper we will examine an extraordinary case of Hanoi, the capital of Vietnam and Red river zones. This river has contradictory impacts to this city: It is considered as a source of life of the inhabitants who live along its two banks, however, the risk of inundation caused by the complicated hydrology system of this river is always a real threat to the cities that it flows through. Morphologically, Red river was connected to the inner rivers system that made Hanoi a complete form of a river city. This structure combined with the topography of Hanoi helps this city to assure a stable drainage system in which the river zones in the north of Hanoi play some extreme important roles. Nevertheless, in the late 20 years, Hanoi's strong urbanization and the instability of Red river's complicated hydrology make the very remarkable transformations in the relationship river-city and in the river zones: The connection between the river and the city declines; the system of inner lakes are progressively replaced by habitat land; in the river zones, the infrastructure system can't adapt to the transformations of the new quarters which have the origin of the agricultural villages. These changes bring out many chances for the urban development, but also many risks and problems, particularly in the environment and technical sides. Among these, pluvial and used water evacuation is one of the most severe problems. The disappear of inner-city lakes, the high dike and the topographical changes of Hanoi blow up the risk of inundation of this city. In consequences, the riverine zones, particularly in the north of Hanoi, where the two most important water evacuation rivers of Hanoi meet each other, are burdened with the drainage pressure. The unique water treatment plant in this zone seems to be overcharged in receiving each day about 40000m3 of used water (not include pluvial water). This kind of problem leads also to another risk related to the environmental pollution (water pollution and air pollution). So, in order to better understand the situation and to propose the solutions to resolve the problems, an interdisciplinary research covering many different fields such urban planning, architecture, geography, and especially drainage and environment has been carried out. In general, this paper will analyze an important part of the research : the process of urban transformation of Hanoi (changes in urban morphology, infrastructure system, evolution of the dike system, ...) and the hydrological changes of Red river which cause the drainage and environmental problems. The conclusions of these analyses will be the solid base of the following researches focusing on the solutions of a sustainable development.Keywords: drainage, environment, Hanoi, infrastructure, red rivers, urbanization
Procedia PDF Downloads 406464 The Return of the Witches: A Class That Motivates the Analysis of Gender Bias in Engineer
Authors: Veronica Botero, Karen Ortiz
Abstract:
The Faculty of Mines, of the National University of Colombia, Medellín Campus, is a faculty that has 136 years of history and represents one of the most important study centers in the country in the field of engineering and scientific research, as well as a reference at a global, national, and Latin American level in this matter. Despite being a faculty with so many years of history and having trained a large number of graduates under the traditional mechanistic and androcentric paradigm, which reproduces the logic of the traditional scientific method and the differentiated and severe look between subject-object of research among other binarisms, has also been the place where professors and students have become aware of the need to transform this paradigm into engineering, and focus on the sustainability of diversity and the well-being of the natural and social systems that inhabit the territories and has opened possibilities for the implementation of classes that address feminist pedagogical theories and practices. The class: The return of the witches, is an initiative that constitutes an important training exercise that provides students with the study of feminisms, the importance of closing gender gaps and critical readings on the traditional paradigm of engineering. The objective of this article is to present a systematization of the experience of design, implementation and development of this elective class, describing the tensions that arose at the time when a subject of this style was created and proposed in the Department of Geosciences and Environment, from the Faculty of Mines in 2022; the reactions of the groups of students who have taken it and their perceptions and opinions about ecofeminism as proposals for critical analysis and practices in relation to the environment and, above all, how their readings of the world have changed after having studied this subject for a semester. The pedagogical journey and the feminist methodologies that have been designed and adjusted over two years of work will be explained based on the sharing of situated knowledge of the students and the two teachers who teach the course, who pose challenges to the dominant ideology in engineering since one of them is trained in human sciences and feminist studies and the other, although trained in civil engineering and geosciences, is a woman with diverse sexual orientation and is the first professor to have assumed the position of dean in the 135 years of history of the Faculty. The transformations in the life experience of the students are revealing since they affirm that the training process is forceful and powerful to outline a much more qualified and critical professional profile that contributes to the transformation of gender gaps in the country. This class is therefore a challenge in this Faculty of Engineering that still presents a dominant ideology on gender that has not been questioned or challenged before.Keywords: feminisms, gender equality, gender bias, engineering for life Manifiesto.
Procedia PDF Downloads 71