Search results for: initial teacher training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7977

Search results for: initial teacher training

3327 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.

Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite

Procedia PDF Downloads 247
3326 The Willingness and Action of Engineering Students in Career Choice: A Mixed-Method Research from the Perspective of the Rational Choice Theory

Authors: Juan Wang, Xiuxiu Wang, Di Wang

Abstract:

Engineers are an important force supporting the economic and social development of a country. As China has the largest scale of engineering education in the world, the career choice of engineering students will affect the contribution of human capital to national scientific and technological progress and economic development. A questionnaire survey shows the following: on the whole, the students surveyed were willing to engage in an engineering career, but their willingness needed to be enhanced, and their willingness was affected by such factors as their understanding of the value of the engineering career; the resources from individual benefits, resources from career and individual strengths. Also, based on in-depth interviews with some engineering students, it is found that engineering students’ career choice behaviors totally based on survival rationality, economic rationality, social rationality and other combinations. Based on this, policy support should be given to the enrollment, training, employment and other aspects of engineering education; improve the professional status and treatment of engineers through multiple measures; ensure a smooth career path to enhance the willingness of engineering students to choose careers.

Keywords: engineering students, career choice, engineer, human capital

Procedia PDF Downloads 9
3325 Probabilistic Seismic Loss Assessment of Reinforced Concrete (RC) Frame Buildings Pre- and Post-Rehabilitation

Authors: A. Flora, A. Di Lascio, D. Cardone, G. Gesualdi, G. Perrone

Abstract:

This paper considers the seismic assessment and retrofit of a pilotis-type RC frame building, which was designed for gravity loads only, prior to the introduction of seismic design provisions. Pilotis-type RC frame buildings, featuring an uniform infill throughout the height and an open ground floor, were, and still are, quite popular all over the world, as they offer large open areas very suitable for retail space at the ground floor. These architectural advantages, however, are of detriment to the building seismic behavior, as they can determine a soft-storey collapse mechanism. Extensive numerical analyses are carried out to quantify and benchmark the performance of the selected building, both in terms of overall collapse capacity and expected losses. Alternative retrofit strategies are then examined, including: (i) steel jacketing of RC columns and beam-column joints, (ii) steel bracing and (iv) seismic isolation. The Expected Annual Loss (EAL) of the selected case-study building, pre- and post-rehabilitation, is evaluated, following a probabilistic approach. The breakeven time of each solution is computed, comparing the initial cost of the retrofit intervention with expected benefit in terms of EAL reduction.

Keywords: expected annual loss, reinforced concrete buildings, seismic loss assessment, seismic retrofit

Procedia PDF Downloads 240
3324 Homogeneous Anti-Corrosion Coating of Spontaneously Dissolved Defect-Free Graphene

Authors: M. K. Bin Subhan, P. Cullen, C. Howard

Abstract:

A recent study by the World Corrosion Organization estimated that corrosion related damage causes $2.5tr worth of damage every year. As such, a low cost easily scalable solution is required to the corrosion problem which is economically viable. Graphene is an ideal anti-corrosion barrier layer material due to its excellent barrier properties and chemical stability, which makes it impermeable to all molecules. However, attempts to employ graphene as a barrier layer has been hampered by the fact that defect sites in graphene accelerate corrosion due to the inert nature of graphene which promotes galvanic corrosion at the expense of the metal. The recent discovery of spontaneous dissolution of charged graphite intercalation compounds in aprotic solvents enables defect free graphene platelets to be employed for anti-corrosion applications. These ‘inks’ of defect-free charged graphene platelets in solution can be coated onto a metallic surfaces via electroplating to form a homogeneous barrier layer. In this paper, initial data showing homogeneous coatings of graphene barrier layers on steel coupons via electroplating will be presented. This easily scalable technique also provides a controllable method for applying different barrier thicknesses from ultra thin layers to thick opaque coatings making it useful for a wide range of applications.

Keywords: anti-corrosion, defect-free, electroplating, graphene

Procedia PDF Downloads 131
3323 Assessment of Women Involvement in Fishing Activities: A Case Study of Epe and Ibeju Lekki LGA, Lagos

Authors: Temitope Adewale, Oladapo Raji

Abstract:

The study was designed to investigate the assessment of women's involvement in fishing. In order to give the study a direction, five research questions, as well as two hypotheses, were postulated, and a total of fifty (50) respondents each were selected from two local government areas for the study. This brings a total of one hundred (100) respondents selected from these local government areas in Lagos state. The outcome of the finding indicates that the percentage of the respondents’ age, 49% was between 31 and 35 years, 56% has a working experience of 6-10 years, 61% were married, 69% had secondary education as their educational level. However, findings show that socio-economic characteristics (x2 =15.504, df=6, p < 0.05) and income (r=0.83, p < 0.05) have a significant relationship on the fishing. It was established that the Women in Fish production/processing were faced with a lot of constraints such as high cost of inputs, inadequate electricity supply, lack of adequate capital, non-availability of the improved oven, non-availability of extension agents, inadequate fish landing, lack of transportation facilities, lack of training on financial management and loan acquisition which affected the level of output of women in Fish processing adversely.

Keywords: women, fishing, agriculture, Lagos

Procedia PDF Downloads 145
3322 An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses

Authors: Ki Ok Choi, Sung Ho Hong, Dong Suck Kim, Don Mook Choi

Abstract:

Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors.

Keywords: fire detector, rack, response characteristic, warehouse

Procedia PDF Downloads 745
3321 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network

Authors: Amit Verma, Pardeep Kaur

Abstract:

In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.

Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval

Procedia PDF Downloads 378
3320 Machine Learning Data Architecture

Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap

Abstract:

Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.

Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning

Procedia PDF Downloads 64
3319 Long Waves Inundating through and around an Array of Circular Cylinders

Authors: Christian Klettner, Ian Eames, Tristan Robinson

Abstract:

Tsunami is characterised by their very long time periods and can have devastating consequences when these inundate through built-up coastal regions as in the 2004 Indian Ocean and 2011 Tohoku Tsunami. This work aims to investigate the effect of these long waves on the flow through and around a group of buildings, which are abstracted to circular cylinders. The research approach used in this study was using experiments and numerical simulations. Large-scale experiments were carried out at HR Wallingford. The novelty of these experiments is (I) the number of bodies present (up to 64), (II) the long wavelength of the input waves (80 seconds) and (III) the width of the tank (4m) which gives the unique opportunity to investigate three length scales, namely the diameter of the building, the diameter of the array and the width of the tank. To complement the experiments, dam break flow past the same arrays is investigated using three-dimensional numerical simulations in OpenFOAM. Dam break flow was chosen as it is often used as a surrogate for the tsunami in previous research and is used here as there are well defined initial conditions and high quality previous experimental data for the case of a single cylinder is available. The focus of this work is to better understand the effect of the solid void fraction on the force and flow through and around the array. New qualitative and quantitative diagnostics are developed and tested to analyse the complex coupled interaction between the cylinders.

Keywords: computational fluid dynamics, tsunami, forces, complex geometry

Procedia PDF Downloads 195
3318 Covid Encephalopathy and New-Onset Seizures in the Context of a Prior Brain Abnormality: A Case Report

Authors: Omar Sorour, Michael Leahy, Thomas Irvine, Vladimir Koren

Abstract:

Introduction: Covid encephalitis is a rare yet dangerous complication, particularly affecting the older and immunocompromised. Symptoms range from confusion to delirium, coma, and seizures. Although neurological manifestations have become more well-characterized in COVID patients, little is known about whether priorneurological abnormalities may predispose patients to COVID encephalopathy. Case Description: A 73 y.o. male with a CT and MRI-confirmed stable, prior 9 mm cavernoma in the right frontal lobe and no past history of seizures was hospitalized with generalized weakness, abdominal pain, nausea, and shortness of breath with subsequent COVID pneumonia. Three days after the initial presentation, the patient developed a spontaneous generalized tonic-clonic seizure consistent with presumed COVID encephalitis, along with somnolence and confusion. A day later, the patient had two other seizure episodes. Follow-up EEG suggested an inter-ictal epileptic focus with sharp waves corresponding to roughly the same location as the patient’s pre-existing cavernoma. The patient’s seizures stopped shortly thereafter, while his encephalopathy continued for days. Conclusion: We illustrate that a pre-existing anatomic cortical abnormality may act as a potential nidus for new-onset seizure activity in the context of suggested COVID encephalopathy. Future studies may further demonstrate that manifestations of COVIDencephalopathy in certain patients may be more predictable than initially assumed.

Keywords: cavernoma, covid, encephalopathy, seizures

Procedia PDF Downloads 171
3317 Triangulations via Iterated Largest Angle Bisection

Authors: Yeonjune Kang

Abstract:

A triangulation of a planar region is a partition of that region into triangles. In the finite element method, triangulations are often used as the grid underlying a computation. In order to be suitable as a finite element mesh, a triangulation must have well-shaped triangles, according to criteria that depend on the details of the particular problem. For instance, most methods require that all triangles be small and as close to the equilateral shape as possible. Stated differently, one wants to avoid having either thin or flat triangles in the triangulation. There are many triangulation procedures, a particular one being the one known as the longest edge bisection algorithm described below. Starting with a given triangle, locate the midpoint of the longest edge and join it to the opposite vertex of the triangle. Two smaller triangles are formed; apply the same bisection procedure to each of these triangles. Continuing in this manner after n steps one obtains a triangulation of the initial triangle into 2n smaller triangles. The longest edge algorithm was first considered in the late 70’s. It was shown by various authors that this triangulation has the desirable properties for the finite element method: independently of the number of iterations the angles of these triangles cannot get too small; moreover, the size of the triangles decays exponentially. In the present paper we consider a related triangulation algorithm we refer to as the largest angle bisection procedure. As the name suggests, rather than bisecting the longest edge, at each step we bisect the largest angle. We study the properties of the resulting triangulation and prove that, while the general behavior resembles the one in the longest edge bisection algorithm, there are several notable differences as well.

Keywords: angle bisectors, geometry, triangulation, applied mathematics

Procedia PDF Downloads 401
3316 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is the coagulation using alum and poly aluminum chloride (PACL), and the value of usage per day is a hundred thousand baht. Therefore, determining the dosage of alum and PACL are the most important factors to be prescribed. Water production is economical and valuable. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for prediction chemical dose used to coagulation such as alum and PACL, which input data consists of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of Bangkhen water treatment plant (BKWTP) Metropolitan Waterworks Authority. The data collected from 1 January 2019 to 31 December 2019 cover changing seasons of Thailand. The input data of ANN is divided into three groups training set, test set, and validation set, which the best model performance with a coefficient of determination and mean absolute error of alum are 0.73, 3.18, and PACL is 0.59, 3.21 respectively.

Keywords: soft jar test, jar test, water treatment plant process, artificial neural network

Procedia PDF Downloads 166
3315 The Impact of Text Modifications on Ethiopian Students’ Reading Comprehension and Motivation

Authors: Asefa Kenefergib, Dawit Amogne, Yinager Teklesellassie

Abstract:

A study investigated the effects of text modifications on reading comprehension and motivation among Ethiopian secondary school students. A total of 120 students participated, initially taking a reading comprehension pretest and completing a reading motivation questionnaire. Afterward, they were divided into three groups: control, simplified, and elaborated. Each group then took part in a reading comprehension posttest and another reading motivation questionnaire following an eight-week instructional intervention. Despite initial differences, both the simplified and elaborated text groups showed comparable levels of reading motivation and comprehension. The data were analyzed using SPSS version 25, with a one-way ANOVA used to assess the effectiveness of the modified texts in enhancing reading comprehension. The results indicated that the experimental groups performed significantly better on the posttest compared to the control group, suggesting that text modifications can positively influence students' comprehension skills. Furthermore, the impact of text modifications on student reading motivation was assessed using a one-way ANOVA. The findings revealed that both the elaborated and simplified text groups scored higher than the control group in various dimensions of reading motivation, including reading efficacy, curiosity, challenge, compliance, and reading work avoidance. However, the control and simplified groups had nearly similar mean scores in the dimension of reading competition. These results clearly demonstrate that modifying texts can enhance EFL learners' reading motivation and comprehension.

Keywords: simplification, elaboration, reading motivation, reading comprehension

Procedia PDF Downloads 39
3314 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification

Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract:

One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.

Keywords: malware detection, network security, targeted attack, computational intelligence

Procedia PDF Downloads 263
3313 VideoAssist: A Labelling Assistant to Increase Efficiency in Annotating Video-Based Fire Dataset Using a Foundation Model

Authors: Keyur Joshi, Philip Dietrich, Tjark Windisch, Markus König

Abstract:

In the field of surveillance-based fire detection, the volume of incoming data is increasing rapidly. However, the labeling of a large industrial dataset is costly due to the high annotation costs associated with current state-of-the-art methods, which often require bounding boxes or segmentation masks for model training. This paper introduces VideoAssist, a video annotation solution that utilizes a video-based foundation model to annotate entire videos with minimal effort, requiring the labeling of bounding boxes for only a few keyframes. To the best of our knowledge, VideoAssist is the first method to significantly reduce the effort required for labeling fire detection videos. The approach offers bounding box and segmentation annotations for the video dataset with minimal manual effort. Results demonstrate that the performance of labels annotated by VideoAssist is comparable to those annotated by humans, indicating the potential applicability of this approach in fire detection scenarios.

Keywords: fire detection, label annotation, foundation models, object detection, segmentation

Procedia PDF Downloads 7
3312 Individualized Emotion Recognition Through Dual-Representations and Ground-Established Ground Truth

Authors: Valentina Zhang

Abstract:

While facial expression is a complex and individualized behavior, all facial emotion recognition (FER) systems known to us rely on a single facial representation and are trained on universal data. We conjecture that: (i) different facial representations can provide different, sometimes complementing views of emotions; (ii) when employed collectively in a discussion group setting, they enable more accurate emotion reading which is highly desirable in autism care and other applications context sensitive to errors. In this paper, we first study FER using pixel-based DL vs semantics-based DL in the context of deepfake videos. Our experiment indicates that while the semantics-trained model performs better with articulated facial feature changes, the pixel-trained model outperforms on subtle or rare facial expressions. Armed with these findings, we have constructed an adaptive FER system learning from both types of models for dyadic or small interacting groups and further leveraging the synthesized group emotions as the ground truth for individualized FER training. Using a collection of group conversation videos, we demonstrate that FER accuracy and personalization can benefit from such an approach.

Keywords: neurodivergence care, facial emotion recognition, deep learning, ground truth for supervised learning

Procedia PDF Downloads 147
3311 The Theory and Practice of Translanguaging: Scope, Potential and Limitations in a Multilingual Urban Context

Authors: Luzia Dominguez

Abstract:

This paper explores the concept of ‘translanguaging’ and the relevance of its pedagogical application in the context of foreign language education in a multilingual urban environment. We review relevant literature discussing this theoretical concept, its scope, potential, and limitations when applied to the teaching of foreign languages. We then discuss its possible practical application in Welsh secondary schools, particularly in the most diverse areas of the Welsh capital, Cardiff (United Kingdom). The concept of translanguaging has evolved in scope, from its initial application in the teaching of Welsh and English in the Welsh bilingual context to finding a relevant space not only in the international arena of Sociolinguistics and language pedagogy but also being present in current Welsh educational policies and, presumably, practices. However, it is important to consider the actual pedagogical relevance of incorporating this concept into these policies, particularly in the teaching of Modern Foreign Languages. Additionally, it is important to examine any social factors that may influence the effectiveness of its application in the social context, in our case, a multilingual, ethnically diverse urban context. By analyzing these issues, we aim to explore possible teaching practices that could be pedagogically effective in applying the concept in Cardiff secondary schools.

Keywords: pedagogy, modern foreign languages, applied linguistics, sociolinguistics

Procedia PDF Downloads 55
3310 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 263
3309 Morphological Processing of Punjabi Text for Sentiment Analysis of Farmer Suicides

Authors: Jaspreet Singh, Gurvinder Singh, Prabhsimran Singh, Rajinder Singh, Prithvipal Singh, Karanjeet Singh Kahlon, Ravinder Singh Sawhney

Abstract:

Morphological evaluation of Indian languages is one of the burgeoning fields in the area of Natural Language Processing (NLP). The evaluation of a language is an eminent task in the era of information retrieval and text mining. The extraction and classification of knowledge from text can be exploited for sentiment analysis and morphological evaluation. This study coalesce morphological evaluation and sentiment analysis for the task of classification of farmer suicide cases reported in Punjab state of India. The pre-processing of Punjabi text involves morphological evaluation and normalization of Punjabi word tokens followed by the training of proposed model using deep learning classification on Punjabi language text extracted from online Punjabi news reports. The class-wise accuracies of sentiment prediction for four negatively oriented classes of farmer suicide cases are 93.85%, 88.53%, 83.3%, and 95.45% respectively. The overall accuracy of sentiment classification obtained using proposed framework on 275 Punjabi text documents is found to be 90.29%.

Keywords: deep neural network, farmer suicides, morphological processing, punjabi text, sentiment analysis

Procedia PDF Downloads 326
3308 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 240
3307 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs

Authors: Agastya Pratap Singh

Abstract:

This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.

Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications

Procedia PDF Downloads 26
3306 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System

Authors: Kaoutar Ben Azzou, Hanaa Talei

Abstract:

Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.

Keywords: automated recruitment, candidate screening, machine learning, human resources management

Procedia PDF Downloads 56
3305 Intermittent Demand Forecast in Telecommunication Service Provider by Using Artificial Neural Network

Authors: Widyani Fatwa Dewi, Subroto Athor

Abstract:

In a telecommunication service provider, quantity and interval of customer demand often difficult to predict due to high dependency on customer expansion strategy and technological development. Demand arrives when a customer needs to add capacity to an existing site or build a network in a new site. Because demand is uncertain for each period, and sometimes there is a null demand for several equipments, it is categorized as intermittent. This research aims to improve demand forecast quality in Indonesia's telecommunication service providers by using Artificial Neural Network. In Artificial Neural Network, the pattern or relationship within data will be analyzed using the training process, followed by the learning process as validation stage. Historical demand data for 36 periods is used to support this research. It is found that demand forecast by using Artificial Neural Network outperforms the existing method if it is reviewed on two criteria: the forecast accuracy, using Mean Absolute Deviation (MAD), Mean of the sum of the Squares of the Forecasting Error (MSE), Mean Error (ME) and service level which is shown through inventory cost. This research is expected to increase the reference for a telecommunication demand forecast, which is currently still limited.

Keywords: artificial neural network, demand forecast, forecast accuracy, intermittent, service level, telecommunication

Procedia PDF Downloads 165
3304 The Design of a Smartbrush Oral Health Installation for Aged Care Centres in Australia

Authors: Lukasz Grzegorz Broda, Taiwo Oseni, Andrew Stranieri, Rodrigo Marino, Ronelle Welton, Mark Yates

Abstract:

The oral health of residents in aged care centres in Australia is poor, contributing to infections, hospital admissions, and increased suffering. Although the use of electric toothbrushes has been deployed in many centres, smartbrushes that record and transmit information about brushing patterns and duration are not routinely deployed. Yet, the use of smartbrushes for aged care residents promises better oral care. Thus, a study aimed at investigating the appropriateness and suitability of a smartbrush for aged care residents is currently underway. Due to the peculiarity of the aged care setting, the incorporation of smartbrushes into residents’ care does require careful planning and design considerations. This paper describes an initial design process undertaken through the use of an actor to understand the important elements to be incorporated whilst installing a smartbrush for use in aged care settings. The design covers the configuration settings of the brush and app, including ergonomic factors related to brush and smartphone placement. A design science approach led to an installation re-design and a revised protocol for the planned study, the ultimate aim being to design installations to enhance perceived usefulness, ease of use, and attitudes towards the incorporation of smartbrushes for improving oral health care for aged care residents.

Keywords: smartbrush, applied computing, life and medical sciences, health informatics

Procedia PDF Downloads 171
3303 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 73
3302 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 502
3301 Performance Measurement of Logistics Systems for Thailand's Wholesales and Retails Industries by Data Envelopment Analysis

Authors: Pornpimol Chaiwuttisak

Abstract:

The study aims to compare the performance of the logistics for Thailand’s wholesale and retail trade industries (except motor vehicles, motorcycle, and stalls) by using data (data envelopment analysis). Thailand Standard Industrial Classification in 2009 (TSIC - 2009) categories that industries into sub-group no. 45: wholesale and retail trade (except for the repair of motor vehicles and motorcycles), sub-group no. 46: wholesale trade (except motor vehicles and motorcycles), and sub-group no. 47: retail trade (except motor vehicles and motorcycles. Data used in the study is collected by the National Statistical Office, Thailand. The study consisted of four input factors include the number of companies, the number of personnel in logistics, the training cost in logistics, and outsourcing logistics management. Output factor includes the percentage of enterprises having inventory management. The results showed that the average relative efficiency of small-sized enterprises equals to 27.87 percent and 49.68 percent for the medium-sized enterprises.

Keywords: DEA, wholesales and retails, logistics, Thailand

Procedia PDF Downloads 416
3300 A Study on the Effect of the Mindfulness and Cultivation of Wisdom as an Intervention Strategy for College Student Internet Addiction

Authors: P. C. Li, R. H. Feng, S. J. Chen, Y. J. Yu, Y. L. Chen, X. Y. Fan

Abstract:

The purpose of this study is to investigate the effect of mindfulness and wisdom comprehensive strategy intervention on addiction to the Internet of college students by engaging fourteen intensive full-day mindfulness-based wisdom retreat curriculum. Wisdom, one of the practice method from the threefold training. Internet addiction, a kind of impulse control disorder, which attract the attentions of society due to its high prevalence and harmfulness in the last decade. Therefore, the study of internet addiction intervention is urgent. Participants with internet addiction were Chinese college students and screened by internet addiction disorder diagnose questionnaire (IAD-DQ). A quasi-experimental pretest and posttest design was used as research design. The finding shows that the mindfulness-based wisdom intervention strategy appeared to be effective in reducing the Internet addiction. Moreover, semi-structure interview method was conducted and outcomes included five themes: the reduction of internet use, the increment of awareness on emotion, self-control, present concentration and better positive lifestyle, indicating that mindfulness could be an effective intervention for this group with internet addiction.

Keywords: mindfulness, internet addiction, wisdom comprehensive intervention, cognitive-behavior therapy

Procedia PDF Downloads 183
3299 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 146
3298 Small and Medium-Sized Enterprises in West African Semi-Arid Lands Facing Climate Change

Authors: Mamadou Diop, Florence Crick, Momadou Sow, Kate Elizabeth Gannon

Abstract:

Understanding SME leaders’ responses to climate is essential to cope with ongoing changes in temperature and rainfall. This study analyzes the response of SME leaders to the adverse effects of climate change in semi-arid lands (SAL) in Senegal. Based on surveys administrated to 161 SME leaders, this research shows that 91% of economic units are affected by climatic conditions, although 70% do not have a plan to deal with climate risks. Economic actors have striven to take measures to adapt. However, their efforts are limited by various obstacles accentuated by a lack of support from public authorities. In doing so, substantial political, institutional and financial efforts at national and local levels are needed to promote an enabling environment for economic actors to adapt. This will focus on information and training about the threats and opportunities related to global warming, the creation of an adaptation support fund to support local initiatives and the improvement of the institutional, regulatory and political framework.

Keywords: small and medium-sized enterprises, climate change, adaptation, semi-arid lands

Procedia PDF Downloads 208