Search results for: software selection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6987

Search results for: software selection

2307 Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame

Authors: Saeed Javaherzadeh, Babak Dindar Safa

Abstract:

Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software.

Keywords: added viscoelastic damper, design base shear, response modification factor, non-linear time history

Procedia PDF Downloads 441
2306 The Correlation between Head of Bed Angle and IntraAbdominal Pressure of Intubated Patients; a Pre-Post Clinical Trial

Authors: Sedigheh Samimian, Sadra Ashrafi, Tahereh Khaleghdoost Mohammadi, Mohammad Reza Yeganeh, Ali Ashraf, Hamideh Hakimi, Maryam Dehghani

Abstract:

Introduction: The recommended position for measuring Intra-Abdominal Pressure (IAP) is the supine position. However, patients put in this position are prone to Ventilator-associated pneumonia. This study was done to evaluate the relationship between bed head angle and IAP measurements of intubated patients in the intensive care unit. Methods: In this clinical trial, seventy-six critically ill patients under mechanical ventilation were enrolled. IAP measurement was performed every 8 hours for 24 hours using the KORN method in three different degrees of the head of bed (HOB) elevation (0°, 15°, and 30°). Bland-Altman analysis was performed to identify the bias and limits of agreement among the three HOBs. According to World Society of the Abdominal Compartment Syndrome (WSACS), we can consider two IAP techniques equivalent if a bias of <1 mmHg and limits of agreement of - 4 to +4 were found between them. Data were analyzed using SPSS statistical software (v. 19), and the significance level was considered as 0.05. Results: The prevalence of intra-abdominal hypertension was 18.42%. Mean ± standard deviation (SD) of IAP were 8.44 ± 4.02 mmHg for HOB angle 0°, 9.58 ± 4.52 for HOB angle 15°, and 11.10 ± 4.73 for HOB angle 30o (p = 0.0001). The IAP measurement bias between HOB angle 0◦ and HOB angle 15° was 1.13 mmHg. This bias was 2.66 mmHg between HOB angle 0° and HOB angle 30°. Conclusion: Elevation of HOB angle from 0 to 30 degree significantly increases IAP. It seems that the measurement of IAP at HOB angle 15° was more reliable than 30°.

Keywords: pressure, intra-abdominal hypertension, head of bed, critical care, compartment syndrome, supine position

Procedia PDF Downloads 70
2305 Development of Restricted Formula SAE Intake Manifold Using 1D and Flow Simulations Based on Track Analysis

Authors: Sahil Kapahi

Abstract:

A Formula SAE competition is characterized by typical track layouts having slaloms, tight corners and short straights, which favor a particular range of engine speed for a given set of gear ratios. Therefore, it is imperative that the power-train is optimized for the corresponding engine rpm band. This paper describes the process of designing, simulating and validating an air intake manifold for an inline four cylinder four-stroke internal combustion gasoline engine based on analysis of required vehicle performance. The requirements for the design of subject intake were set considering the rules of FSAE competitions and analysis of engine performance patterns for typical competition scenarios, carried out using OPTIMUMLAP software. Manifold geometry was optimized using results of air flow simulations performed on ANSYS CFX, and subsequent effect of this geometry on the engine was modeled using 1D simulation on Ricardo WAVE. A design was developed to meet the targeted performance standards in terms of engine torque output and volumetric efficiency. Finally, the intake manifold was manufactured and assembled onto the vehicle, and the engine output of the vehicle with the designed intake was studied using a dynamometer. The results of the dynamometer testing were then validated against predicted values derived from the Ricardo WAVE modeling and benefits to performance of the vehicle were established.

Keywords: 1 D Simulation, air flow simulation, ANSYS CFX, four-stroke engine, OPTIMUM LAP, Ricardo WAVE

Procedia PDF Downloads 246
2304 Effect of the Distance Between the Cold Surface and the Hot Surface on the Production of a Simple Solar Still

Authors: Hiba Akrout, Khaoula Hidouri, Béchir Chaouachi, Romdhane Ben Slama

Abstract:

A simple solar distiller has been constructed in order to desalt water via the solar distillation process. An experimental study has been conducted in June. The aim of this work is to study the effect of the distance between the cold condensing surface and the hot steam generation surface in order to optimize the geometric characteristics of a simple solar still. To do this, we have developed a mathematical model based on thermal and mass equations system. Subsequently, the equations system resolution has been made through a program developed on MATLAB software, which allowed us to evaluate the production of this system as a function of the distance separating the two surfaces. In addition, this model allowed us to determine the evolution of the humid air temperature inside the solar still as well as the humidity ratio profile all over the day. Simulations results show that the solar distiller production, as well as the humid air temperature, are proportional to the global solar radiation. It was also found that the air humidity ratio inside the solar still has a similar evolution of that of solar radiation. Moreover, the solar distiller average height augmentation, for constant water depth, induces the diminution of the production. However, increasing the water depth for a fixed average height of solar distiller reduces the production.

Keywords: distillation, solar energy, heat transfer, mass transfer, average height

Procedia PDF Downloads 144
2303 Integrating Microcontroller-Based Projects in a Human-Computer Interaction Course

Authors: Miguel Angel Garcia-Ruiz, Pedro Cesar Santana-Mancilla, Laura Sanely Gaytan-Lugo

Abstract:

This paper describes the design and application of a short in-class project conducted in Algoma University’s Human-Computer Interaction (HCI) course taught at the Bachelor of Computer Science. The project was based on the Maker Movement (people using and reusing electronic components and everyday materials to tinker with technology and make interactive applications), where students applied low-cost and easy-to-use electronic components, the Arduino Uno microcontroller board, software tools, and everyday objects. Students collaborated in small teams by completing hands-on activities with them, making an interactive walking cane for blind people. At the end of the course, students filled out a Technology Acceptance Model version 2 (TAM2) questionnaire where they evaluated microcontroller boards’ applications in HCI classes. We also asked them about applying the Maker Movement in HCI classes. Results showed overall students’ positive opinions and response about using microcontroller boards in HCI classes. We strongly suggest that every HCI course should include practical activities related to tinkering with technology such as applying microcontroller boards, where students actively and constructively participate in teams for achieving learning objectives.

Keywords: maker movement, microcontrollers, learning, projects, course, technology acceptance

Procedia PDF Downloads 173
2302 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source

Authors: Baghdasaryan Marinka, Ulikyan Azatuhi

Abstract:

The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process.  Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.

Keywords: transition process, synchronous motor, excitation mode, regulator, reactive power

Procedia PDF Downloads 235
2301 The Influence of Hydrogen Addition to Natural Gas Networks on Gas Appliances

Authors: Yitong Xie, Chaokui Qin, Zhiguang Chen, Shuangqian Guo

Abstract:

Injecting hydrogen, a competitive carbon-free energy carrier, into existing natural gas networks has become a promising step toward alleviating global warming. Considering the differences in properties of hydrogen and natural gas, there is very little evidence showing how many degrees of hydrogen admixture can be accepted and how to adjust appliances to adapt to gas constituents' variation. The lack of this type of analysis provides more uncertainty in injecting hydrogen into networks because of the short the basis of burner design and adjustment. First, the properties of methane and hydrogen were compared for a comprehensive analysis of the impact of hydrogen addition to methane. As the main determinant of flame stability, the burning velocity was adopted for hydrogen addition analysis. Burning velocities for hydrogen-enriched natural gas with different hydrogen percentages and equivalence ratios were calculated by the software CHEMKIN. Interchangeability methods, including single index methods, multi indices methods, and diagram methods, were adopted to determine the limit of hydrogen percentage. Cooktops and water heaters were experimentally tested in the laboratory. Flame structures of different hydrogen percentages and equivalence ratios were observed and photographed. Besides, the change in heat efficiency, burner temperature, emission by hydrogen percentage, and equivalence ratio was studied. The experiment methodologies and results in this paper provide an important basis for the introduction of hydrogen into gas pipelines and the adjustment of gas appliances.

Keywords: hydrogen, methane, combustion, appliances, interchangeability

Procedia PDF Downloads 91
2300 Screening of Wheat Wild Relatives as a Gene Pool for Improved Photosynthesis in Wheat Breeding

Authors: Amanda J. Burridge, Keith J. Edwards, Paul A. Wilkinson, Tom Batstone, Erik H. Murchie, Lorna McAusland, Ana Elizabete Carmo-Silva, Ivan Jauregui, Tracy Lawson, Silvere R. M. Vialet-Chabrand

Abstract:

The rate of genetic progress in wheat production must be improved to meet global food security targets. However, past selection for domestication traits has reduced the genetic variation in modern wheat cultivars, a fact that could severely limit the future rate of genetic gain. The genetic variation in agronomically important traits for the wild relatives and progenitors of wheat is far greater than that of the current domesticated cultivars, but transferring these traits into modern cultivars is not straightforward. Between the elite cultivars of wheat, photosynthetic capacity is a key trait for which there is limited variation. Early screening of wheat wild relative and progenitors has shown differences in photosynthetic capacity and efficiency not only between wild relative species but marked differences between the accessions of each species. By identifying wild relative accessions with improved photosynthetic traits and characterising the genetic variation responsible, it is possible to incorporate these traits into advanced breeding programmes by wide crossing and introgression programmes. To identify the potential variety of photosynthetic capacity and efficiency available in the secondary and tertiary genepool, a wide scale survey was carried out for over 600 accessions from 80 species including those from the genus Aegilops, Triticum, Thinopyrum, Elymus, and Secale. Genotype data were generated for each accession using a ‘Wheat Wild Relative’ Single Nucleotide Polymorphism (SNP) genotyping array composed of 35,000 SNP markers polymorphic between wild relatives and elite hexaploid wheat. This genotype data was combined with phenotypic measurements such as gas exchange (CO₂, H₂O), chlorophyll fluorescence, growth, morphology, and RuBisCO activity to identify potential breeding material with enhanced photosynthetic capacity and efficiency. The data and associated analysis tools presented here will prove useful to anyone interested in increasing the genetic diversity in hexaploid wheat or the application of complex genotyping data to plant breeding.

Keywords: wheat, wild relatives, pre-breeding, genomics, photosynthesis

Procedia PDF Downloads 224
2299 Spreading Japan's National Image through China during the Era of Mass Tourism: The Japan National Tourism Organization’s Use of Sina Weibo

Authors: Abigail Qian Zhou

Abstract:

Since China has entered an era of mass tourism, there has been a fundamental change in the way Chinese people approach and perceive the image of other countries. With the advent of the new media era, social networking sites such as Sina Weibo have become a tool for many foreign governmental organizations to spread and promote their national image. Among them, the Japan National Tourism Organization (JNTO) was one of the first foreign official tourism agencies to register with Sina Weibo and actively implement communication activities. Due to historical and political reasons, cognition of Japan's national image by the Chinese has always been complicated and contradictory. However, since 2015, China has become the largest source of tourists visiting Japan. This clearly indicates that the broadening of Japan's national image in China has been effective and has value worthy of reference in promoting a positive Chinese perception of Japan and encouraging Japanese tourism. Within this context and using the method of content analysis in media studies through content mining software, this study analyzed how JNTO’s Sina Weibo accounts have constructed and spread Japan's national image. This study also summarized the characteristics of its content and form, and finally revealed the strategy of JNTO in building its international image. The findings of this study not only add a tourism-based perspective to traditional national image communications research, but also provide some reference for the effective international dissemination of national image in the future.

Keywords: national image, international communication, tourism, Japan, China

Procedia PDF Downloads 130
2298 Training Programmes at KwaZulu Natal, South Africa for Water Professionals to Enhance Water Management

Authors: Joshua Ikpimi, Dimeji Abe, Nonso Okoye, Gideon Ikpimi, Prince Idemudia

Abstract:

Training programmes are integral parts of development for employees to develop themselves and also to develop the organisation. Lack of training and inadequate training adversely affect the productivity in any organisation. Lack of training in the water sector can impair development and improper management of water. Training programs are given to water professionals, especially in a developing country like South Africa, to perform well in their day to day activities. The aim of this study was to evaluate the current training program in place for water professionals at KwaZulu Natal province of South Africa. The objectives were to determine the training programs that are suitable for their job descriptions and to determine the gaps with the training programs and to make recommendations on ways to improve the training programs. This study is a quantitative study which enabled an evaluation of training programs for KwaZulu Natal water professionals. The sample population was 120 professionals across all the cities and towns in KwaZulu Natal province. The water professionals were evaluated using structured questionnaire distributed to the respondents from September to December 2017. The data was analysed using R software. The study found that province has training programs that are valuable for their water professionals. However, involvement of some professionals in administrative activities was hindered by some inappropriate training. Many areas of improvement are suggested to the province in training its water professionals. Training was found to improve performance, commitment, motivation and staff retention of water professionals in the province.

Keywords: KwaZulu Natal, performance, training, water

Procedia PDF Downloads 189
2297 Assessment of the Effect of Building Materials on Energy Demand of Buildings in Jos: An Experimental and Numerical Approach

Authors: Zwalnan Selfa Johnson, Caleb Nanchen Nimyel, Gideon Duvuna Ayuba

Abstract:

Air conditioning accounts for a significant share of the overall energy consumed in residential buildings. Solar thermal gains in buildings account for a significant component of the air conditioning load in buildings. This study compares the solar thermal gain and air conditioning load of a proposed building design with a typical conventional building in the climatic conditions of Jos, Nigeria, using a combined experimental and computational method using TRNSYS software. According to the findings of this study, the proposed design building's annual average solar thermal gains are lower compared to the reference building's average solar heat gains. The study case building's decreased solar heat gain is mostly attributable to the lower temperature of the building zones because of the greater building volume and lower fenestration ratio (ratio external opening area to the area of the external walls). This result shows that the proposed building design adjusts to the local climate better than the standard conventional construction in Jos to maintain a suitable temperature within the building. This finding means that the air-conditioning electrical energy consumption per volume of the proposed building design will be lower than that of a conventional building design.

Keywords: solar heat gain, building zone, cooling energy, air conditioning, zone temperature

Procedia PDF Downloads 93
2296 Impacts on the Modification of a Two-Blade Mobile on the Agitation of Newtonian Fluids

Authors: Abderrahim Sidi Mohammed Nekrouf, Sarra Youcefi

Abstract:

Fluid mixing plays a crucial role in numerous industries as it has a significant impact on the final product quality and performance. In certain cases, the circulation of viscous fluids presents challenges, leading to the formation of stagnant zones. To overcome this issue, stirring devices are employed for fluid mixing. This study focuses on a numerical analysis aimed at understanding the behavior of Newtonian fluids when agitated by a two-blade agitator in a cylindrical vessel. We investigate the influence of the agitator shape on fluid motion. Bi-blade agitators of this type are commonly used in the food, cosmetic, and chemical industries to agitate both viscous and non-viscous liquids. Numerical simulations were conducted using Computational Fluid Dynamics (CFD) software to obtain velocity profiles, streamlines, velocity contours, and the associated power number. The obtained results were compared with experimental data available in the literature, validating the accuracy of our numerical approach. The results clearly demonstrate that modifying the agitator shape has a significant impact on fluid motion. This modification generates an axial flow that enhances the efficiency of the fluid flow. The various velocity results convincingly reveal that the fluid is more uniformly agitated with this modification, resulting in improved circulation and a substantial reduction in stagnant zones.

Keywords: Newtonian fluids, numerical modeling, two blade., CFD

Procedia PDF Downloads 78
2295 A Study on the Measurement of Spatial Mismatch and the Influencing Factors of “Job-Housing” in Affordable Housing from the Perspective of Commuting

Authors: Daijun Chen

Abstract:

Affordable housing is subsidized by the government to meet the housing demand of low and middle-income urban residents in the process of urbanization and to alleviate the housing inequality caused by market-based housing reforms. It is a recognized fact that the living conditions of the insured have been improved while constructing the subsidized housing. However, the choice of affordable housing is mostly in the suburbs, where the surrounding urban functions and infrastructure are incomplete, resulting in the spatial mismatch of "jobs-housing" in affordable housing. The main reason for this problem is that the residents of affordable housing are more sensitive to the spatial location of their residence, but their selectivity and controllability to the housing location are relatively weak, which leads to higher commuting costs. Their real cost of living has not been effectively reduced. In this regard, 92 subsidized housing communities in Nanjing, China, are selected as the research sample in this paper. The residents of the affordable housing and their commuting Spatio-temporal behavior characteristics are identified based on the LBS (location-based service) data. Based on the spatial mismatch theory, spatial mismatch indicators such as commuting distance and commuting time are established to measure the spatial mismatch degree of subsidized housing in different districts of Nanjing. Furthermore, the geographically weighted regression model is used to analyze the influencing factors of the spatial mismatch of affordable housing in terms of the provision of employment opportunities, traffic accessibility and supporting service facilities by using spatial, functional and other multi-source Spatio-temporal big data. The results show that the spatial mismatch of affordable housing in Nanjing generally presents a "concentric circle" pattern of decreasing from the central urban area to the periphery. The factors affecting the spatial mismatch of affordable housing in different spatial zones are different. The main reasons are the number of enterprises within 1 km of the affordable housing district and the shortest distance to the subway station. And the low spatial mismatch is due to the diversity of services and facilities. Based on this, a spatial optimization strategy for different levels of spatial mismatch in subsidized housing is proposed. And feasible suggestions for the later site selection of subsidized housing are also provided. It hopes to avoid or mitigate the impact of "spatial mismatch," promote the "spatial adaptation" of "jobs-housing," and truly improve the overall welfare level of affordable housing residents.

Keywords: affordable housing, spatial mismatch, commuting characteristics, spatial adaptation, welfare benefits

Procedia PDF Downloads 109
2294 Assessing the Risk of Condensation and Moisture Accumulation in Solid Walls: Comparing Different Internal Wall Insulation Options

Authors: David Glew, Felix Thomas, Matthew Brooke-Peat

Abstract:

Improving the thermal performance of homes is seen as an essential step in achieving climate change, fuel security, fuel poverty targets. One of the most effective thermal retrofits is to insulate solid walls. However, it has been observed that applying insulation to the internal face of solid walls reduces the surface temperature of the inner wall leaf, which may introduce condensation risk and may interrupt seasonal moisture accumulation and dissipation. This research quantifies the extent to which the risk of condensation and moisture accumulation in the wall increases (which can increase the risk of timber rot) following the installation of six different types of internal wall insulation. In so doing, it compares how risk is affected by both the thermal resistance, thickness, and breathability of the insulation. Thermal bridging, surface temperatures, condensation risk, and moisture accumulation are evaluated using hygrothermal simulation software before and after the thermal upgrades. The research finds that installing internal wall insulation will always introduce some risk of condensation and moisture. However, it identifies that risks were present prior to insulation and that breathable materials and insulation with lower resistance have lower risks than alternative insulation options. The implications of this may be that building standards that encourage the enhanced thermal performance of solid walls may be introducing moisture risks into homes.

Keywords: condensation risk, hygrothermal simulation, internal wall insulation, thermal bridging

Procedia PDF Downloads 161
2293 Cognitive Fusion and Obstacles to Valued Living: Beyond Pain-Specific Events in Chronic Pain

Authors: Sergio A. Carvalho, Jose Pinto-Gouveia, David Gillanders, Paula Castilho

Abstract:

The role of psychological processes has long been recognized as crucial factors in depressive symptoms in chronic pain (CP). Although some studies have explored the negative impact of being entangled with internal experiences (e.g., thoughts, emotions, physical sensations) – cognitive fusion, it is not extensively explored 1) whether these are pain-related or rather general difficult experiences, and 2) how they relate to experiencing obstacles in committing to valued actions. The current study followed a cross-sectional design in a sample of 231 participants with CP, in which a mediational model was tested through path analyses in AMOS software. The model presented a very good model fit (Χ²/DF = 1.161; CFI = .999; TLI = .996; RMSEA = .026, PCLOSE = .550.), and results showed that pain intensity was not directly related to depressive symptoms (β = .055; p = .239) but was mediated by cognitive fusion with both general and pain-related internal experiences (β = .181, 95%CI [.097; .271]; p = .015). Additionally, results showed that only general cognitive fusion (but not pain-specific fusion) was associated with experiencing obstacles to living a meaningful life, which mediated its impact on depressive symptoms (β = .197, 95%CI [.102; .307]; p = .001). Overall, this study adds on current literature by suggesting that psychological interventions to pain management should not be focused only on management of pain-related experiences, but also on developing more effective ways of relating to overall internal experiences.

Keywords: cognitive fusion, chronic pain, depressive symptoms, valued living

Procedia PDF Downloads 226
2292 Environmental Impact Assessment of Conventional Tyre Manufacturing Process

Authors: G. S. Dangayach, Gaurav Gaurav, Alok Bihari Singh

Abstract:

The popularity of vehicles in both industrialized and developing economies led to a rise in the production of tyres. People have become increasingly concerned about the tyre industry's possible environmental impact in the last two decades. The life cycle assessment (LCA) methodology was used to assess the environmental impacts of industrial tyres throughout their life cycle, which included four stages: manufacture, transportation, consumption, and end-of-life. The majority of prior studies focused on tyre recycling and disposal. Only a few studies have been conducted on the environmental impact of tyre production process. LCA methodology was employed to determine the environmental impact of tyre manufacture process (gate to gate) at an Indian firm. Comparative analysis was also conducted to identify the environmental hotspots in various stages of tire manufacturing. This study is limited to gate-to-gate analysis of manufacturing processes with the functional unit of a single tyre weighing 50 kg. GaBi software was used to do both qualitative and quantitative analysis. Different environmental impact indicators are measured in terms of CO2, SO2, NOx, GWP (global warming potential), AP (acidification potential), EP (eutrophication potential), POCP (photochemical oxidant formation potential), and HTP (toxic human potential). The results demonstrate that the major contributor to environmental pollution is electricity. The Banbury process has a very high negative environmental impact, which causes respiratory problems to workers and operators.

Keywords: life cycle assessment (LCA), environmental impact indicators, tyre manufacturing process, environmental impact assessment

Procedia PDF Downloads 152
2291 A Study on Design for Parallel Test Based on Embedded System

Authors: Zheng Sun, Weiwei Cui, Xiaodong Ma, Hongxin Jin, Dongpao Hong, Jinsong Yang, Jingyi Sun

Abstract:

With the improvement of the performance and complexity of modern equipment, automatic test system (ATS) becomes widely used for condition monitoring and fault diagnosis. However, the conventional ATS mainly works in a serial mode, and lacks the ability of testing several equipments at the same time. That leads to low test efficiency and ATS redundancy. Especially for a large majority of equipment under test, the conventional ATS cannot meet the requirement of efficient testing. To reduce the support resource and increase test efficiency, we propose a method of design for the parallel test based on the embedded system in this paper. Firstly, we put forward the general framework of the parallel test system, and the system contains a central management system (CMS) and several distributed test subsystems (DTS). Then we give a detailed design of the system. For the hardware of the system, we use embedded architecture to design DTS. For the software of the system, we use test program set to improve the test adaption. By deploying the parallel test system, the time to test five devices is now equal to the time to test one device in the past. Compared with the conventional test system, the proposed test system reduces the size and improves testing efficiency. This is of great significance for equipment to be put into operation swiftly. Finally, we take an industrial control system as an example to verify the effectiveness of the proposed method. The result shows that the method is reasonable, and the efficiency is improved up to 500%.

Keywords: parallel test, embedded system, automatic test system, automatic test system (ATS), central management system, central management system (CMS), distributed test subsystems, distributed test subsystems (DTS)

Procedia PDF Downloads 305
2290 Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)

Authors: Meltem Bolluk, Ismail Duman

Abstract:

Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion.

Keywords: amorphous boron, CVD, powder production, powder characterization

Procedia PDF Downloads 217
2289 Development of a Turbulent Boundary Layer Wall-pressure Fluctuations Power Spectrum Model Using a Stepwise Regression Algorithm

Authors: Zachary Huffman, Joana Rocha

Abstract:

Wall-pressure fluctuations induced by the turbulent boundary layer (TBL) developed over aircraft are a significant source of aircraft cabin noise. Since the power spectral density (PSD) of these pressure fluctuations is directly correlated with the amount of sound radiated into the cabin, the development of accurate empirical models that predict the PSD has been an important ongoing research topic. The sound emitted can be represented from the pressure fluctuations term in the Reynoldsaveraged Navier-Stokes equations (RANS). Therefore, early TBL empirical models (including those from Lowson, Robertson, Chase, and Howe) were primarily derived by simplifying and solving the RANS for pressure fluctuation and adding appropriate scales. Most subsequent models (including Goody, Efimtsov, Laganelli, Smol’yakov, and Rackl and Weston models) were derived by making modifications to these early models or by physical principles. Overall, these models have had varying levels of accuracy, but, in general, they are most accurate under the specific Reynolds and Mach numbers they were developed for, while being less accurate under other flow conditions. Despite this, recent research into the possibility of using alternative methods for deriving the models has been rather limited. More recent studies have demonstrated that an artificial neural network model was more accurate than traditional models and could be applied more generally, but the accuracy of other machine learning techniques has not been explored. In the current study, an original model is derived using a stepwise regression algorithm in the statistical programming language R, and TBL wall-pressure fluctuations PSD data gathered at the Carleton University wind tunnel. The theoretical advantage of a stepwise regression approach is that it will automatically filter out redundant or uncorrelated input variables (through the process of feature selection), and it is computationally faster than machine learning. The main disadvantage is the potential risk of overfitting. The accuracy of the developed model is assessed by comparing it to independently sourced datasets.

Keywords: aircraft noise, machine learning, power spectral density models, regression models, turbulent boundary layer wall-pressure fluctuations

Procedia PDF Downloads 135
2288 Development and Validation of Thermal Stability in Complex System ABDM has two ASIC by NISA and COMSOL Tools

Authors: A. Oukaira, A. Lakhssassi, O. Ettahri

Abstract:

To make a good thermal management in an ABDM (Adapter Board Detector Module) card, we must first control temperature and its gradient from the first step in the design of integrated circuits ASIC of our complex system. In this paper, our main goal is to develop and validate the thermal stability in order to get an idea of the flow of heat around the ASIC in transient and thus address the thermal issues for integrated circuits at the ABDM card. However, we need heat sources simulations for ABDM card to establish its thermal mapping. This led us to perform simulations at each ASIC that will allow us to understand the thermal ABDM map and find real solutions for each one of our complex system that contains 36 ABDM map, taking into account the different layers around ASIC. To do a transient simulation under NISA, we had to build a function of power modulation in time TIMEAMP. The maximum power generated in the ASIC is 0.6 W. We divided the power uniformly in the volume of the ASIC. This power was applied for 5 seconds to visualize the evolution and distribution of heat around the ASIC. The DBC (Dirichlet Boundary conditions) method was applied around the ABDM at 25°C and just after these simulations in NISA tool we will validate them by COMSOL tool, wich is a numerical calculation software for a modular finite element for modeling a wide variety of physical phenomena characterizing a real problem. It will also be a design tool with its ability to handle 3D geometries for complex systems.

Keywords: ABDM, APD, thermal mapping, complex system

Procedia PDF Downloads 264
2287 Comparative Study between Inertial Navigation System and GPS in Flight Management System Application

Authors: Othman Maklouf, Matouk Elamari, M. Rgeai, Fateh Alej

Abstract:

In modern avionics the main fundamental component is the flight management system (FMS). An FMS is a specialized computer system that automates a wide variety of in-flight tasks, reducing the workload on the flight crew to the point that modern civilian aircraft no longer carry flight engineers or navigators. The main function of the FMS is in-flight management of the flight plan using various sensors such as Global Positioning System (GPS) and Inertial Navigation System (INS) to determine the aircraft's position and guide the aircraft along the flight plan. GPS which is satellite based navigation system, and INS which generally consists of inertial sensors (accelerometers and gyroscopes). GPS is used to locate positions anywhere on earth, it consists of satellites, control stations, and receivers. GPS receivers take information transmitted from the satellites and uses triangulation to calculate a user’s exact location. The basic principle of an INS is based on the integration of accelerations observed by the accelerometers on board the moving platform, the system will accomplish this task through appropriate processing of the data obtained from the specific force and angular velocity measurements. Thus, an appropriately initialized inertial navigation system is capable of continuous determination of vehicle position, velocity and attitude without the use of the external information. The main objective of article is to introduce a comparative study between the two systems under different conditions and scenarios using MATLAB with SIMULINK software.

Keywords: flight management system, GPS, IMU, inertial navigation system

Procedia PDF Downloads 299
2286 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model

Procedia PDF Downloads 229
2285 Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, chemometrics, molecular modeling, molecular descriptors, QSPR

Procedia PDF Downloads 289
2284 Evolution of Approaches to Cost Calculation in the Conditions of the Modern Russian Economy

Authors: Elena Tkachenko, Vladimir Kokh, Alina Osipenko, Vladislav Surkov

Abstract:

The modern period of development of Russian economy is fraught with a number of problems related to limitations in the use of traditional planning and financial management tools. Restrictions in the use of foreign software when performing an order of the Russian Government, on the one hand, and sanctions limiting the support of the major ERP and MRP II systems in the Russian Federation, on the other hand, entail the necessity to appeal to the basics of developing budgeting and analysis systems for industrial enterprises. Thus, cost calculation theory becomes the theoretical foundation for the development of industrial cost management systems. Based on the foregoing, it would be fair to make an assumption that the development of a working managerial accounting model on an industrial enterprise using an automated enterprise resource management system should rest upon the concept of the inevitability of alterations of business processes. On the other hand, optimized business processes make the architecture of financial analytics more transparent and permit the use of all the benefits of data cubes. The metrics and indicator slices provide online assessment of the state of key business processes at a given moment of time, which improves the quality of managerial decisions considerably. Therefore, the bilateral sanctions situation boosted the development of corporate business analytics and took industrial companies to the next level of understanding of business processes.

Keywords: cost culculation, ERP, OLAP, modern Russian economy

Procedia PDF Downloads 221
2283 Investigating the Factors Affecting the Innovation of Firms in Metropolitan Regions: The Case of Mashhad Metropolitan Region, Iran

Authors: Hashem Dadashpoor, Sadegh Saeidi Shirvan

Abstract:

While with the evolution of the economy towards a knowledge-based economy, innovation is a requirement for metropolitan regions, the adoption of an open innovation strategy is an option and a requirement for many industrial firms in these regions. Studies show that investing in research and development units cannot alone increase innovation. Within the framework of the theory of learning regions, this gap, which scholars call it the ‘innovation gap’, is filled with regional features of firms. This paper attempts to investigate the factors affecting the open innovation of firms in metropolitan regions, and it searches for these in territorial innovation models and, in particular, the theory of learning regions. In the next step, the effect of identified factors which is considered as regional learning factors in this research is analyzed on the innovation of sample firms by SPSS software using multiple linear regression. The case study of this research is constituted of industrial enterprises from two groups of food industry and auto parts in Toos industrial town in Mashhad metropolitan region. For data gathering of this research, interviews were conducted with managers of industrial firms using structured questionnaires. Based on this study, the effect of factors such as size of firms, inter-firm competition, the use of local labor force and institutional infrastructures were significant in the innovation of the firms studied, and 44% of the changes in the firms’ innovation occurred as a result of the change in these factors.

Keywords: regional knowledge networks, learning regions, interactive learning, innovation

Procedia PDF Downloads 179
2282 Statistical Analysis Approach for the e-Glassy Mortar And Radiation Shielding Behaviors Using Anova

Authors: Abadou Yacine, Faid Hayette

Abstract:

Significant investigations were performed on the use and impact on physical properties along with the mechanical strength of the recycled and reused E-glass waste powder. However, it has been modelled how recycled display e-waste glass may affect the characteristics and qualities of dune sand mortar. To be involved in this field, an investigation has been done with the substitution of dune sand for recycled E-glass waste and constant water-cement ratios. The linear relationship between the dune sand mortar and E-glass mortar mix % contributes to the model's reliability. The experimental data was exposed to regression analysis using JMP Statistics software. The regression model with one predictor presented the general form of the equation for the prediction of the five properties' characteristics of dune sand mortar from the substitution ratio of E-waste glass and curing age. The results illustrate that curing a long-term process produced an E-glass waste mortar specimen with the highest compressive strength of 68 MPa in the laboratory environment. Anova analysis indicated that the curing at long-term has the utmost importance on the sorptivity level and ultrasonic pulse velocity loss. Furthermore, the E-glass waste powder percentage has the utmost importance on the compressive strength and improvement in dynamic elasticity modulus. Besides, a significant enhancement of radiation-shielding applications.

Keywords: ANOVA analysis, E-glass waste, durability and sustainability, radiation-shielding

Procedia PDF Downloads 59
2281 Time and Energy Saving Kitchen Layout

Authors: Poonam Magu, Kumud Khanna, Premavathy Seetharaman

Abstract:

The two important resources of any worker performing any type of work at any workplace are time and energy. These are important inputs of the worker and need to be utilised in the best possible manner. The kitchen is an important workplace where the homemaker performs many essential activities. Its layout should be so designed that optimum use of her resources can be achieved.Ideally, the shape of the kitchen, as determined by the physical space enclosed by the four walls, can be square, rectangular or irregular. But it is the shape of the arrangement of counter that one normally refers to while talking of the layout of the kitchen. The arrangement can be along a single wall, along two opposite walls, L shape, U shape or even island. A study was conducted in 50 kitchens belonging to middle income group families. These were DDA built kitchens located in North, South, East and West Delhi.The study was conducted in three phases. In the first phase, 510 non working homemakers were interviewed. The data related to personal characteristics of the homemakers was collected. Additional information was also collected regarding the kitchens-the size, shape , etc. The homemakers were also questioned about various aspects related to meal preparation-people performing the task, number of items cooked, areas used for meal preparation , etc. In the second phase, a suitable technique was designed for conducting time and motion study in the kitchen while the meal was being prepared. This technique was called Path Process Chart. The final phase was carried out in 50 kitchens. The criterion for selection was that all items for a meal should be cooked at the same time. All the meals were cooked by the homemakers in their own kitchens. The meal preparation was studied using the Path Process Chart technique. The data collected was analysed and conclusions drawn. It was found that of all the shapes, it was the kitchen with L shape arrangement in which, on an average a homemaker spent minimum time on meal preparation and also travelled the minimum distance. Thus, the average distance travelled in a L shaped layout was 131.1 mts as compared to 181.2 mts in an U shaped layout. Similarly, 48 minutes was the average time spent on meal preparation in L shaped layout as compared to 53 minutes in U shaped layout. Thus, the L shaped layout was more time and energy saving layout as compared to U shaped.

Keywords: kitchen layout, meal preparation, path process chart technique, workplace

Procedia PDF Downloads 206
2280 Combating Malaria: A Drug Discovery Approach Using Thiazole Derivatives Against Prolific Parasite Enzyme PfPKG

Authors: Hari Bezwada, Michelle Cheon, Ryan Divan, Hannah Escritor, Michelle Kagramian, Isha Korgaonkar, Maya MacAdams, Udgita Pamidigantam, Richard Pilny, Eleanor Race, Angadh Singh, Nathan Zhang, LeeAnn Nguyen, Fina Liotta

Abstract:

Malaria is a deadly disease caused by the Plasmodium parasite, which continues to develop resistance to current antimalarial drugs. In this research project, the effectiveness of numerous thiazole derivatives was explored in inhibiting the PfPKG, a crucial part of the Plasmodium life cycle. This study involved the synthesis of six thiazole-derived amides to inhibit the PfPKG pathway. Nuclear Magnetic Resonance (NMR) spectroscopy and Infrared (IR) spectroscopy were used to characterize these compounds. Furthermore, AutoDocking software was used to predict binding affinities of these thiazole-derived amides in silico. In silico, compound 6 exhibited the highest predicted binding affinity to PfPKG, while compound 5 had the lowest affinity. Compounds 1-4 displayed varying degrees of predicted binding affinity. In-vitro, it was found that compound 4 had the best percent inhibition, while compound 5 had the worst percent inhibition. Overall, all six compounds had weak inhibition (approximately 30-39% at 10 μM), but these results provide a foundation for future drug discovery experiments.

Keywords: Medicinal Chemistry, Malaria, drug discovery, PfPKG, Thiazole, Plasmodium

Procedia PDF Downloads 98
2279 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: animal food, stochastic linear programming, aggregate planning, production planning, demand uncertainty

Procedia PDF Downloads 380
2278 Restoration of Digital Design Using Row and Column Major Parsing Technique from the Old/Used Jacquard Punched Cards

Authors: R. Kumaravelu, S. Poornima, Sunil Kumar Kashyap

Abstract:

The optimized and digitalized restoration of the information from the old and used manual jacquard punched card in textile industry is referred to as Jacquard Punch Card (JPC) reader. In this paper, we present a novel design and development of photo electronics based system for reading old and used punched cards and storing its binary information for transforming them into an effective image file format. In our textile industry the jacquard punched cards holes diameters having the sizes of 3mm, 5mm and 5.5mm pitch. Before the adaptation of computing systems in the field of textile industry those punched cards were prepared manually without digital design source, but those punched cards are having rich woven designs. Now, the idea is to retrieve binary information from the jacquard punched cards and store them in digital (Non-Graphics) format before processing it. After processing the digital format (Non-Graphics) it is converted into an effective image file format through either by Row major or Column major parsing technique.To accomplish these activities, an embedded system based device and software integration is developed. As part of the test and trial activity the device was tested and installed for industrial service at Weavers Service Centre, Kanchipuram, Tamilnadu in India.

Keywords: file system, SPI. UART, ARM controller, jacquard, punched card, photo LED, photo diode

Procedia PDF Downloads 167