Search results for: Deep learning based segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33305

Search results for: Deep learning based segmentation

28715 Deterioration Prediction of Pavement Load Bearing Capacity from FWD Data

Authors: Kotaro Sasai, Daijiro Mizutani, Kiyoyuki Kaito

Abstract:

Expressways in Japan have been built in an accelerating manner since the 1960s with the aid of rapid economic growth. About 40 percent in length of expressways in Japan is now 30 years and older and has become superannuated. Time-related deterioration has therefore reached to a degree that administrators, from a standpoint of operation and maintenance, are forced to take prompt measures on a large scale aiming at repairing inner damage deep in pavements. These measures have already been performed for bridge management in Japan and are also expected to be embodied for pavement management. Thus, planning methods for the measures are increasingly demanded. Deterioration of layers around road surface such as surface course and binder course is brought about at the early stages of whole pavement deterioration process, around 10 to 30 years after construction. These layers have been repaired primarily because inner damage usually becomes significant after outer damage, and because surveys for measuring inner damage such as Falling Weight Deflectometer (FWD) survey and open-cut survey are costly and time-consuming process, which has made it difficult for administrators to focus on inner damage as much as they have been supposed to. As expressways today have serious time-related deterioration within them deriving from the long time span since they started to be used, it is obvious the idea of repairing layers deep in pavements such as base course and subgrade must be taken into consideration when planning maintenance on a large scale. This sort of maintenance requires precisely predicting degrees of deterioration as well as grasping the present situations of pavements. Methods for predicting deterioration are determined to be either mechanical or statistical. While few mechanical models have been presented, as far as the authors know of, previous studies have presented statistical methods for predicting deterioration in pavements. One describes deterioration process by estimating Markov deterioration hazard model, while another study illustrates it by estimating Proportional deterioration hazard model. Both of the studies analyze deflection data obtained from FWD surveys and present statistical methods for predicting deterioration process of layers around road surface. However, layers of base course and subgrade remain unanalyzed. In this study, data collected from FWD surveys are analyzed to predict deterioration process of layers deep in pavements in addition to surface layers by a means of estimating a deterioration hazard model using continuous indexes. This model can prevent the loss of information of data when setting rating categories in Markov deterioration hazard model when evaluating degrees of deterioration in roadbeds and subgrades. As a result of portraying continuous indexes, the model can predict deterioration in each layer of pavements and evaluate it quantitatively. Additionally, as the model can also depict probability distribution of the indexes at an arbitrary point and establish a risk control level arbitrarily, it is expected that this study will provide knowledge like life cycle cost and informative content during decision making process referring to where to do maintenance on as well as when.

Keywords: deterioration hazard model, falling weight deflectometer, inner damage, load bearing capacity, pavement

Procedia PDF Downloads 393
28714 Attracting European Youths to STEM Education and Careers: A Pedagogical Approach to a Hybrid Learning Environment

Authors: M. Assaad, J. Mäkiö, T. Mäkelä, M. Kankaanranta, N. Fachantidis, V. Dagdilelis, A. Reid, C. R. del Rio, E. V. Pavlysh, S. V. Piashkun

Abstract:

To bring science and society together in Europe, thus increasing the continent’s international competitiveness, STEM (science, technology, engineering and mathematics) education must be more relatable to European youths in their everyday life. STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project researches and develops a hybrid educational environment with multi-level components that is being designed and developed based on a well-researched pedagogical framework, aiming to make STEM education more attractive to young people aged 10 to 18 years in this digital era. This environment combines social media components, robotic artefacts, and radio to educate, engage and increase students’ interest in STEM education and careers from a young age. Additionally, it offers educators the necessary modern tools to deliver STEM education in an attractive and engaging manner in or out of class. Moreover, it enables parents to keep track of their children’s education, and collaborate with their teachers on their development. Finally, the open platform allows businesses to invest in the growth of the youths’ talents and skills in line with the economic and labour market needs through entrepreneurial tools. Thus, universities, schools, teachers, students, parents, and businesses come together to complete a circle in which STEM becomes part of the daily life of youths through a hybrid educational environment that also prepares them for future careers.

Keywords: e-learning, entrepreneurship, pedagogy, robotics, serious gaming, social media, STEM education

Procedia PDF Downloads 377
28713 Enhancing Audience Engagement: Informal Music Learning During Classical Concerts

Authors: Linda Dusman, Linda Baker

Abstract:

The Bearman Study of Audience Engagement examined the potential for real-time music education during online symphony orchestra concerts. It follows on the promising results of a preliminary study of STEAM (Science, Technology, Engineering, Arts, and Mathematics) education during live concerts, funded by the National Science Foundation with the Baltimore Symphony Orchestra. For the Bearman Study, audience groups were recruited to attend two previously recorded concerts of the National Orchestral Institute (NOI) in 2020 or the Utah Symphony in 2021. They used a smartphone app called EnCue to present real-time program notes about the music being performed. Short notes along with visual information (photos and score fragments) were designed to provide historical, cultural, biographical, and theoretical information at specific moments in the music where that information would be most pertinent, generally spaced 2-3 minutes apart to avoid distraction. The music performed included Dvorak Symphony No. 8 and Mahler Symphony No. 5 at NOI, and Mendelssohn Scottish Symphony and Richard Strauss Metamorphosen with the Utah Symphony, all standard repertoire for symphony orchestras. During each phase of the study (2020 and 2021), participants were randomly assigned to use the app to view program notes during the first concert or to use the app during the second concert. A total of 139 participants (67 in 2020 and 72 in 2021) completed three online questionnaires, one before attending the first concert, one immediately after the concert, and the third immediately after the second concert. Questionnaires assessed demographic background, expertise in music, engagement during the concert, learning of content about the composers and the symphonies, and interest in the future use of the app. In both phases of the study, participants demonstrated that they learned content presented on the app, evidenced by the fact that their multiple-choice test scores were significantly higher when they used the app than when they did not. In addition, most participants indicated that using the app enriched their experience of the concert. Overall, they were very positive about their experience using the app for real-time learning and they expressed interest in using it in the future at both live and streaming concerts. Results confirmed that informal real-time learning during concerts is possible and can generate enhanced engagement and interest in classical music.

Keywords: audience engagement, informal education, music technology, real-time learning

Procedia PDF Downloads 205
28712 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines

Procedia PDF Downloads 362
28711 Statistical Shape Analysis of the Human Upper Airway

Authors: Ramkumar Gunasekaran, John Cater, Vinod Suresh, Haribalan Kumar

Abstract:

The main objective of this project is to develop a statistical shape model using principal component analysis that could be used for analyzing the shape of the human airway. The ultimate goal of this project is to identify geometric risk factors for diagnosis and management of Obstructive Sleep Apnoea (OSA). Anonymous CBCT scans of 25 individuals were obtained from the Otago Radiology Group. The airways were segmented between the hard-palate and the aryepiglottic fold using snake active contour segmentation. The point data cloud of the segmented images was then fitted with a bi-cubic mesh, and pseudo landmarks were placed to perform PCA on the segmented airway to analyze the shape of the airway and to find the relationship between the shape and OSA risk factors. From the PCA results, the first four modes of variation were found to be significant. Mode 1 was interpreted to be the overall length of the airway, Mode 2 was related to the anterior-posterior width of the retroglossal region, Mode 3 was related to the lateral dimension of the oropharyngeal region and Mode 4 was related to the anterior-posterior width of the oropharyngeal region. All these regions are subjected to the risk factors of OSA.

Keywords: medical imaging, image processing, FEM/BEM, statistical modelling

Procedia PDF Downloads 517
28710 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards the circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need for frequent maintenance of critical components. Maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for one year, and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for the efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia PDF Downloads 131
28709 The Spatial Classification of China near Sea for Marine Biodiversity Conservation Based on Bio-Geographical Factors

Authors: Huang Hao, Li Weiwen

Abstract:

Global biodiversity continues to decline as a result of global climate change and various human activities, such as habitat destruction, pollution, introduction of alien species and overfishing. Although there are connections between global marine organisms more or less, it is better to have clear geographical boundaries in order to facilitate the assessment and management of different biogeographical zones. And so area based management tools (ABMT) are considered as the most effective means for the conservation and sustainable use of marine biodiversity. On a large scale, the geographical gap (or barrier) is the main factor to influence the connectivity, diffusion, ecological and evolutionary process of marine organisms, which results in different distribution patterns. On a small scale, these factors include geographical location, geology, and geomorphology, water depth, current, temperature, salinity, etc. Therefore, the analysis on geographic and environmental factors is of great significance in the study of biodiversity characteristics. This paper summarizes the marine spatial classification and ABMTs used in coastal area, open oceans and deep sea. And analysis principles and methods of marine spatial classification based on biogeographic related factors, and take China Near Sea (CNS) area as case study, and select key biogeographic related factors, carry out marine spatial classification at biological region scale, ecological regionals scale and biogeographical scale. The research shows that CNS is divided into 5 biological regions by climate and geographical differences, the Yellow Sea, the Bohai Sea, the East China Sea, the Taiwan Straits, and the South China Sea. And the bioregions are then divided into 12 ecological regions according to the typical ecological and administrative factors, and finally the eco-regions are divided into 98 biogeographical units according to the benthic substrate types, depth, coastal types, water temperature, and salinity, given the integrity of biological and ecological process, the area of the biogeographical units is not less than 1,000 km². This research is of great use to the coastal management and biodiversity conservation for local and central government, and provide important scientific support for future spatial planning and management of coastal waters and sustainable use of marine biodiversity.

Keywords: spatial classification, marine biodiversity, bio-geographical, conservation

Procedia PDF Downloads 156
28708 Nurture Early for Optimal Nutrition: A Community-Based Randomized Controlled Trial to Improve Infant Feeding and Care Practices Using Participatory Learning and Actions Approach

Authors: Priyanka Patil, Logan Manikam

Abstract:

Background: The first 1000 days of life are a critical window and can result in adverse health consequences due to inadequate nutrition. South-Asian (SA) communities face significant health disparities, particularly in maternal and child health. Community-based interventions, often employing Participatory-Learning and Action (PLA) approaches, have effectively addressed health inequalities in lower-income nations. The aim of this study was to assess the feasibility of implementing a PLA intervention to improve infant feeding and care practices in SA communities living in London. Methods: Comprehensive analyses were conducted to assess the feasibility/fidelity of this pilot randomized controlled trial. Summary statistics were computed to compare key metrics, including participant consent rates, attendance, retention, intervention support, and perceived effectiveness, against predefined progression rules guiding toward a definitive trial. Secondary outcomes were analyzed, drawing insights from multiple sources, such as The Children’s-Eating-Behaviour Questionnaire (CEBQ), Parental-Feeding-Style Questionnaires (PFSQ), Food-diary, and the Equality-Impact-Assessment (EIA) tool. A video analysis of children's mealtime behavior trends was conducted. Feedback interviews were collected from study participants. Results: Process-outcome measures met predefined progression rules for a definitive trial, which deemed the intervention as feasible and acceptable. The secondary outcomes analysis revealed no significant changes in children's BMI z-scores. This could be attributed to the abbreviated follow-up period of 6 months, reduced from 12 months, due to COVID-19-related delays. CEBQ analysis showed increased food responsiveness, along with decreased emotional over/undereating. A similar trend was observed in PFSQ. The EIA tool found no potential discrimination areas, and video analysis revealed a decrease in force-feeding practices. Participant feedback revealed improved awareness and knowledge sharing. Conclusion: This study demonstrates that a co-adapted PLA intervention is feasible and well-received in optimizing infant-care practices among South-Asian community members in a high-income country. These findings highlight the potential of community-based interventions to enhance health outcomes, promoting health equity.

Keywords: child health, childhood obesity, community-based, infant nutrition

Procedia PDF Downloads 59
28707 Applying Dictogloss Technique to Improve Auditory Learners’ Writing Skills in Second Language Learning

Authors: Aji Budi Rinekso

Abstract:

There are some common problems that are often faced by students in writing. The problems are related to macro and micro skills of writing, such as incorrect spellings, inappropriate diction, grammatical errors, random ideas, and irrelevant supporting sentences. Therefore, it is needed a teaching technique that can solve those problems. Dictogloss technique is a teaching technique that involves listening practices. So, it is a suitable teaching technique for students with auditory learning style. Dictogloss technique comprises of four basic steps; (1) warm up, (2) dictation, (3) reconstruction and (4) analysis and correction. Warm up is when students find out about topics and do some preparatory vocabulary works. Then, dictation is when the students listen to texts read at normal speed by a teacher. The text is read by the teacher twice where at the first reading the students only listen to the teacher and at the second reading the students listen to the teacher again and take notes. Next, reconstruction is when the students discuss the information from the text read by the teacher and start to write a text. Lastly, analysis and correction are when the students check their writings and revise them. Dictogloss offers some advantages in relation to the efforts of improving writing skills. Through the use of dictogloss technique, students can solve their problems both on macro skills and micro skills. Easier to generate ideas and better writing mechanics are the benefits of dictogloss.

Keywords: auditory learners, writing skills, dictogloss technique, second language learning

Procedia PDF Downloads 149
28706 A Brief of Survey on Use of Videoconferencing in Teaching during Quarantine Conducted in Sao Paulo

Authors: Fernanda Laureti T. Ferreira, Kazuo Nishimoto

Abstract:

This paper presents a summary of the experience on videoconferencing tools that have been used to teach regular classes during this pandemic period in educational institutions in São Paulo, which tools and applications are most used and the challenges related to this mode of delivery. At this moment, the massive online education is not a choice of students or a structured development of education system, but a solution that emerged to attend urgent needs and it presents the opportunity to teach and learning available for the most students in this single time of social isolation that forced among others, this significant change for education, students, teachers, institutions and families. Distance education enables synchronous and asynchronous mode classes, and even though the current circumstances generate discomfort and uncertainty, on the other hand, there is a chance to promote a 'learning to learn'. The videoconference is a preferred choice of schools because synchronous mode to give more interaction between a group of students and teachers, but this mode requires specifics teacher competencies and skills, in addition to equipment and provision of adequate internet signal for all participants of the process. The approach is making use of known technical information about video conference tools and the results of search answered by a group of students, teachers, schools, and parents. The results presented refer to the perspectives of students and parents as respondents.

Keywords: distance education, interaction on education, online classes, synchronous e-learning, videoconference

Procedia PDF Downloads 127
28705 Performance Evaluation of Arrival Time Prediction Models

Authors: Bin Li, Mei Liu

Abstract:

Arrival time information is a crucial component of advanced public transport system (APTS). The advertisement of arrival time at stops can help reduce the waiting time and anxiety of passengers, and improve the quality of service. In this research, an experiment was conducted to compare the performance on prediction accuracy and precision between the link-based and the path-based historical travel time based model with the automatic vehicle location (AVL) data collected from an actual bus route. The research results show that the path-based model is superior to the link-based model, and achieves the best improvement on peak hours.

Keywords: bus transit, arrival time prediction, link-based, path-based

Procedia PDF Downloads 365
28704 The Effectiveness of Video Clips to Enhance Students’ Achievement and Motivation on History Learning and Facilitation

Authors: L. Bih Ni, D. Norizah Ag Kiflee, T. Choon Keong, R. Talip, S. Singh Bikar Singh, M. Noor Mad Japuni, R. Talin

Abstract:

The purpose of this study is to determine the effectiveness of video clips to enhance students' achievement and motivation towards learning and facilitating of history. We use narrative literature studies to illustrate the current state of the two art and science in focused areas of inquiry. We used experimental method. The experimental method is a systematic scientific research method in which the researchers manipulate one or more variables to control and measure any changes in other variables. For this purpose, two experimental groups have been designed: one experimental and one groups consisting of 30 lower secondary students. The session is given to the first batch using a computer presentation program that uses video clips to be considered as experimental group, while the second group is assigned as the same class using traditional methods using dialogue and discussion techniques that are considered a control group. Both groups are subject to pre and post-trial in matters that are handled by the class. The findings show that the results of the pre-test analysis did not show statistically significant differences, which in turn proved the equality of the two groups. Meanwhile, post-test analysis results show that there was a statistically significant difference between the experimental group and the control group at an importance level of 0.05 for the benefit of the experimental group.

Keywords: Video clips, Learning and Facilitation, Achievement, Motivation

Procedia PDF Downloads 157
28703 Enhancing Intercultural Competencies Through Digital Integration in South Africa

Authors: Naziema Begum Jappie

Abstract:

In higher education, particularly within South African universities engaged in regional and global collaborations, the integration of intercultural competencies into teaching, learning, and assessment is essential for student success. Intercultural competencies and the digital platform are intwined in the fabric of teaching, learning, and assessments for student success in higher education. These are integral to virtual learning and exchange within higher education, which are expected to develop these competencies. However, this is not always the case because these are not always explicitly integrated into the academic agenda. Despite the prevalence of international students and exchange programmes, there is often a lack of deliberate integration of these competencies into academic agendas, even for South African students from different cultural, ethnic and language groups. This research addresses this gap by examining the impact of infusing intercultural activities into both face-to-face and digital learning platforms. Adopting an intersectional perspective, the study recognizes how social identities interact to shape individuals' self-perceptions and experiences in a university. Methodologically, this study employs a mixed-methods approach, combining quantitative surveys and qualitative interviews to assess the effectiveness of integrating intercultural competencies into digital platforms. Surveys administered to students and faculty measure changes in intercultural skills and attitudes before and after the implementation of targeted interventions. In-depth interviews with participants will provide further insights into the qualitative aspects of these changes, including their experiences and perceptions of the integration process. The research evaluates whether the strategic integration of intercultural competencies into digital platforms enhances students' intercultural skills and social justice awareness. The findings provide valuable insights for higher education academics and internationalization practitioners seeking to develop effective strategies for cultivating intercultural competencies among students.

Keywords: digital platform, higher education, intercultural competencies, interventions

Procedia PDF Downloads 32
28702 Technology Enhanced Learning Using Virtual and Augmented Realities: An Applied Method to Improve the Animation Teaching Delivery

Authors: Rosana Marar, Edward Jaser

Abstract:

This paper presents a software solution to enhance the content and presentation of graphic design and animation related textbooks. Using augmented and virtual reality concepts, a mobile application is developed to improve the static material found in books. This allows users to interact with animated examples and tutorials using their mobile phones and stereoscopic 3D viewers which will enhance information delivery. The application is tested on Google Cardboard with visual content in 3D space. Evaluation of the proposed application demonstrates that it improved the readability of static content and provided new experiences to the reader.

Keywords: animation, augmented reality, google cardboard, interactive media, technology enhanced learning, virtual reality

Procedia PDF Downloads 187
28701 The Role of Extrovert and Introvert Personality in Second Language Acquisition

Authors: Fatma Hsain Ali Suliman

Abstract:

Personality plays an important role in acquiring a second language. For second language learners to make maximum progress with their own learning styles, their individual differences must be recognized and attended to. Personality is considered to be a pattern of unique characteristics that give a person’s behavior a kind of consistency and individuality. Therefore, the enclosed study, which is entitled “The Role of Personality in Second language Acquisition: Extroversion and Introversion”, tends to shed light on the relationship between learners’ personalities and second language acquisition process. In other words, it aims at drawing attention to how individual differences of students as being extroverts or introverts could affect the language acquisition process. As a literature review, this paper discusses the results of some studies concerning this issue as well as the point views of researchers and scholars who have focused on the effect of extrovert and introvert personality on acquiring a second language. To accomplish the goals of this study, which is divided into 5 chapters including introduction, review of related literature, research method and design, results and discussions and conclusions and recommendations, 20 students of English Department, Faculty of Arts, Misurata University, Libya were handed out a questionnaire to figure out the effect of their personalities on the learning process. Finally, to be more sure about the role of personality in a second language acquisition process, the same students who were given the questionnaire were observed in their ESL classes.

Keywords: second language acquisition, personality, extroversion, introversion, individual differences, language learning strategy, personality factors, psycho linguistics

Procedia PDF Downloads 682
28700 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 168
28699 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses

Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson

Abstract:

This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.

Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies

Procedia PDF Downloads 151
28698 Dual-Network Memory Model for Temporal Sequences

Authors: Motonobu Hattori

Abstract:

In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudo patterns. Because, temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.

Keywords: catastrophic forgetting, dual-network, temporal sequences, hippocampal

Procedia PDF Downloads 276
28697 Psychological Dominance During and Afterward of COVID-19 Impact of Online-Offline Educational Learning on Students

Authors: Afrin Jaman Bonny, Mehrin Jahan, Zannatul Ferdhoush, Mumenunnessa Keya, Md. Shihab Mahmud, Sharun Akter Khushbu, Sheak Rashed Haider Noori, Sheikh Abujar

Abstract:

In 2020, the SARS-CoV-2 pandemic had led all the educational institutions to move to online learning platforms to ensure safety as well as the continuation of learning without any disruption to students’ academic life. But after the reopening of those educational institutions suddenly in Bangladesh, it became a vital demand to observe students take on this decision and how much they are comfortable with the new habits. When all educational institutions were ordered to re-open after more than a year, data was collected from students of all educational levels. A Google Form was used to conduct this online survey, and a total of 565 students participated without being pressured. The survey reveals the students' preferences for online and offline education systems, as well as their mental health at the time including their behavior to get back to offline classes depending on getting vaccinated or not. After evaluating the findings, it is clear that respondents' choices vary depending on gender and educational level, with female and male participants experiencing various mental health difficulties and attitudes toward returning to offline classes. As a result of this study, the student’s overall perspective on the sudden reopening of their educational institutions has been analyzed.

Keywords: covid-19 epidemic, educational proceeding, university students, school/college students, physical activity, online platforms, mental health, psychological distress

Procedia PDF Downloads 217
28696 Using Artificial Intelligence Technology to Build the User-Oriented Platform for Integrated Archival Service

Authors: Lai Wenfang

Abstract:

Tthis study will describe how to use artificial intelligence (AI) technology to build the user-oriented platform for integrated archival service. The platform will be launched in 2020 by the National Archives Administration (NAA) in Taiwan. With the progression of information communication technology (ICT) the NAA has built many systems to provide archival service. In order to cope with new challenges, such as new ICT, artificial intelligence or blockchain etc. the NAA will try to use the natural language processing (NLP) and machine learning (ML) skill to build a training model and propose suggestions based on the data sent to the platform. NAA expects the platform not only can automatically inform the sending agencies’ staffs which records catalogues are against the transfer or destroy rules, but also can use the model to find the details hidden in the catalogues and suggest NAA’s staff whether the records should be or not to be, to shorten the auditing time. The platform keeps all the users’ browse trails; so that the platform can predict what kinds of archives user could be interested and recommend the search terms by visualization, moreover, inform them the new coming archives. In addition, according to the Archives Act, the NAA’s staff must spend a lot of time to mark or remove the personal data, classified data, etc. before archives provided. To upgrade the archives access service process, the platform will use some text recognition pattern to black out automatically, the staff only need to adjust the error and upload the correct one, when the platform has learned the accuracy will be getting higher. In short, the purpose of the platform is to deduct the government digital transformation and implement the vision of a service-oriented smart government.

Keywords: artificial intelligence, natural language processing, machine learning, visualization

Procedia PDF Downloads 182
28695 Specialized Instruction: Teaching and Leading Diverse Learners

Authors: Annette G. Walters Ph.D.

Abstract:

With a global shortage of qualified educational professionals, school systems continue to struggle with adequate staffing. How might learning communities meet the needs of all students, in particular those with specialized needs. While the task may seem foreboding and certain factors may seem divergent, all are connected in the education of students. Special education has a significant impact on the teaching and learning experience of all students in an educational community. Even when there are concerted efforts at embracing learners with diverse aptitude and abilities, there are often many important local factors that are misaligned, overlooked, or misunderstood. Working with learners with diverse abilities, often requires intentional services and supports for students to achieve success. Developing and implementing specialized instruction requires a multifaceted approach to supports the entire learning community, which includes educational providers, learners, and families, all while being mindful of fiscal and natural resources. This research explores the implications and complexities of special education instruction and specializing instruction, as well as leading and teaching diverse learners. This work is separated into three sections: the state of special education, teaching and leading diverse learners, and developing educational competencies through collaborative engagement. This structured analysis extrapolates historical and current research on special education practices and the role of educators in ensuring diverse students meet success.

Keywords: - diverse learners, - special education, - modification and supports, - curriculum and instruction, - classroom management, - formal and informal assessments

Procedia PDF Downloads 58
28694 Software Defect Analysis- Eclipse Dataset

Authors: Amrane Meriem, Oukid Salyha

Abstract:

The presence of defects or bugs in software can lead to costly setbacks, operational inefficiencies, and compromised user experiences. The integration of Machine Learning(ML) techniques has emerged to predict and preemptively address software defects. ML represents a proactive strategy aimed at identifying potential anomalies, errors, or vulnerabilities within code before they manifest as operational issues. By analyzing historical data, such as code changes, feature im- plementations, and defect occurrences. This en- ables development teams to anticipate and mitigate these issues, thus enhancing software quality, reducing maintenance costs, and ensuring smoother user interactions. In this work, we used a recommendation system to improve the performance of ML models in terms of predicting the code severity and effort estimation.

Keywords: software engineering, machine learning, bugs detection, effort estimation

Procedia PDF Downloads 91
28693 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach

Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf

Abstract:

Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.

Keywords: classification, defect, surface, detection, hole

Procedia PDF Downloads 30
28692 Management of English Language Teaching in Higher Education

Authors: Vishal D. Pandya

Abstract:

A great deal of perceptible change has been taking place in the way our institutions of higher learning are being managed in India today. It is believed that managers, whose intuition proves to be accurate, often tend to be the most successful, and this is what makes them almost like entrepreneurs. A certain entrepreneurial spirit is what is expected and requires a degree of insight of the manager to be successful depending upon the situational and more importantly, the heterogeneity as well as the socio-cultural aspect. Teachers in Higher Education have to play multiple roles to make sure that the Learning-Teaching process becomes effective in the real sense of the term. This paper makes an effort to take a close look at that, especially in the context of the management of English language teaching in Higher Education and, therefore, focuses on the management of English language teaching in higher education by understanding target situation analyses at the socio-cultural level.

Keywords: management, language teaching, English language teaching, higher education

Procedia PDF Downloads 252
28691 Nursing Students' Experience of Using Electronic Health Record System in Clinical Placements

Authors: Nurten Tasdemir, Busra Baloglu, Zeynep Cingoz, Can Demirel, Zeki Gezer, Barıs Efe

Abstract:

Student nurses are increasingly exposed to technology in the workplace after graduation with the growing numbers of electric health records (EHRs), handheld computers, barcode scanner medication dispensing systems, and automatic capture of patient data such as vital signs. Internationally, electronic health records (EHRs) systems are being implemented and evaluated. Students will inevitably encounter EHRs in the clinical learning environment and their professional practice. Nursing students must develop competency in the use of EHR. Aim: The study aimed to examine nursing students’ experiences of learning to use electronic health records (EHR) in clinical placements. Method: This study adopted a descriptive approach. The study population consisted of second and third-year nursing students at the Zonguldak School of Health in the West Black Sea Region of Turkey; the study was conducted during the 2015–2016 academic year. The sample consisted of 315 (74.1% of 425 students) nursing students who volunteered to participate. The students, who were involved in clinical practice, were invited to participate in the study Data were collected by a questionnaire designed by the researchers based on the relevant literature. Data were analyzed descriptively using the Statistical Package for Social Sciences (SPSS) for Windows version 16.0. The data are presented as means, standard deviations, and percentages. Approval for the study was obtained from the Ethical Committee of the University (Reg. Number: 29/03/2016/112) and the director of Nursing Department. Findings: A total of 315 students enrolled in this study, for a response rate of 74.1%. The mean age of the sample was 22.24 ± 1.37 (min: 19, max: 32) years, and most participants (79.7%) were female. Most of the nursing students (82.3%) stated that they use information technologies in clinical practice. Nearly half of the students (42.5%) reported that they have not accessed to EHR system. In addition, 61.6% of the students reported that insufficient computers available in clinical placement. Of the students, 84.7% reported that they prefer to have patient information from EHR system, and 63.8% of them found more effective to preparation for the clinical reporting. Conclusion: This survey indicated that nursing students experience to learn about EHR systems in clinical placements. For more effective learning environment nursing education should prepare nursing students for EHR systems in their educational life.

Keywords: electronic health record, clinical placement, nursing student, nursing education

Procedia PDF Downloads 295
28690 Teacher in Character Strengthening for Early Childhood

Authors: Siti Aisyah

Abstract:

This article discusses character education which is a very basic education for early childhood with the aim of instilling moral values to prevent unacceptable behaviours. Children can absorb good character when they are in a supportive environment, for that schools should understand and implement character education in the learning process. In the school environment, good character education and habituation can be developed. All parties in the school should be involved, especially the teachers. This research discusses how teachers apply characters on the values of responsibility, honesty, discipline, love and compassion, caring, courage, independence, hard work, mutual cooperation, courtesy, justice, self-control and tolerance. The respondents of this study were teachers involving 200 children from all over Indonesia. The methodology used was a survey method with the result that more than 80% of teachers have been able to exhibit the expected behaviours. The survey was conducted based on observations, types of tasks and assessed performance. The character values can be optimally taught in the school environment based on the teacher's ability to implement them. Through the character education in schools, children can also instil a positive outlook on life.

Keywords: teachers, character strengthening, early childhood, behavior

Procedia PDF Downloads 94
28689 Derivation of Fragility Functions of Marine Drilling Risers Under Ocean Environment

Authors: Pranjal Srivastava, Piyali Sengupta

Abstract:

The performance of marine drilling risers is crucial in the offshore oil and gas industry to ensure safe drilling operation with minimum downtime. Experimental investigations on marine drilling risers are limited in the literature owing to the expensive and exhaustive test setup required to replicate the realistic riser model and ocean environment in the laboratory. Therefore, this study presents an analytical model of marine drilling riser for determining its fragility under ocean environmental loading. In this study, the marine drilling riser is idealized as a continuous beam having a concentric circular cross-section. Hydrodynamic loading acting on the marine drilling riser is determined by Morison’s equations. By considering the equilibrium of forces on the marine drilling riser for the connected and normal drilling conditions, the governing partial differential equations in terms of independent variables z (depth) and t (time) are derived. Subsequently, the Runge Kutta method and Finite Difference Method are employed for solving the partial differential equations arising from the analytical model. The proposed analytical approach is successfully validated with respect to the experimental results from the literature. From the dynamic analysis results of the proposed analytical approach, the critical design parameters peak displacements, upper and lower flex joint rotations and von Mises stresses of marine drilling risers are determined. An extensive parametric study is conducted to explore the effects of top tension, drilling depth, ocean current speed and platform drift on the critical design parameters of the marine drilling riser. Thereafter, incremental dynamic analysis is performed to derive the fragility functions of shallow water and deep-water marine drilling risers under ocean environmental loading. The proposed methodology can also be adopted for downtime estimation of marine drilling risers incorporating the ranges of uncertainties associated with the ocean environment, especially at deep and ultra-deepwater.

Keywords: drilling riser, marine, analytical model, fragility

Procedia PDF Downloads 151
28688 A Genetic Algorithm Based Ensemble Method with Pairwise Consensus Score on Malware Cacophonous Labels

Authors: Shih-Yu Wang, Shun-Wen Hsiao

Abstract:

In the field of cybersecurity, there exists many vendors giving malware samples classified results, namely naming after the label that contains some important information which is also called AV label. Lots of researchers relay on AV labels for research. Unfortunately, AV labels are too cluttered. They do not have a fixed format and fixed naming rules because the naming results were based on each classifiers' viewpoints. A way to fix the problem is taking a majority vote. However, voting can sometimes create problems of bias. Thus, we create a novel ensemble approach which does not rely on the cacophonous naming result but depend on group identification to aggregate everyone's opinion. To achieve this purpose, we develop an scoring system called Pairwise Consensus Score (PCS) to calculate result similarity. The entire method architecture combine Genetic Algorithm and PCS to find maximum consensus in the group. Experimental results revealed that our method outperformed the majority voting by 10% in term of the score.

Keywords: genetic algorithm, ensemble learning, malware family, malware labeling, AV labels

Procedia PDF Downloads 91
28687 The Impact of Task-Based Language Teaching on Iranian Female Intermediate EFL Learners’ Writing Performance

Authors: Gholam Reza Parvizi, Hossein Azad, Ali Reza Kargar

Abstract:

This article investigated the impact of task-based language teaching (TBLT) on writing performance of the Iranian intermediate EFL learners. There were two groups of forty students of the intermediate female learners studying English in Jahad-e-Daneshgahi language institute, ranging in age from thirteen to nineteen. They participated in their regular classes in the institute and were assigned to two groups including an experimental group of task-based language teaching and a control group for the purpose of homogeneity, all students in two groups took an achievement test before the treatment. As a pre-test; students were assigned to write a task at the beginning of the course. One of the classes was conducted through talking a TBLT approach on their writing, while the other class followed regular patterns of teaching, namely traditional approach for TBLT group. There were some tasks chosen from learners’ textbook. The task selection was in accordance with learning standards for ESL and TOFEL writing sections. At the end of the treatment, a post-test was administered to both experimental group and the control group. Scoring was done on the basis of scoring scale of “expository writing quality scale”. The researcher used paired samples t-test to analyze the effect of TBLT teaching approach on the writing performance of the learners. The data analysis revealed that the subjects in TBLT group performed better on the writing performance post-test than the subjects in control group. The findings of the study also demonstrated that TBLT would enhance writing performance in the group of learners. Moreover, it was indicated that TBLT has been effective in teaching writing performance to Iranian EFL learners

Keywords: task-based language teaching, task, language teaching approach, writing proficiency, EFL learners

Procedia PDF Downloads 428
28686 Knowledge Management at Spanish Higher Education Institutions

Authors: Yolanda Ramirez, Angel Tejada, Agustin Baidez

Abstract:

In the knowledge-based economy, intangible elements are considered essential in order to achieve competitive advantage in organizations. In this sense, the Balanced Scorecard is a very suitable tool to recognize value and manage intangibles because it translates an organization’s strategic objectives into a set of performance indicators from a financial, as well as customer perspective, internal process and learning and growth perspectives. The aim of this paper is to expose and justify the benefits that the Balanced Scorecard might have for identifying, measuring and managing intellectual capital at universities, by means of reviewing the most important Balanced Scorecard implementations at Spanish public universities.

Keywords: knowledge management, balanced scorecard, universities, Spain

Procedia PDF Downloads 282