Search results for: panel data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42434

Search results for: panel data analysis

37844 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz

Abstract:

More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 512
37843 Building Information Modeling-Based Information Exchange to Support Facilities Management Systems

Authors: Sandra T. Matarneh, Mark Danso-Amoako, Salam Al-Bizri, Mark Gaterell

Abstract:

Today’s facilities are ever more sophisticated and the need for available and reliable information for operation and maintenance activities is vital. The key challenge for facilities managers is to have real-time accurate and complete information to perform their day-to-day activities and to provide their senior management with accurate information for decision-making process. Currently, there are various technology platforms, data repositories, or database systems such as Computer-Aided Facility Management (CAFM) that are used for these purposes in different facilities. In most current practices, the data is extracted from paper construction documents and is re-entered manually in one of these computerized information systems. Construction Operations Building information exchange (COBie), is a non-proprietary data format that contains the asset non-geometric data which was captured and collected during the design and construction phases for owners and facility managers use. Recently software vendors developed add-in applications to generate COBie spreadsheet automatically. However, most of these add-in applications are capable of generating a limited amount of COBie data, in which considerable time is still required to enter the remaining data manually to complete the COBie spreadsheet. Some of the data which cannot be generated by these COBie add-ins is essential for facilities manager’s day-to-day activities such as job sheet which includes preventive maintenance schedules. To facilitate a seamless data transfer between BIM models and facilities management systems, we developed a framework that enables automated data generation using the data extracted directly from BIM models to external web database, and then enabling different stakeholders to access to the external web database to enter the required asset data directly to generate a rich COBie spreadsheet that contains most of the required asset data for efficient facilities management operations. The proposed framework is a part of ongoing research and will be demonstrated and validated on a typical university building. Moreover, the proposed framework supplements the existing body of knowledge in facilities management domain by providing a novel framework that facilitates seamless data transfer between BIM models and facilities management systems.

Keywords: building information modeling, BIM, facilities management systems, interoperability, information management

Procedia PDF Downloads 116
37842 Application of a Confirmatory Composite Model for Assessing the Extent of Agricultural Digitalization: A Case of Proactive Land Acquisition Strategy (PLAS) Farmers in South Africa

Authors: Mazwane S., Makhura M. N., Ginege A.

Abstract:

Digitalization in South Africa has received considerable attention from policymakers. The support for the development of the digital economy by the South African government has been demonstrated through the enactment of various national policies and strategies. This study sought to develop an index for agricultural digitalization by applying composite confirmatory analysis (CCA). Another aim was to determine the factors that affect the development of digitalization in PLAS farms. Data on the indicators of the three dimensions of digitalization were collected from 300 Proactive Land Acquisition Strategy (PLAS) farms in South Africa using semi-structured questionnaires. Confirmatory composite analysis (CCA) was employed to reduce the items into three digitalization dimensions and ultimately to a digitalization index. Standardized digitalization index scores were extracted and fitted to a linear regression model to determine the factors affecting digitalization development. The results revealed that the model shows practical validity and can be used to measure digitalization development as measures of fit (geodesic distance, standardized root mean square residual, and squared Euclidean distance) were all below their respective 95%quantiles of bootstrap discrepancies (HI95 values). Therefore, digitalization is an emergent variable that can be measured using CCA. The average level of digitalization in PLAS farms was 0.2 and varied significantly across provinces. The factors that significantly influence digitalization development in PLAS land reform farms were age, gender, farm type, network type, and cellular data type. This should enable researchers and policymakers to understand the level of digitalization and patterns of development, as well as correctly attribute digitalization development to the contributing factors.

Keywords: agriculture, digitalization, confirmatory composite model, land reform, proactive land acquisition strategy, South Africa

Procedia PDF Downloads 63
37841 The Effects of Street Network Layout on Walking to School

Authors: Ayse Ozbil, Gorsev Argin, Demet Yesiltepe

Abstract:

Data for this cross-sectional study were drawn from questionnaires conducted in 10 elementary schools (1000 students, ages 12-14) located in Istanbul, Turkey. School environments (1600 meter buffers around the school) were evaluated through GIS-based land-use data (parcel level land use density) and street-level topography. Street networks within the same buffers were evaluated by using angular segment analysis (Integration and Choice) implemented in Depthmap as well as two segment-based connectivity measures, namely Metric and Directional Reach implemented in GIS. Segment Angular Integration measures how accessible each space from all the others within the radius using the least angle measure of distance. Segment Angular Choice which measures how many times a space is selected on journeys between all pairs of origins and destinations. Metric Reach captures the density of streets and street connections accessible from each individual road segment. Directional Reach measures the extent to which the entire street network is accessible with few direction changes. In addition, socio-economic characteristics (annual income, car ownership, education-level) of parents, obtained from parental questionnaires, were also included in the analysis. It is shown that surrounding street network configuration is strongly associated with both walk-mode shares and average walking distances to/from schools when controlling for parental socio-demographic attributes as well as land-use compositions and topographic features in school environments. More specifically, findings suggest that the scale at which urban form has an impact on pedestrian travel is considerably larger than a few blocks around the school.

Keywords: Istanbul, street network layout, urban form, walking to/from school

Procedia PDF Downloads 408
37840 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models

Authors: Hadush Kidane Meresa

Abstract:

The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.

Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland

Procedia PDF Downloads 602
37839 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method

Authors: Dangut Maren David, Skaf Zakwan

Abstract:

Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.

Keywords: prognostics, data-driven, imbalance classification, deep learning

Procedia PDF Downloads 174
37838 Investigating Cloud Forensics: Challenges, Tools, and Practical Case Studies

Authors: Noha Badkook, Maryam Alsubaie, Samaher Dawood, Enas Khairallah

Abstract:

Cloud computing has introduced transformative benefits in data storage and accessibility while posing unique forensic challenges. This paper explores cloud forensics, focusing on investigating and analyzing evidence from cloud environments to address issues such as unauthorized data access, manipulation, and breaches. The research highlights the practical use of opensource forensic tools like Autopsy and Bulk Extractor in realworld scenarios, including unauthorized data sharing via Google Drive and the misuse of personal cloud storage for sensitive information leaks. This work underscores the growing importance of robust forensic procedures and accessible tools in ensuring data security and accountability in cloud ecosystems.

Keywords: cloud forensic, tools, challenge, autopsy, bulk extractor

Procedia PDF Downloads 0
37837 Injury Prevention among Construction Workers: A Case Study on Iranian Steel Bar Bending Workers

Authors: S. Behnam Asl, H. Sadeghi Naeini, L. Sadat Ensaniat, R. Khorshidian, S. Alipour, S. Behnam Asl

Abstract:

Nowadays, the construction industry is growing, especially among developing countries. Iran also has a critical role in these industries in terms of workers disorders. Work-related musculoskeletal disorders (WMSDs) account for 7% of the whole diseases in the society, which makes some limitations. One of the main factors which causes WMSDs is awkward posture. Steel bar bending is considered as one of the prominent performance among construction workers. In this case study, we aimed to find the major tasks of bar benders and the most important risk factors related to it. This study was carried out among twenty workers (18-45 years) as our volunteer samples in some construction sites with less than 6 floors in two regions of Tehran municipality. The data was gathered through in depth observation, interview and questionnaire. Also postural analysis was done by OWAS method. In another part of study we used NMQ for gathering some data about psychosocial effects of work related disorders. Our findings show that 64% of workers were not aware of work risks, about 59% of workers had troubles in their wrists, hands, especially workers who worked in steel bar bending. In 46% cases lower back pain was in prevalence. Considering gathered data and results, awkward postures and long term tasks and their duration are known as the main risk factors of WMSDs among construction workers, meaning that work-rest schedule and tools design should be reconsidered to make an ergonomic condition for the mentioned workers.

Keywords: bar benders, construction workers, musculoskeletal disorders (WMSDs), OWAS method

Procedia PDF Downloads 312
37836 Old Swimmers Tire Quickly: The Effect of Time on Quality of Thawed versus Washed Sperm

Authors: Emily Hamilton, Adiel Kahana, Ron Hauser, Shimi Barda

Abstract:

BACKGROUND: In the male fertility and sperm bank unit of Tel Aviv Sourasky medical center, women are treated with intrauterine insemination (IUI) using washed sperm from their partner or thawed sperm from a selected donor. In most cases, the women perform the IUI treatment in Sourasky, but sometimes they ask to undergo the insemination procedure in another clinic with their own fertility doctor. In these cases, the sperm sample is prepared at the Sourasky lab and the patient is inseminated after arriving to her doctor. Our laboratory has previously found that time negatively affects several parameters of thawed sperm, and we estimate that it has more severe and significant effect than on washed sperm. AIM: To examine the effect of time on the quality of washed sperm versus thawed sperm. METHODS: Sperm samples were collected from men referred for semen analysis. Each ejaculate was allowed to liquefy for at least 20 min at 37°C and analyzed for sperm motility and vitality percentage and DNA fragmentation index (Time 0). Subsequently, 1ml of the sample was divided into two parts, 1st part was washed only and the 2nd part was washed, frozen and thawed. Time 1 analysis occurred immediately after sperm washing or thawing. Time 2 analysis occurred 75 minutes after time 1. Statistical analysis was performed using Student t-test. P values<0.05 were considered significant. RESULTS: Preliminary data showed that time had a greater impact on the average percentages of sperm motility and vitality in thawed compared to washed sperm samples (26%±10% vs. 21%±10% and 21%±9% vs. 9%±10%, respectively). An additional trend towards increased average DNA fragmentation percentage in thawed samples compared to washed samples was observed (46%±18% vs. 25%±24%). CONCLUSION: Time negatively effects sperm quality. The effect is greater in thawed samples compared to fresh samples.

Keywords: ART, male fertility, sperm cryopreservation, sperm quality

Procedia PDF Downloads 194
37835 The Impact of Sports Employees' of Perceptions of Organizational Climate and Organizational Trust on Work Motivation

Authors: Bilal Okudan, Omur F. Karakullukcu, Yusuf Can

Abstract:

Work motivation is one of the fundamental elements that determine the attitudes and performance of employees towards work. In this sense, work motivation depends not only on individual and occupational factors but also on employees' perception of organizational climate and organizational trust. Organizations that are aware of this have begun to do more research on work motivation in recent years to ensure that employees have the highest possible performance. In this framework of the purpose of this study is to examine the effect of sports employees' perceptions of organizational climate and organizational trust on work motivation. In the study, it has also been analyzed if there is any significant difference in the department of sports services’ employees’ organizational climate and organizational trust perception, and work motivation levels in terms of gender, age, duty status, year of service and level of education. 278 sports managers, who work in the department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the organizational climate scale which was developed by Bilir (2005), organizational trusts scale developed by koksal (2012) and work motivation scale developed by Mottaz J. Clifford (1985) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, Pearson Correlation Analysis has been used for defining the correlation among organizational climate, organizational trust perceptions and work motivation levels in sports managers and regression analysis has been used to identify the effect of organizational climate and organizational trust on work motivation. T-test for binary grouping and ANOVA analysis have been used for more than binary groups in order to determine if there is any significant difference in the level of organizational climate, organizational trust perceptions and work motivations in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between the department of sports services’ employees’ organizational climate, organizational trust perceptions and work motivation levels. According to the results of the regression analysis; it is understood that the sports employees’ perception of organizational climate and organizational trust are two main factors which affects the perception of work motivation. Also, the results show that there is a significant difference in the level of organizational climate and organizational trust perceptions and work motivations of the department of sports services’ employees in terms of duty status, year of service, and level of education; however, the results reveal that there is no significant difference in terms of age groups and gender.

Keywords: sports manager, organizational climate, organizational trust, work motivation

Procedia PDF Downloads 242
37834 Effectiveness of Video Interventions for Perpetrators of Domestic Violence

Authors: Zeynep Turhan

Abstract:

Digital tools can improve knowledge and awareness of strategies and skills for healthy and respectful intimate relationships. The website of the Healthy and Respectful Relationship Program has been developed and included five key videos about how to build healthy intimate relationships. This study examined the perspectives about informative videos by focusing on how individuals learn new information or challenge their preconceptions or attitudes regarding male privilege and women's oppression. Five individuals who received no-contact orders and attended group intervention were the sample of this study. The observation notes were the major methodology examining how participants responded to video tools. The data analysis method was the interpretative phenomenological analysis. The results showed that many participants found the tools useful in learning the types of violence and communication strategies. Nevertheless, obstacles to implementing some techniques were found in their relationships. These digital tools might enhance healthy and respectful relationships despite some limitations.

Keywords: healthy relationship, digital tools, intimate partner violence, perpetrators, video interventions

Procedia PDF Downloads 95
37833 Production, Utilization and Marketing of Non-Timber Forest Products (NTFPs) in Ikwuano Local Government Area of Abia State, Nigeria

Authors: Nneka M. Chidieber-Mark, Roseline D. Ejike

Abstract:

Non-Timber Forest Products (NTFPs) have been described as all biological materials, other than timber extracted from natural and managed forests for human subsistence and economic activities. This study focused on the production, utilization and marketing of Non-Timber Forest Products (NTFPs) in Ikwuano Local Government Area of Abia State, Nigeria. A multistage sampling technique was adopted in the selection of respondents for the study. Data were from primary sources only. Data collected were analysed using descriptive statistical tools as well as Net Income Analysis. Results show that a vast number of plant based and animal based NTFPs exist in the study area. They are harvested and used for multiple purposes. NTFPs are a source of income for the indigenes that depend on it for their livelihood. Unsustainable production and harvesting as well as poor marketing information was among the constraints impeding the growth and development of NTFPs sub-sector in the study area.

Keywords: non-timber forest products, production, utilization, marketing

Procedia PDF Downloads 449
37832 EFL Learners' Attitudes towards the Proper Pronunciation of English and towards Podcasts as a Facilitator for Proper Pronunciation

Authors: Riam Almaqrn, Abdulrahman Alshabeb

Abstract:

The study aims to examine the attitudes of Saudi students of English towards proper pronunciation and towards podcasts as a facilitator for proper pronunciation. In order to fulfill the purpose of the study, twenty-three students participated in this study. The study used a questionnaire as the main data collection instrument. The questionnaire included two parts, one or proper pronunciation and the other for podcasts. Data analysis showed that the participants, in spite of the low rate of improvement in their pronunciation, had positive attitudes towards proper pronunciation of English. This outcome is compatible with previous studies` results that assert the fact that having a positive attitude towards a particular language and its speakers can improve pronunciation. As for podcasts, students received a total of five podcasts related to their listening and speaking textbook. At the end of the project, students showed high rate of acceptance for podcasts and positive attitudes towards them. The findings proved the usefulness of examining learners` attitudes towards new CALL applications before using them in a practical way. In the light of the findings, pedagogical implications and suggestions were presented for language instructors and academics.

Keywords: CALL, MALL, podcast, learning English

Procedia PDF Downloads 264
37831 Cost-Effectiveness Analysis of the Use of COBLATION™ Knee Chondroplasty versus Mechanical Debridement in German Patients

Authors: Ayoade Adeyemi, Leo Nherera, Paul Trueman, Antje Emmermann

Abstract:

Background and objectives: Radiofrequency (RF) generated plasma chondroplasty is considered a promising treatment alternative to mechanical debridement (MD) with a shaver. The aim of the study was to perform a cost-effectiveness analysis comparing costs and outcomes following COBLATION chondroplasty versus mechanical debridement in patients with knee pain associated with a medial meniscus tear and idiopathic ICRS grade III focal lesion of the medial femoral condyle from a payer perspective. Methods: A decision-analytic model was developed comparing economic and clinical outcomes between the two treatment options in German patients following knee chondroplasty. Revision rates based on the frequency of repeat arthroscopy, osteotomy and conversion to total knee replacement, reimbursement costs and outcomes data over a 4-year time horizon were extracted from published literature. One-way sensitivity analyses were conducted to assess uncertainties around model parameters. Threshold analysis determined the revision rate at which model results change. All costs were reported in 2016 euros, future costs were discounted at a 3% annual rate. Results: Over a 4 year period, COBLATION chondroplasty resulted in an overall net saving cost of €461 due to a lower revision rate of 14% compared to 48% with MD. Threshold analysis showed that both options were associated with comparable costs if COBLATION revision rate was assumed to increase up to 23%. The initial procedure costs for COBLATION were higher compared to MD and outcome scores were significantly improved at 1 and 4 years post-operation versus MD. Conclusion: The analysis shows that COBLATION chondroplasty is a cost-effective option compared to mechanical debridement in the treatment of patients with a medial meniscus tear and idiopathic ICRS grade III defect of the medial femoral condyle.

Keywords: COBLATION, cost-effectiveness, knee chondroplasty, mechanical debridement

Procedia PDF Downloads 394
37830 Using Hyperspectral Sensor and Machine Learning to Predict Water Potentials of Wild Blueberries during Drought Treatment

Authors: Yongjiang Zhang, Kallol Barai, Umesh R. Hodeghatta, Trang Tran, Vikas Dhiman

Abstract:

Detecting water stress on crops early and accurately is crucial to minimize its impact. This study aims to measure water stress in wild blueberry crops non-destructively by analyzing proximal hyperspectral data. The data collection took place in the summer growing season of 2022. A drought experiment was conducted on wild blueberries in the randomized block design in the greenhouse, incorporating various genotypes and irrigation treatments. Hyperspectral data ( spectral range: 400-1000 nm) using a handheld spectroradiometer and leaf water potential data using a pressure chamber were collected from wild blueberry plants. Machine learning techniques, including multiple regression analysis and random forest models, were employed to predict leaf water potential (MPa). We explored the optimal wavelength bands for simple differences (RY1-R Y2), simple ratios (RY1/RY2), and normalized differences (|RY1-R Y2|/ (RY1-R Y2)). NDWI ((R857 - R1241)/(R857 + R1241)), SD (R2188 – R2245), and SR (R1752 / R1756) emerged as top predictors for predicting leaf water potential, significantly contributing to the highest model performance. The base learner models achieved an R-squared value of approximately 0.81, indicating their capacity to explain 81% of the variance. Research is underway to develop a neural vegetation index (NVI) that automates the process of index development by searching for specific wavelengths in the space ratio of linear functions of reflectance. The NVI framework could work across species and predict different physiological parameters.

Keywords: hyperspectral reflectance, water potential, spectral indices, machine learning, wild blueberries, optimal bands

Procedia PDF Downloads 67
37829 Psoriasis Diagnostic Test Development: Exploratory Study

Authors: Salam N. Abdo, Orien L. Tulp, George P. Einstein

Abstract:

The purpose of this exploratory study was to gather the insights into psoriasis etiology, treatment, and patient experience, for developing psoriasis and psoriatic arthritis diagnostic test. Data collection methods consisted of a comprehensive meta-analysis of relevant studies and psoriasis patient survey. Established meta-analysis guidelines were used for the selection and qualitative comparative analysis of psoriasis and psoriatic arthritis research studies. Only studies that clearly discussed psoriasis etiology, treatment, and patient experience were reviewed and analyzed, to establish a qualitative data base for the study. Using the insights gained from meta-analysis, an existing psoriasis patient survey was modified and administered to collect additional data as well as triangulate the results. The hypothesis is that specific types of psoriatic disease have specific etiology and pathophysiologic pattern. The following etiology categories were identified: bacterial, environmental/microbial, genetic, immune, infectious, trauma/stress, and viral. Additional results, obtained from meta-analysis and confirmed by patient survey, were the common age of onset (early to mid-20s) and type of psoriasis (plaque; mild; symmetrical; scalp, chest, and extremities, specifically elbows and knees). Almost 70% of patients reported no prescription drug use due to severe side effects and prohibitive cost. These results will guide the development of psoriasis and psoriatic arthritis diagnostic test. The significant number of medical publications classified psoriatic arthritis disease as inflammatory of an unknown etiology. Thus numerous meta-analyses struggle to report any meaningful conclusions since no definitive results have been reported to date. Therefore, return to the basics is an essential step to any future meaningful results. To date, medical literature supports the fact that psoriatic disease in its current classification could be misidentifying subcategories, which in turn hinders the success of studies conducted to date. Moreover, there has been an enormous commercial support to pursue various immune-modulation therapies, thus following a narrow hypothesis/mechanism of action that is yet to yield resolution of disease state. Recurrence and complications may be considered unacceptable in a significant number of these studies. The aim of the ongoing study is to focus on a narrow subgroup of patient population, as identified by this exploratory study via meta-analysis and patient survey, and conduct an exhaustive work up, aiming at mechanism of action and causality before proposing a cure or therapeutic modality. Remission in psoriasis has been achieved and documented in medical literature, such as immune-modulation, phototherapy, various over-the-counter agents, including salts and tar. However, there is no psoriasis and psoriatic arthritis diagnostic test to date, to guide the diagnosis and treatment of this debilitating and, thus far, incurable disease. Because psoriasis affects approximately 2% of population, the results of this study may affect the treatment and improve the quality of life of a significant number of psoriasis patients, potentially millions of patients in the United States alone and many more millions worldwide.

Keywords: biologics, early diagnosis, etiology, immune disease, immune modulation therapy, inflammation skin disorder, phototherapy, plaque psoriasis, psoriasis, psoriasis classification, psoriasis disease marker, psoriasis diagnostic test, psoriasis marker, psoriasis mechanism of action, psoriasis treatment, psoriatic arthritis, psoriatic disease, psoriatic disease marker, psoriatic patient experience, psoriatic patient quality of life, remission, salt therapy, targeted immune therapy

Procedia PDF Downloads 118
37828 The Effect of Leadership Style on Employee Engagement in Ethiopian Airlines

Authors: Mahlet Nigussie Worku

Abstract:

The main purpose of this study was to examine the effects of different leadership styles on employee engagement in Ethiopian Airlines headquarters located in Addis Ababa. Specific objectives of the study were stated to examine the effects of five leadership styles, namely transformational, transactional, democratic, lassies fair and autocratic leadership styles on employees’ engagement. The study was conducted on 288 sample sizes, and a simple random sampling technique was employed. The quantitative findings were presented and analyzed by table, ANOVA, bivariate correlation and regression model through SPSS software version 23. Out of 288 total distributed questionnaires, 280 were returned, and 8 of the returned were rejected due to missing data, while the remaining 280 responses were used for data analysis. Data was analyzed using the Statistical Package for Social Sciences (SPSS). The study employed both descriptive and explanatory research design. Correlation and regression were used to analyze the relationship and its effect between leadership Style and employee engagement. The regression results showed that transformational, transactional and democratic leadership Styles have significant contributions to employee engagement. Similarly, the transformational, transactional land democratic leadership style had a positive and strong correlation with employee engagement. However, lassies-fair and autocratic leadership styles showed a negative and insignificant effect on employee engagement. Finally, based on the findings, workable recommendations and implications for further studies were forwarded.

Keywords: leadership, autocratic leadership style, democratic leadership style, employee engagement

Procedia PDF Downloads 98
37827 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems

Authors: Daniele Losanno, Giorgio Serino

Abstract:

This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.

Keywords: brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete frames

Procedia PDF Downloads 290
37826 Data Security and Privacy Challenges in Cloud Computing

Authors: Amir Rashid

Abstract:

Cloud Computing frameworks empower organizations to cut expenses by outsourcing computation resources on-request. As of now, customers of Cloud service providers have no methods for confirming the privacy and ownership of their information and data. To address this issue we propose the platform of a trusted cloud computing program (TCCP). TCCP empowers Infrastructure as a Service (IaaS) suppliers, for example, Amazon EC2 to give a shout box execution condition that ensures secret execution of visitor virtual machines. Also, it permits clients to bear witness to the IaaS supplier and decide if the administration is secure before they dispatch their virtual machines. This paper proposes a Trusted Cloud Computing Platform (TCCP) for guaranteeing the privacy and trustworthiness of computed data that are outsourced to IaaS service providers. The TCCP gives the deliberation of a shut box execution condition for a client's VM, ensuring that no cloud supplier's authorized manager can examine or mess up with its data. Furthermore, before launching the VM, the TCCP permits a client to dependably and remotely acknowledge that the provider at backend is running a confided in TCCP. This capacity extends the verification of whole administration, and hence permits a client to confirm the data operation in secure mode.

Keywords: cloud security, IaaS, cloud data privacy and integrity, hybrid cloud

Procedia PDF Downloads 299
37825 Exploring Time-Series Phosphoproteomic Datasets in the Context of Network Models

Authors: Sandeep Kaur, Jenny Vuong, Marcel Julliard, Sean O'Donoghue

Abstract:

Time-series data are useful for modelling as they can enable model-evaluation. However, when reconstructing models from phosphoproteomic data, often non-exact methods are utilised, as the knowledge regarding the network structure, such as, which kinases and phosphatases lead to the observed phosphorylation state, is incomplete. Thus, such reactions are often hypothesised, which gives rise to uncertainty. Here, we propose a framework, implemented via a web-based tool (as an extension to Minardo), which given time-series phosphoproteomic datasets, can generate κ models. The incompleteness and uncertainty in the generated model and reactions are clearly presented to the user via the visual method. Furthermore, we demonstrate, via a toy EGF signalling model, the use of algorithmic verification to verify κ models. Manually formulated requirements were evaluated with regards to the model, leading to the highlighting of the nodes causing unsatisfiability (i.e. error causing nodes). We aim to integrate such methods into our web-based tool and demonstrate how the identified erroneous nodes can be presented to the user via the visual method. Thus, in this research we present a framework, to enable a user to explore phosphorylation proteomic time-series data in the context of models. The observer can visualise which reactions in the model are highly uncertain, and which nodes cause incorrect simulation outputs. A tool such as this enables an end-user to determine the empirical analysis to perform, to reduce uncertainty in the presented model - thus enabling a better understanding of the underlying system.

Keywords: κ-models, model verification, time-series phosphoproteomic datasets, uncertainty and error visualisation

Procedia PDF Downloads 256
37824 A Topological Approach for Motion Track Discrimination

Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson

Abstract:

Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.

Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis

Procedia PDF Downloads 114
37823 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots

Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee

Abstract:

Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor (exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Keywords: inertial measurement unit, laser range finder, real-time recognition of the ground shape, proprioceptive sensor

Procedia PDF Downloads 287
37822 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 86
37821 Foreign Tourists’ Attitude toward Service Marketing Mix and Intention to Revisit in Boutique Hotel

Authors: Nattapong Techarattanased

Abstract:

This survey research aimed to study the influence of attitude in services, product, and marketing mix affected intention to revisit in boutique hotel of foreign travelers in Bangkok, Thailand. The total 400 sets of closed-ended questionnaires were utilized for conducting data from foreign tourists who come to boutique hotel and can communicate in English. The descriptive statistics and multiple regression analysis were used to analyze data. The research found that tourists’ attitude towards the service of check in and check out process, food and beverage, guest room and other facilities affected in opportunity of revisiting, recommending to others and possibility of revisiting in the future at 0.05 statistically significant levels. Tourists’ attitude towards service and marketing mix in term of people, physical evidence, price, process and channel of distribution could forecast intention to revisit in term of recommending to others and intention to revisit in the future at 0.05 statistically significant levels.

Keywords: boutique hotel, foreign tourists, intention to revisit, service marketing mix

Procedia PDF Downloads 247
37820 Risk Assessment Tools Applied to Deep Vein Thrombosis Patients Treated with Warfarin

Authors: Kylie Mueller, Nijole Bernaitis, Shailendra Anoopkumar-Dukie

Abstract:

Background: Vitamin K antagonists particularly warfarin is the most frequently used oral medication for deep vein thrombosis (DVT) treatment and prophylaxis. Time in therapeutic range (TITR) of the international normalised ratio (INR) is widely accepted as a measure to assess the quality of warfarin therapy. Multiple factors can affect warfarin control and the subsequent adverse outcomes including thromboembolic and bleeding events. Predictor models have been developed to assess potential contributing factors and measure the individual risk of these adverse events. These predictive models have been validated in atrial fibrillation (AF) patients, however, there is a lack of literature on whether these can be successfully applied to other warfarin users including DVT patients. Therefore, the aim of the study was to assess the ability of these risk models (HAS BLED and CHADS2) to predict haemorrhagic and ischaemic incidences in DVT patients treated with warfarin. Methods: A retrospective analysis of DVT patients receiving warfarin management by a private pathology clinic was conducted. Data was collected from November 2007 to September 2014 and included demographics, medical and drug history, INR targets and test results. Patients receiving continuous warfarin therapy with an INR reference range between 2.0 and 3.0 were included in the study with mean TITR calculated using the Rosendaal method. Bleeding and thromboembolic events were recorded and reported as incidences per patient. The haemorrhagic risk model HAS BLED and ischaemic risk model CHADS2 were applied to the data. Patients were then stratified into either the low, moderate, or high-risk categories. The analysis was conducted to determine if a correlation existed between risk assessment tool and patient outcomes. Data was analysed using GraphPad Instat Version 3 with a p value of <0.05 considered to be statistically significant. Patient characteristics were reported as mean and standard deviation for continuous data and categorical data reported as number and percentage. Results: Of the 533 patients included in the study, there were 268 (50.2%) female and 265 (49.8%) male patients with a mean age of 62.5 years (±16.4). The overall mean TITR was 78.3% (±12.7) with an overall haemorrhagic incidence of 0.41 events per patient. For the HAS BLED model, there was a haemorrhagic incidence of 0.08, 0.53, and 0.54 per patient in the low, moderate and high-risk categories respectively showing a statistically significant increase in incidence with increasing risk category. The CHADS2 model showed an increase in ischaemic events according to risk category with no ischaemic events in the low category, and an ischaemic incidence of 0.03 in the moderate category and 0.47 high-risk categories. Conclusion: An increasing haemorrhagic incidence correlated to an increase in the HAS BLED risk score in DVT patients treated with warfarin. Furthermore, a greater incidence of ischaemic events occurred in patients with an increase in CHADS2 category. In an Australian population of DVT patients, the HAS BLED and CHADS2 accurately predicts incidences of haemorrhage and ischaemic events respectively.

Keywords: anticoagulant agent, deep vein thrombosis, risk assessment, warfarin

Procedia PDF Downloads 263
37819 Administration Model for the College of Film, Television, Multimedia and Performing Arts, Suan Sunandha Rajabhat University

Authors: Somdech Rungsrisawat

Abstract:

The objective of this research was to investigate how to develop an appropriate management and administration model for the College of Film, Television, Multimedia and Performing Arts at Suan Sunandha Rajabhat University. A combination of qualitative and quantitative data collection and analysis methods was employed. The data collection was from the 8 experts who were the academic staff and entrepreneurs in films, television, multimedia and performing arts, and from 471 students studying in the communication arts field. The findings of this research paper presented the appropriate management and administration model for the College of Film, Television, Multimedia and Performing Arts, which depended on 3 factors: [i] the marketing management and the supporting facilities such as buildings, equipments and accessibility for students to the college; [ii] the competency of academic staff or lecturers and supporting staff; and [iii] career opportunities after graduation.

Keywords: educational institution management, educational management, learning resources, non-formal education, Thai qualifications framework for higher education

Procedia PDF Downloads 330
37818 A Multilevel Approach of Reproductive Preferences and Subsequent Behavior in India

Authors: Anjali Bansal

Abstract:

Reproductive preferences mainly deal with two questions: when a couple wants children and how many they want. Questions related to these desires are often included in the fertility surveys as they can provide relevant information on the subsequent behavior. The aim of the study is to observe whether respondent’s response to these questions changed over time or not. We also tried to identify socio- economic and demographic factors associated with the stability (or instability) of fertility preferences. For this purpose, we used IHDS1 (2004-05) and follow up survey IHDS2 (2011-12) data and applied bivariate, multivariate and multilevel repeated measure analysis to it to find the consistency between responses. From the analysis, we found that preferences of women changes over the course of time as from the bivariate analysis we have found that 52% of women are not consistent in their desired family size and huge inconsistency are found in desire to continue childbearing. To get a better overlook of these inconsistencies, we have computed Intra Class Correlation (ICC) which tries to explain the consistency between individuals on their fertility responses at two time periods. We also explored that husband’s desire for additional child specifically male offspring contribute to these variations. Our findings lead us to a cessation that in India, individuals fertility preferences changed over a seven-year time period as the Intra Class correlation comes out to be very small which explains the variations among individuals. Concerted efforts should be made, therefore, to educate people, and conduct motivational programs to promote family planning for family welfare.

Keywords: change, consistency, preferences, over time

Procedia PDF Downloads 166
37817 Contestation and Coexistence: An Exploratory Study of the Interactions between Formal and Informal Sectors within eThekwini City Centre

Authors: Mulaudzi Tshimbiluni Annah

Abstract:

South African city centres depict dynamic urban spaces which reflect complex interactions between multiple actors: the state, formal businesses and informal street traders, with each competing for territorial claims and spatial dominance. The objective of the study is exploring how space is contested, negotiated and occupied between formal and informal sectors, while consequently trying to understand the implication that this has on spatial planning and spatial justice. Through a case-study analysis of the eThekwini city centre, this research examines spatial arrangement, coexistence and conflicts that shape the urban fabric. The study employs spatial justice as a theoretical lens to highlight the inequalities that are embedded within urban planning policies and how street traders are resilient to the harsh restrictive spatial frameworks. Limited evidence is known about how urban planning frameworks can integrate informal street traders in city centres and recognize them as legitimate stakeholders. The study investigates how spatial planning frameworks can be reimagined to promote spatial justice and further facilitate coexistence between formal and informal stakeholders in city centres. Primary data collection included interviews with key stakeholders, while NVivo software was used to analyse the interview data. Observations were conducted through transect walks, which allowed for insight into the spatial dynamics and daily interactions. Visual representations were depicted using GIS mapping to show areas of contestation as well as areas where formal and informal activities intersect. Furthermore, secondary data from literature enabled a comparative analysis of similar case studies through precedent studies. The study revealed continuous contestation by formal businesses and the state, who are for the most part often prioritized by planning frameworks while street traders are often marginalized regardless of their contribution towards economic development. This study therefore proposes strategies for spatial planning that supports an integrative urban framework which ensures equitable access and also a reduction of the marginalization of street traders within urban spaces. This study aims to contribute to understanding urban coexistence and further advocates for spatial planning approaches that integrates informal street traders as legitimate actors in the urban landscape while fostering spatial justice within city centres.

Keywords: coexistence, contestation, integration, spatial justice, spatial planning, street traders

Procedia PDF Downloads 14
37816 Boredom in the Classroom: Sentiment Analysis on Teaching Practices and Related Outcomes

Authors: Elisa Santana-Monagas, Juan L. Núñez, Jaime León, Samuel Falcón, Celia Fernández, Rocío P. Solís

Abstract:

Students’ emotional experiences have been a widely discussed theme among researchers, proving a central role on students’ outcomes. Yet, up to now, far too little attention has been paid to teaching practices that negatively relate with students’ negative emotions in the higher education. The present work aims to examine the relationship between teachers’ teaching practices (i.e., students’ evaluations of teaching and autonomy support), the students’ feelings of boredom and agentic engagement and motivation in the higher education context. To do so, the present study incorporates one of the most popular tools in natural processing language to address students’ evaluations of teaching: sentiment analysis. Whereas most research has focused on the creation of SA models and assessing students’ satisfaction regarding teachers and courses to the author’s best knowledge, no research before has included results from SA into an explanatory model. A total of 225 university students (Mean age = 26.16, SD = 7.4, 78.7 % women) participated in the study. Students were enrolled in degree and masters’ studies at the faculty of Education of a public university of Spain. Data was collected using an online questionnaire students could access through a QR code they completed during a teaching period where the assessed teacher was not present. To assess students’ sentiments towards their teachers’ teaching, we asked them the following open-ended question: “If you had to explain a peer who doesn't know your teacher how he or she communicates in class, what would you tell them?”. Sentiment analysis was performed with Microsoft's pre-trained model. For this study, we relied on the probability of the students answer belonging to the negative category. To assess the reliability of the measure, inter-rater agreement between this NLP tool and one of the researchers, who independently coded all answers, was examined. The average pairwise percent agreement and the Cohen’s kappa were calculated with ReCal2. The agreement reached was of 90.8% and Cohen’s kappa .68, both considered satisfactory. To test the hypothesis relations a structural equation model (SEM) was estimated. Results showed that the model fit indices displayed a good fit to the data; χ² (134) = 351.129, p < .001, RMSEA = .07, SRMR = .09, TLI = .91, CFI = .92. Specifically, results show that boredom was negatively predicted by autonomy support practices (β = -.47[-.61, -.33]), whereas for the negative sentiment extracted from SET, this relation was positive (β = .23[.16, .30]). In other words, when students’ opinion towards their instructors’ teaching practices was negative, it was more likely for them to feel bored. Regarding the relations among boredom and student outcomes, results showed a negative predictive value of boredom on students’ motivation to study (β = -.46[-.63, -.29]) and agentic engagement (β = -.24[-.33, -.15]). Altogether, results show a promising future for sentiment analysis techniques in the field of education as they proved the usefulness of this tool when evaluating relations among teaching practices and student outcomes.

Keywords: sentiment analysis, boredom, motivation, agentic engagement

Procedia PDF Downloads 98
37815 The Impact of Vertical Velocity Parameter Conditions and Its Relationship with Weather Parameters in the Hail Event

Authors: Nadine Ayasha

Abstract:

Hail happened in Sukabumi (August 23, 2020), Sekadau (August 22, 2020), and Bogor (September 23, 2020), where this extreme weather phenomenon occurred in the dry season. This study uses the ERA5 reanalysis model data, it aims to examine the vertical velocity impact on the hail occurrence in the dry season, as well as its relation to other weather parameters such as relative humidity, streamline, and wind velocity. Moreover, HCAI product satellite data is used as supporting data for the convective cloud development analysis. Based on the results of graphs, contours, and Hovmoller vertical cut from ERA5 modeling, the vertical velocity values in the 925 Mb-300 Mb layer in Sukabumi, Sekadau, and Bogor before the hail event ranged between -1.2-(-0.2), -1.5-(-0.2), -1-0 Pa/s. A negative value indicates that there is an upward motion from the air mass that trigger the convective cloud growth, which produces hail. It is evidenced by the presence of Cumulonimbus cloud on HCAI product when the hail falls. Therefore, the vertical velocity has significant effect on the hail event. In addition, the relative humidity in the 850-700 Mb layer is quite wet, which ranges from 80-90%. Meanwhile, the streamline and wind velocity in the three regions show the convergence with slowing wind velocity ranging from 2-4 knots. These results show that the upward motion of the vertical velocity is enough to form the wet atmospheric humidity and form a convergence for the growth of the convective cloud, which produce hail in the dry season.

Keywords: hail, extreme weather, vertical velocity, relative humidity, streamline

Procedia PDF Downloads 159