Search results for: MOPA laser system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18325

Search results for: MOPA laser system

13645 Determination of Hydrocarbon Path Migration from Gravity Data Analysis (Ghadames Basin, Southern Tunisia, North Africa)

Authors: Mohamed Dhaoui, Hakim Gabtni

Abstract:

The migration of hydrocarbons is a fairly complicated process that depends on several parameters, both structural and sedimentological. In this study, we will try to determine secondary migration paths which convey hydrocarbon from their main source rock to the largest reservoir of the Paleozoic petroleum system of the Tunisian part of Ghadames basin. In fact, The Silurian source rock is the main source rock of the Paleozoic petroleum system of the Ghadames basin. However, the most solicited reservoir in this area is the Triassic reservoir TAGI (Trias Argilo-Gréseux Inférieur). Several geochemical studies have confirmed that oil products TAGI come mainly from the Tannezuft Silurian source rock. That being said that secondary migration occurs through the fault system which affects the post-Silurian series. Our study is based on analysis and interpretation of gravity data. The gravity modeling was conducted in the northern part of Ghadames basin and the Telemzane uplift. We noted that there is a close relationship between the location of producing oil fields and gravity gradients which separate the positive and negative gravity anomalies. In fact, the analysis and transformation of the Bouguer anomaly map, and the residual gravity map allowed as understanding the architecture of the Precambrian in the study area, thereafter gravimetric models were established allowed to determine the probable migration path.

Keywords: basement, Ghadames, gravity, hydrocarbon, migration path

Procedia PDF Downloads 373
13644 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network

Authors: Magdi. M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward, feedback control

Procedia PDF Downloads 707
13643 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 197
13642 A Survey on Ambient Intelligence in Agricultural Technology

Authors: C. Angel, S. Asha

Abstract:

Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds, and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.

Keywords: ambient intelligence, agricultural technology, smart agriculture, precise farming

Procedia PDF Downloads 611
13641 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 354
13640 Analysis of Legal System of Land Use in Archaeological Sites

Authors: Yen-Sheng Ho

Abstract:

It is important to actively adjust the legal system of land use in archaeological sites and the reward system to meet the needs of modern society and to solve the dilemma of government management. Under the principle of administration according to law and the principle of the clarity of law, human rights, legal orders and legitimate expectation shall be regulated. The Cultural Heritage Preservation Act has many norms related to archaeological sites in Taiwan. However, in practice, the preservation of archaeological sites still encounters many challenges. For instance, some archaeological sites have ‘management and maintenance plans’. The restrictions of land uses are not clearly defined making it difficult to determine how planting types and cultivation methods will impact the underground relics. In addition, there are questions as follows. How to coordinate the ‘site preservation plan’ with the Regional Planning Act and the Urban Planning Act? How to define preservation of land, preservation area and other uses of land or area? How to define land use in practice? How to control land use? After selecting three sites for the case investigation, this study will analyze the site’s land use status and propose the direction of land use and control methods. This study suggests that the prerequisite to limit the use of land is to determine the public interest in the preservation of the site. Another prerequisite is to establish a mechanism for permitting the use of the site and for setting the site preservation and zoning maintenance practices according to the Regional Planning Act, Urban Planning Act and other relevant rules, such as, land use zoning, land use control, land management, land maintenance, regional development and management and etc.

Keywords: archaeological site, land use and site preservation plan, regional planning, urban planning

Procedia PDF Downloads 280
13639 Development of a Framework for Assessment of Market Penetration of Oil Sands Energy Technologies in Mining Sector

Authors: Saeidreza Radpour, Md. Ahiduzzaman, Amit Kumar

Abstract:

Alberta’s mining sector consumed 871.3 PJ in 2012, which is 67.1% of the energy consumed in the industry sector and about 40% of all the energy consumed in the province of Alberta. Natural gas, petroleum products, and electricity supplied 55.9%, 20.8%, and 7.7%, respectively, of the total energy use in this sector. Oil sands mining and upgrading to crude oil make up most of the mining energy sector activities in Alberta. Crude oil is produced from the oil sands either by in situ methods or by the mining and extraction of bitumen from oil sands ore. In this research, the factors affecting oil sands production have been assessed and a framework has been developed for market penetration of new efficient technologies in this sector. Oil sands production amount is a complex function of many different factors, broadly categorized into technical, economic, political, and global clusters. The results of developed and implemented statistical analysis in this research show that the importance of key factors affecting on oil sands production in Alberta is ranked as: Global energy consumption (94% consistency), Global crude oil price (86% consistency), and Crude oil export (80% consistency). A framework for modeling oil sands energy technologies’ market penetration (OSETMP) has been developed to cover related technical, economic and environmental factors in this sector. It has been assumed that the impact of political and social constraints is reflected in the model by changes of global oil price or crude oil price in Canada. The market share of novel in situ mining technologies with low energy and water use are assessed and calculated in the market penetration framework include: 1) Partial upgrading, 2) Liquid addition to steam to enhance recovery (LASER), 3) Solvent-assisted process (SAP), also called solvent-cyclic steam-assisted gravity drainage (SC-SAGD), 4) Cyclic solvent, 5) Heated solvent, 6) Wedge well, 7) Enhanced modified steam and Gas push (emsagp), 8) Electro-thermal dynamic stripping process (ET-DSP), 9) Harris electro-magnetic heating applications (EMHA), 10) Paraffin froth separation. The results of the study will show the penetration profile of these technologies over a long term planning horizon.

Keywords: appliances efficiency improvement, diffusion models, market penetration, residential sector

Procedia PDF Downloads 336
13638 Advancing Hydrogen Production Through Additive Manufacturing: Optimising Structures of High Performance Electrodes

Authors: Fama Jallow, Melody Neaves, Professor Mcgregor

Abstract:

The quest for sustainable energy sources has driven significant interest in hydrogen production as a clean and efficient fuel. Alkaline water electrolysis (AWE) has emerged as a prominent method for generating hydrogen, necessitating the development of advanced electrode designs with improved performance characteristics. Additive manufacturing (AM) by laser powder bed fusion (LPBF) method presents an opportunity to tailor electrode microstructures and properties, enhancing their performance. This research proposes investigating the AM of electrodes with different lattice structures to optimize hydrogen production. The primary objective is to employ advanced modeling techniques to identify and select two optimal lattice structures for electrode fabrication. LPBF will be used to fabricate electrodes with precise control over lattice geometry, pore size, and distribution. The performance evaluation will encompass energy consumption and porosity analysis. AWE will assess energy efficiency, aiming to identify lattice structures with enhanced hydrogen production rates and reduced power requirements. Computed tomography (CT) scanning will analyze porosity to determine material integrity and mass transport characteristics. The research aims to bridge the gap between AM and hydrogen production by investigating lattice structures potential in electrode design. By systematically exploring lattice structures and their impact on performance, this study aims to provide valuable insights into the design and fabrication of highly efficient and cost-effective electrodes for AWE. The outcomes hold promise for advancing hydrogen production through AM. The research will have a significant impact on the development of sustainable energy sources. The findings from this study will help to improve the efficiency of AWE, making it a more viable option for hydrogen production. This could lead to a reduction in our reliance on fossil fuels, which would have a positive impact on the environment. The research is also likely to have a commercial impact. The findings could be used to develop new electrode designs that are more efficient and cost-effective. This could lead to the development of new hydrogen production technologies, which could have a significant impact on the energy market.

Keywords: hydrogen production, electrode, lattice structure, Africa

Procedia PDF Downloads 74
13637 Bearing Behavior of a Hybrid Monopile Foundation for Offshore Wind Turbines

Authors: Zicheng Wang

Abstract:

Offshore wind energy provides a huge potential for the expansion of renewable energies to the coastal countries. High demands are required concerning the shape and type of foundations for offshore wind turbines (OWTs) to find an economically, technically and environmentally-friendly optimal solution. A promising foundation concept is the hybrid foundation system, which consists of a steel plate attached to the outer side of a hollow steel pipe pile. In this study, the bearing behavior of a large diameter foundation is analyzed using a 3-dimensional finite element (FE) model. Non-linear plastic soil behavior is considered. The results of the numerical simulations are compared to highlight the priority of the hybrid foundation to the conventional monopile foundation.

Keywords: hybrid foundation system, mechanical parameters, plastic soil behaviors, numerical simulations

Procedia PDF Downloads 126
13636 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption

Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque

Abstract:

The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.

Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency

Procedia PDF Downloads 478
13635 Assessment of Occupational Health and Safety Conditions of Health Care Workers in Barangay Health Centers in a Selected City in Metro Manila

Authors: Deinzel R. Uezono, Vivien Fe F. Fadrilan-Camacho, Bianca Margarita L. Medina, Antonio Domingo R. Reario, Trisha M. Salcedo, Luke Wesley P. Borromeo

Abstract:

The environment of health care workers is considered one of the most hazardous settings due to the nature of their work. In developing countries especially, the Philippines, this continues to be overlooked in terms of programs and services on occupational health and safety (OHS). One possible reason for this is the existing information gap on OHS which limits data comparability and impairs effective monitoring and assessment of interventions. To address this gap, there is a need to determine the current conditions of Filipino health care workers in their workplace. This descriptive cross-sectional study assessed the occupational health and safety conditions of health care workers in barangay health centers in a selected city in Metro Manila, Philippines by: (1) determining the hazards present in the workplace; (2) determining the most common self-reported medical problems; and (3) describing the elements of an OHS system based on the six building blocks of health system. Assessment was done through walkthrough survey, self-administered questionnaire, and key informant interview. Data analysis was done using Epi Info 7 and NVivo 11. Results revealed different health hazards present in the workplace particularly biological hazards (exposure to sick patients and infectious specimens), physical hazards (inadequate space and/or lighting), chemical hazards (toxic reagents and flammable chemicals), and ergonomic hazards (activities requiring repetitive motion and awkward posture). Additionally, safety hazards (improper capping of syringe and lack of fire safety provisions) were also observed. Meanwhile, the most commonly self-reported chronic diseases among health care workers (N=336) were hypertension (20.24%, n=68) and diabetes (12.50%, n=42). Top commonly self-reported symptoms were colds (66.07%, n=222), coughs (63.10%, n=212), headache (55.65%, n=187), and muscle pain (50.60%, n=170) while other diseases were influenza (16.96%, n=57) and UTI (15.48%, n=52). In terms of the elements of the OHS system, a general policy on occupational health and safety was found to be lacking and in effect, an absence of health and safety committee overseeing the implementing and monitoring of the policy. No separate budget specific for OHS programs and services was also found to be a limitation. As a result, no OHS personnel and trainings/seminar were identified. No established information system for OHS was in place. In conclusion, health and safety hazards were observed to be present across the barangay health centers visited in a selected city in Metro Manila. Medical conditions identified as most commonly self-reported were hypertension and diabetes for chronic diseases; colds, coughs, headache, and muscle pain for medical symptoms; and influenza and UTI for other diseases. As for the elements of the occupational health and safety system, there was a lack in the general components of the six building blocks of the health system.

Keywords: health hazards, occupational health and safety, occupational health and safety system, safety hazards

Procedia PDF Downloads 191
13634 The Enhancement of Target Localization Using Ship-Borne Electro-Optical Stabilized Platform

Authors: Jaehoon Ha, Byungmo Kang, Kilho Hong, Jungsoo Park

Abstract:

Electro-optical (EO) stabilized platforms have been widely used for surveillance and reconnaissance on various types of vehicles, from surface ships to unmanned air vehicles (UAVs). EO stabilized platforms usually consist of an assembly of structure, bearings, and motors called gimbals in which a gyroscope is installed. EO elements such as a CCD camera and IR camera, are mounted to a gimbal, which has a range of motion in elevation and azimuth and can designate and track a target. In addition, a laser range finder (LRF) can be added to the gimbal in order to acquire the precise slant range from the platform to the target. Recently, a versatile functionality of target localization is needed in order to cooperate with the weapon systems that are mounted on the same platform. The target information, such as its location or velocity, needed to be more accurate. The accuracy of the target information depends on diverse component errors and alignment errors of each component. Specially, the type of moving platform can affect the accuracy of the target information. In the case of flying platforms, or UAVs, the target location error can be increased with altitude so it is important to measure altitude as precisely as possible. In the case of surface ships, target location error can be increased with obliqueness of the elevation angle of the gimbal since the altitude of the EO stabilized platform is supposed to be relatively low. The farther the slant ranges from the surface ship to the target, the more extreme the obliqueness of the elevation angle. This can hamper the precise acquisition of the target information. So far, there have been many studies on EO stabilized platforms of flying vehicles. However, few researchers have focused on ship-borne EO stabilized platforms of the surface ship. In this paper, we deal with a target localization method when an EO stabilized platform is located on the mast of a surface ship. Especially, we need to overcome the limitation caused by the obliqueness of the elevation angle of the gimbal. We introduce a well-known approach for target localization using Unscented Kalman Filter (UKF) and present the problem definition showing the above-mentioned limitation. Finally, we want to show the effectiveness of the approach that will be demonstrated through computer simulations.

Keywords: target localization, ship-borne electro-optical stabilized platform, unscented kalman filter

Procedia PDF Downloads 521
13633 A Novel Multi-Block Selective Mapping Scheme for PAPR Reduction in FBMC/OQAM Systems

Authors: Laabidi Mounira, Zayani Rafk, Bouallegue Ridha

Abstract:

Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC/OQAM) is presently known as a sustainable alternative to conventional Orthogonal Frequency Division Multiplexing (OFDM) for signal transmission over multi-path fading channels. Like all multicarrier systems, FBMC/OQAM suffers from high Peak to Average Power Ratio (PAPR). Due to the symbol overlap inherent in the FBMC/OQAM system, the direct application of conventional OFDM PAPR reduction scheme is far from being effective. This paper suggests a novel scheme termed Multi-Blocks Selective Mapping (MB-SLM) whose simulation results show that its performance in terms of PAPR reduction is almost identical to that of OFDM system.

Keywords: FBMC/OQAM, multi-blocks, OFDM, PAPR, SLM

Procedia PDF Downloads 465
13632 Outdoor Performances of Micro Scale Wind Turbine Stand Alone System

Authors: Ahmed. A. Hossam Eldin, Karim H. Youssef, Kareem M. AboRas

Abstract:

Recent current rapid industrial development and energy shortage are essential problems, which face most of the developing countries. Moreover, increased prices of fossil fuel and advanced energy conversion technology lead to the need for renewable energy resources. A study, modelling and simulation of an outdoor micro scale stand alone wind turbine was carried out. For model validation an experimental study was applied. In this research the aim was to clarify effects of real outdoor operating conditions and the instantaneous fluctuations of both wind direction and wind speed on the actual produced power. The results were compared with manufacturer’s data. The experiments were carried out in Borg Al-Arab, Alexandria. This location is on the north Western Coast of Alexandria. The results showed a real max output power for outdoor micro scale wind turbine, which is different from manufacturer’s value. This is due to the fact that the direction of wind speed is not the same as that of the manufacturer’s data. The measured wind speed and direction by the portable metrological weather station anemometer varied with time. The blade tail response could not change the blade direction at the same instant of the wind direction variation. Therefore, designers and users of micro scale wind turbine stand alone system cannot rely on the maker’s name plate data to reach the required power.

Keywords: micro-turbine, wind turbine, inverters, renewable energy, hybrid system

Procedia PDF Downloads 484
13631 Optimum Design of Attenuator of Spun-Bond Production System

Authors: Nasser Ghassembaglou, Abdullah Bolek, Oktay Yilmaz, Ertan Oznergiz, Hikmet Kocabas, Safak Yilmaz

Abstract:

Nanofibers are effective material which have frequently been investigated to produce high quality air filters. As an environmental approach our aim is to achieve nanofibers by melting. In spun-bond systems extruder, spin-pump, nozzle package and attenuator are used. Molten polymer which flows from extruder is made steady by spin-pump. Regular melt passes through nozzle holes and forms fibers under high pressure. The fibers pulled from nozzle are shrunk to micron size by an attenuator, after solidification they are collected on a conveyor. In this research different designs of attenuator system have been studied and also CFD analysis have been done on them. Afterwards, one of these designs tested and finally some optimizations have been done to reduce pressure loss and increase air velocity.

Keywords: attenuator, nanofiber, spun-bond, extruder

Procedia PDF Downloads 416
13630 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He

Abstract:

Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.

Keywords: liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation

Procedia PDF Downloads 330
13629 Optimization of Titanium Leaching Process Using Experimental Design

Authors: Arash Rafiei, Carroll Moore

Abstract:

Leaching process as the first stage of hydrometallurgy is a multidisciplinary system including material properties, chemistry, reactor design, mechanics and fluid dynamics. Therefore, doing leaching system optimization by pure scientific methods need lots of times and expenses. In this work, a mixture of two titanium ores and one titanium slag are used for extracting titanium for leaching stage of TiO2 pigment production procedure. Optimum titanium extraction can be obtained from following strategies: i) Maximizing titanium extraction without selective digestion; and ii) Optimizing selective titanium extraction by balancing between maximum titanium extraction and minimum impurity digestion. The main difference between two strategies is due to process optimization framework. For the first strategy, the most important stage of production process is concerned as the main stage and rest of stages would be adopted with respect to the main stage. The second strategy optimizes performance of more than one stage at once. The second strategy has more technical complexity compared to the first one but it brings more economical and technical advantages for the leaching system. Obviously, each strategy has its own optimum operational zone that is not as same as the other one and the best operational zone is chosen due to complexity, economical and practical aspects of the leaching system. Experimental design has been carried out by using Taguchi method. The most important advantages of this methodology are involving different technical aspects of leaching process; minimizing the number of needed experiments as well as time and expense; and concerning the role of parameter interactions due to principles of multifactor-at-time optimization. Leaching tests have been done at batch scale on lab with appropriate control on temperature. The leaching tank geometry has been concerned as an important factor to provide comparable agitation conditions. Data analysis has been done by using reactor design and mass balancing principles. Finally, optimum zone for operational parameters are determined for each leaching strategy and discussed due to their economical and practical aspects.

Keywords: titanium leaching, optimization, experimental design, performance analysis

Procedia PDF Downloads 377
13628 Experimenting with Error Performance of Systems Employing Pulse Shaping Filters on a Software-Defined-Radio Platform

Authors: Chia-Yu Yao

Abstract:

This paper presents experimental results on testing the symbol-error-rate (SER) performance of quadrature amplitude modulation (QAM) systems employing symmetric pulse-shaping square-root (SR) filters designed by minimizing the roughness function and by minimizing the peak-to-average power ratio (PAR). The device used in the experiments is the 'bladeRF' software-defined-radio platform. PAR is a well-known measurement, whereas the roughness function is a concept for measuring the jitter-induced interference. The experimental results show that the system employing minimum-roughness pulse-shaping SR filters outperforms the system employing minimum-PAR pulse-shaping SR filters in the sense of SER performance.

Keywords: pulse-shaping filters, FIR filters, jittering, QAM

Procedia PDF Downloads 344
13627 The Use of Random Set Method in Reliability Analysis of Deep Excavations

Authors: Arefeh Arabaninezhad, Ali Fakher

Abstract:

Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.

Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty

Procedia PDF Downloads 269
13626 Study on Environmental Capacity System of the Aged Care Villages Influenced by Tourists

Authors: Yuan Fang, Wang-Ming Li, Yi-Chen Ruan

Abstract:

Rural healthy old-age care for urban elderly who go to surrounding villages on vacation is a new mode of old-age care in developed coastal areas of China. Such villages that receive urban elderly can be called old-caring villages. Due to the popularity of healthy old-age care in rural areas, more and more urban elderly people participate in the ranks of rural old-age care, resulting in excessive number of tourists in some old-caring villages, exceeding the carrying capacity of the village. Excessive passenger flow may damage the ecological environment, social environment, and facilities environment of the village, and even affect the development potential of the village pension industry. On the basis of on-site investigation and questionnaire survey, this paper summarizes the willingness and behavioral characteristics of the urban elderly population and finds that it will have a certain impact on the old-caring villages in the process of pension vacation in the aspects of ecology, construction, society, and economy. According to the influence of tourists, the paper constructs a system of capacity restriction factors of the old-caring villages, which includes four types: ecological environment capacity, policy environment capacity, perceived congestion capacity, and village service capacity, and fourteen specific indicators. It will provide a theoretical basis for reasonable control of the development scale of the old-caring villages.

Keywords: old-caring villages, restriction factors system, tourists' influence, environmental capacity

Procedia PDF Downloads 152
13625 Build Information Systems Environment Clean Through the Sms Gateway

Authors: Lutpi Ginanjar

Abstract:

Environmental hygiene is indispensable for people to live healthy, safe and peaceful. In a small environment, the cleanliness of the environment is very easy to overcome, but on the larger environment requires a more complicated management and considerable investments. In general environmental hygiene are managed by the Department of Hygiene and Landscaper. Found a good management, but much less good management. The difficulties that are often encountered on waste management also caused public awareness itself. In addition, communities have difficulty in making a report about the rubbish because not dibangunnyasistem good information. Essai aims to build information systems environment clean especially the handling of waste in the city of Bandung, West Java province. The system was built with PHP software. Expected results obtained after the construction of the information system of environmental hygiene can be demonstrated to the community will be the health of the environment.

Keywords: information systems, SMS gateway, management, software, PHP

Procedia PDF Downloads 493
13624 Brazilian Transmission System Efficient Contracting: Regulatory Impact Analysis of Economic Incentives

Authors: Thelma Maria Melo Pinheiro, Guilherme Raposo Diniz Vieira, Sidney Matos da Silva, Leonardo Mendonça de Oliveira Queiroz, Mateus Sousa Pinheiro, Danyllo Wenceslau de Oliveira Lopes

Abstract:

The present article has the objective to describe the regulatory impact analysis (RIA) of the contracting efficiency of the Brazilian transmission system usage. This contracting is made by users connected to the main transmission network and is used to guide necessary investments to supply the electrical energy demand. Therefore, an inefficient contracting of this energy amount distorts the real need for grid capacity, affecting the sector planning accuracy and resources optimization. In order to provide this efficiency, the Brazilian Electricity Regulatory Agency (ANEEL) homologated the Normative Resolution (NR) No. 666, from July 23th of 2015, which consolidated the procedures for the contracting of transmission system usage and the contracting efficiency verification. Aiming for a more efficient and rational transmission system contracting, the resolution established economic incentives denominated as Inefficiency installment for excess (IIE) and inefficiency installment for over-contracting (IIOC). The first one, IIE, is verified when the contracted demand exceeds the established regulatory limit; it is applied to consumer units, generators, and distribution companies. The second one, IIOC, is verified when the distributors over-contract their demand. Thus, the establishment of the inefficiency installments IIE and IIOC intends to avoid the agent contract less energy than necessary or more than it is needed. Knowing that RIA evaluates a regulatory intervention to verify if its goals were achieved, the results from the application of the above-mentioned normative resolution to the Brazilian transmission sector were analyzed through indicators that were created for this RIA to evaluate the contracting efficiency transmission system usage, using real data from before and after the homologation of the normative resolution in 2015. For this, indicators were used as the efficiency contracting indicator (ECI), excess of demand indicator (EDI), and over-contracting of demand indicator (ODI). The results demonstrated, through the ECI analysis, a decrease of the contracting efficiency, a behaviour that was happening even before the normative resolution of 2015. On the other side, the EDI showed a considerable decrease in the amount of excess for the distributors and a small reduction for the generators; moreover, the ODI notable decreased, which optimizes the usage of the transmission installations. Hence, with the complete evaluation from the data and indicators, it was possible to conclude that IIE is a relevant incentive for a more efficient contracting, indicating to the agents that their contracting values are not adequate to keep their service provisions for their users. The IIOC also has its relevance, to the point that it shows to the distributors that their contracting values are overestimated.

Keywords: contracting, electricity regulation, evaluation, regulatory impact analysis, transmission power system

Procedia PDF Downloads 124
13623 Restructuring Cameroon's Educational System: The Value of Inclusive Education for Children with Visual Impairment

Authors: Samanta Tiague, Igor Michel Gachig

Abstract:

The practice of inclusive education within general education classrooms is becoming more prevalent in Cameroon. In this context, quality Education is an important driver of the development agenda in this era of global sustainable development. This requires that the Cameroon’s educational system be strategically restructured to provide every citizen with the needed quality education for sustainable development. This study thus examined the need for the restructuring of the Cameroon educational system towards inclusive education as a target of the Sustainable Development Goal #4 (Ensure Quality Education), from a critical disability theory perspective. Special focus was on the education of children with visual impairment in the early childhood classroom. This study is suggesting a model design of responsive and contextual inclusive education policies, and the provision of quality human, material and financial educational resources to support the improvement of curriculums and inclusive instructional strategies. This paper is therefore designed as a basic starting point for early childhood educators with limited to no experience in working with students having visual impairments. Ultimately, this work represents a contribution to early childhood educators toward understanding visual impairment challenges and innovative practices to approach accessibility in a meaningful way to students in Cameroon. This is important to achieve quality education due to the peculiar nature of the educational needs of children with visual impairment, toward attainment of the global sustainable development agenda.

Keywords: early childhood educators, inclusive education, sustainable development, visual impairment

Procedia PDF Downloads 155
13622 Performance Enhancement of Hybrid Racing Car by Design Optimization

Authors: Tarang Varmora, Krupa Shah, Karan Patel

Abstract:

Environmental pollution and shortage of conventional fuel are the main concerns in the transportation sector. Most of the vehicles use an internal combustion engine (ICE), powered by gasoline fuels. This results into emission of toxic gases. Hybrid electric vehicle (HEV) powered by electric machine and ICE is capable of reducing emission of toxic gases and fuel consumption. However to build HEV, it is required to accommodate motor and batteries in the vehicle along with engine and fuel tank. Thus, overall weight of the vehicle increases. To improve the fuel economy and acceleration, the weight of the HEV can be minimized. In this paper, the design methodology to reduce the weight of the hybrid racing car is proposed. To this end, the chassis design is optimized. Further, attempt is made to obtain the maximum strength with minimum material weight. The best configuration out of the three main configurations such as series, parallel and the dual-mode (series-parallel) is chosen. Moreover, the most suitable type of motor, battery, braking system, steering system and suspension system are identified. The racing car is designed and analyzed in the simulating software. The safety of the vehicle is assured by performing static and dynamic analysis on the chassis frame. From the results, it is observed that, the weight of the racing car is reduced by 11 % without compromising on safety and cost. It is believed that the proposed design and specifications can be implemented practically for manufacturing hybrid racing car.

Keywords: design optimization, hybrid racing car, simulation, vehicle, weight reduction

Procedia PDF Downloads 296
13621 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump

Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado

Abstract:

Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.

Keywords: water mass flow rate, R-744, heat pump, solar evaporator, water heater

Procedia PDF Downloads 177
13620 Thermophilic Anaerobic Granular Membrane Distillation Bioreactor for Wastewater Reuse

Authors: Duong Cong Chinh, Shiao-Shing Chen, Le Quang Huy

Abstract:

Membrane distillation (MD) is actually claimed to be a cost-effective separation process when waste heat, alternative energy sources, or wastewater are used. To the best of our knowledge, this is the first study that a thermophilic anaerobic granular bioreactor is integrated with membrane distillation (ThAnMDB) was investigated. In this study, the laboratory scale anaerobic bioreactor (1.2 litter) was set-up. The bioreactor was maintained at temperature 55 ± 2°C, hydraulic retention time = 0.5 days, organic loading rates of 7 and 10 kg chemical oxygen demand (COD) m³/day. Side-stream direct contact membrane distillation with the polytetrafluoroethylene membrane area was 150 cm². The temperature of the distillate was kept at 25°C. Results show that distillate flux was 19.6 LMH (Liters per square meter per hour) on the first day and gradually decreased to 6.9 LMH after 10 days, and the membrane was not wet. Notably, by directly using the heat from the thermophilic anaerobic for MD separation process, all distilled water from wastewater was reuse as fresh water (electrical conductivity < 120 µs/cm). The ThAnMDB system showed its high pollutant removal performance: chemical oxygen demand (COD) from 99.6 to 99.9%, NH₄⁺ from 60 to 95%, and PO₄³⁻ complete removal. In addition, methane yield was from 0.28 to 0.34 lit CH₄/gram COD removal (80 – 97% of the theoretical) demonstrated that the ThAnMDB system was quite stable. The achievement of the ThAnMDB is not only in removing pollutants and reusing wastewater but also in absolutely unnecessarily adding alkaline to the anaerobic bioreactor system.

Keywords: high rate anaerobic digestion, membrane distillation, thermophilic anaerobic, wastewater reuse

Procedia PDF Downloads 132
13619 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 74
13618 Toward the Decarbonisation of EU Transport Sector: Impacts and Challenges of the Diffusion of Electric Vehicles

Authors: Francesca Fermi, Paola Astegiano, Angelo Martino, Stephanie Heitel, Michael Krail

Abstract:

In order to achieve the targeted emission reductions for the decarbonisation of the European economy by 2050, fundamental contributions are required from both energy and transport sectors. The objective of this paper is to analyse the impacts of a largescale diffusion of e-vehicles, either battery-based or fuel cells, together with the implementation of transport policies aiming at decreasing the use of motorised private modes in order to achieve greenhouse gas emission reduction goals, in the context of a future high share of renewable energy. The analysis of the impacts and challenges of future scenarios on transport sector is performed with the ASTRA (ASsessment of TRAnsport Strategies) model. ASTRA is a strategic system-dynamic model at European scale (EU28 countries, Switzerland and Norway), consisting of different sub-modules related to specific aspects: the transport system (e.g. passenger trips, tonnes moved), the vehicle fleet (composition and evolution of technologies), the demographic system, the economic system, the environmental system (energy consumption, emissions). A key feature of ASTRA is that the modules are linked together: changes in one system are transmitted to other systems and can feed-back to the original source of variation. Thanks to its multidimensional structure, ASTRA is capable to simulate a wide range of impacts stemming from the application of transport policy measures: the model addresses direct impacts as well as second-level and third-level impacts. The simulation of the different scenarios is performed within the REFLEX project, where the ASTRA model is employed in combination with several energy models in a comprehensive Modelling System. From the transport sector perspective, some of the impacts are driven by the trend of electricity price estimated from the energy modelling system. Nevertheless, the major drivers to a low carbon transport sector are policies related to increased fuel efficiency of conventional drivetrain technologies, improvement of demand management (e.g. increase of public transport and car sharing services/usage) and diffusion of environmentally friendly vehicles (e.g. electric vehicles). The final modelling results of the REFLEX project will be available from October 2018. The analysis of the impacts and challenges of future scenarios is performed in terms of transport, environmental and social indicators. The diffusion of e-vehicles produces a consistent reduction of future greenhouse gas emissions, although the decarbonisation target can be achieved only with the contribution of complementary transport policies on demand management and supporting the deployment of low-emission alternative energy for non-road transport modes. The paper explores the implications through time of transport policy measures on mobility and environment, underlying to what extent they can contribute to a decarbonisation of the transport sector. Acknowledgements: The results refer to the REFLEX project which has received grants from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 691685.

Keywords: decarbonisation, greenhouse gas emissions, e-mobility, transport policies, energy

Procedia PDF Downloads 160
13617 Using Augmented Reality to Enhance Doctor Patient Communication

Authors: Rutusha Bhutada, Gaurav Chavan, Sarvesh Kasat, Varsha Mujumdar

Abstract:

This software system will be an Augmented Reality application designed to maximize the doctor’s productivity by providing tools to assist in automating the patient recognition and updating patient’s records using face and voice recognition features, which would otherwise have to be performed manually. By maximizing the doctor’s work efficiency and production, the application will meet the doctor’s needs while remaining easy to understand and use. More specifically, this application is designed to allow a doctor to manage his productive time in handling the patient without losing eye-contact with him and communicate with a group of other doctors for consultation, for in-place treatments through video streaming, as a video study. The system also contains a relational database containing a list of doctor, patient and display techniques.

Keywords: augmented reality, hand-held devices, head-mounted devices, marker based systems, speech recognition, face detection

Procedia PDF Downloads 439
13616 Flood Disaster Prevention and Mitigation in Nigeria Using Geographic Information System

Authors: Dinebari Akpee, Friday Aabe Gaage, Florence Fred Nwaigwu

Abstract:

Natural disasters like flood affect many parts of the world including developing countries like Nigeria. As a result, many human lives are lost, properties damaged and so much money is lost in infrastructure damages. These hazards and losses can be mitigated and reduced by providing reliable spatial information to the generality of the people through about flood risks through flood inundation maps. Flood inundation maps are very crucial for emergency action plans, urban planning, ecological studies and insurance rates. Nigeria experience her worst flood in her entire history this year. Many cities were submerged and completely under water due to torrential rainfall. Poor city planning, lack of effective development control among others contributes to the problem too. Geographic information system (GIS) can be used to visualize the extent of flooding, analyze flood maps to produce flood damaged estimation maps and flood risk maps. In this research, the under listed steps were taken in preparation of flood risk maps for the study area: (1) Digitization of topographic data and preparation of digital elevation model using ArcGIS (2) Flood simulation using hydraulic model and integration and (3) Integration of the first two steps to produce flood risk maps. The results shows that GIS can play crucial role in Flood disaster control and mitigation.

Keywords: flood disaster, risk maps, geographic information system, hazards

Procedia PDF Downloads 235