Search results for: student-centered teaching and learning
3953 Still Pictures for Learning Foreign Language Sounds
Authors: Kaoru Tomita
Abstract:
This study explores how visual information helps us to learn foreign language pronunciation. Visual assistance and its effect for learning foreign language have been discussed widely. For example, simplified illustrations in textbooks are used for telling learners which part of the articulation organs are used for pronouncing sounds. Vowels are put into a chart that depicts a vowel space. Consonants are put into a table that contains two axes of place and manner of articulation. When comparing a still picture and a moving picture for visualizing learners’ pronunciation, it becomes clear that the former works better than the latter. The visualization of vowels was applied to class activities in which native and non-native speakers’ English was compared and the learners’ feedback was collected: the positions of six vowels did not scatter as much as they were expected to do. Specifically, two vowels were not discriminated and were arranged very close in the vowel space. It was surprising for the author to find that learners liked analyzing their own pronunciation by linking formant ones and twos on a sheet of paper with a pencil. Even a simple method works well if it leads learners to think about their pronunciation analytically.Keywords: feedback, pronunciation, visualization, vowel
Procedia PDF Downloads 2553952 Change of Education Business in the Age of 5G
Authors: Heikki Ruohomaa, Vesa Salminen
Abstract:
Regions are facing huge competition to attract companies, businesses, inhabitants, students, etc. This way to improve living and business environment, which is rapidly changing due to digitalization. On the other hand, from the industry's point of view, the availability of a skilled labor force and an innovative environment are crucial factors. In this context, qualified staff has been seen to utilize the opportunities of digitalization and respond to the needs of future skills. World Manufacturing Forum has stated in the year 2019- report that in next five years, 40% of workers have to change their core competencies. Through digital transformation, new technologies like cloud, mobile, big data, 5G- infrastructure, platform- technology, data- analysis, and social networks with increasing intelligence and automation, enterprises can capitalize on new opportunities and optimize existing operations to achieve significant business improvement. Digitalization will be an important part of the everyday life of citizens and present in the working day of the average citizen and employee in the future. For that reason, the education system and education programs on all levels of education from diaper age to doctorate have been directed to fulfill this ecosystem strategy. Goal: The Fourth Industrial Revolution will bring unprecedented change to societies, education organizations and business environments. This article aims to identify how education, education content, the way education has proceeded, and overall whole the education business is changing. Most important is how we should respond to this inevitable co- evolution. Methodology: The study aims to verify how the learning process is boosted by new digital content, new learning software and tools, and customer-oriented learning environments. The change of education programs and individual education modules can be supported by applied research projects. You can use them in making proof- of- the concept of new technology, new ways to teach and train, and through the experiences gathered change education content, way to educate and finally education business as a whole. Major findings: Applied research projects can prove the concept- phases on real environment field labs to test technology opportunities and new tools for training purposes. Customer-oriented applied research projects are also excellent for students to make assignments and use new knowledge and content and teachers to test new tools and create new ways to educate. New content and problem-based learning are used in future education modules. This article introduces some case study experiences on customer-oriented digital transformation projects and how gathered knowledge on new digital content and a new way to educate has influenced education. The case study is related to experiences of research projects, customer-oriented field labs/learning environments and education programs of Häme University of Applied Sciences.Keywords: education process, digitalization content, digital tools for education, learning environments, transdisciplinary co-operation
Procedia PDF Downloads 1803951 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 3243950 Short-Term Forecast of Wind Turbine Production with Machine Learning Methods: Direct Approach and Indirect Approach
Authors: Mamadou Dione, Eric Matzner-lober, Philippe Alexandre
Abstract:
The Energy Transition Act defined by the French State has precise implications on Renewable Energies, in particular on its remuneration mechanism. Until then, a purchase obligation contract permitted the sale of wind-generated electricity at a fixed rate. Tomorrow, it will be necessary to sell this electricity on the Market (at variable rates) before obtaining additional compensation intended to reduce the risk. This sale on the market requires to announce in advance (about 48 hours before) the production that will be delivered on the network, so to be able to predict (in the short term) this production. The fundamental problem remains the variability of the Wind accentuated by the geographical situation. The objective of the project is to provide, every day, short-term forecasts (48-hour horizon) of wind production using weather data. The predictions of the GFS model and those of the ECMWF model are used as explanatory variables. The variable to be predicted is the production of a wind farm. We do two approaches: a direct approach that predicts wind generation directly from weather data, and an integrated approach that estimâtes wind from weather data and converts it into wind power by power curves. We used machine learning techniques to predict this production. The models tested are random forests, CART + Bagging, CART + Boosting, SVM (Support Vector Machine). The application is made on a wind farm of 22MW (11 wind turbines) of the Compagnie du Vent (that became Engie Green France). Our results are very conclusive compared to the literature.Keywords: forecast aggregation, machine learning, spatio-temporal dynamics modeling, wind power forcast
Procedia PDF Downloads 2203949 A Multi-criteria Decision Method For The Recruitment Of Academic Personnel Based On The Analytical Hierarchy Process And The Delphi Method In A Neutrosophic Environment (Full Text)
Authors: Antonios Paraskevas, Michael Madas
Abstract:
For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.Keywords: analytical hierarchy process, delphi method, multi-criteria decision maiking method, neutrosophic set theory, personnel recruitment
Procedia PDF Downloads 2063948 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts
Authors: Yuxi Zhu, Zhenqian Chen
Abstract:
It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential
Procedia PDF Downloads 333947 Using Wiki for Enhancing the Knowledge Transfer to Newcomers: An Experience Report
Authors: Hualter Oliveira Barbosa, Raquel Feitosa do Vale Cunha, Erika Muniz dos Santos, Fernanda Belmira Souza, Fabio Sousa, Luis Henrique Pascareli, Franciney de Oliveira Lima, Ana Cláudia Reis da Silva, Christiane Moreira de Almeida
Abstract:
Software development is intrinsic human-based knowledge-intensive. Due to globalization, software development has become a complex challenge and we usually face barriers related to knowledge management, team building, costly testing processes, especially in distributed settings. For this reason, several approaches have been proposed to minimize barriers caused by geographic distance. In this paper, we present as we use experimental studies to improve our knowledge management process using the Wiki system. According to the results, it was possible to identify learning preferences from our software projects leader team, organize and improve the learning experience of our Wiki and; facilitate collaboration by newcomers to improve Wiki with new contents available in the Wiki.Keywords: mobile product, knowledge transfer, knowledge management process, wiki, GSD
Procedia PDF Downloads 1813946 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons
Authors: Dachuan Shi, M. Hecht, Y. Ye
Abstract:
With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.Keywords: fault detection, wheel flat, convolutional neural network, machine learning
Procedia PDF Downloads 1343945 The Development of Digital Commerce in Community Enterprise Products to Promote the Distribution of Samut Songkhram Province
Authors: Natcha Wattanaprapa, Alongkorn Taengtong, Phachaya Chaiwchan
Abstract:
This study investigates and promotes the distribution of community enterprise products of Samut Songkhram province by using e-commerce web technology to help distribute the products. This study also aims to develop the information system to be able to operate on multiple platforms and promote the easy usability on smartphones to increase the efficiency and promote the distribution of community enterprise products of Samut Songkhram province in three areas including Baan Saraphi learning center, the learning center of Bang Noi Floating market as well as Bang Nang Li learning center. The main structure consists of spreading the knowledge regarding the tourist attraction in the area of community enterprise, e-commerce system of community enterprise products, and Chatbot. The researcher developed the system into an application form using the software package to create and manage the content on the internet. Connect management system (CMS) word press was used for managing web pages. Add-on CMS word press was used for creating the system of Chatbot, and the database of PHP My Admin was used as the database management system. The evaluation by the experts and users in 5 aspects, including the system efficiency, the accuracy in the operation of the system, the convenience and ease of use of the system, the design, and the promotion of product distribution in Samut Songkhram province by using questionnaires revealed that the result of evaluation in the promotion of product distribution in Samut Songkhram province was the highest with the mean of 4.20. When evaluating the efficiency of the developed system, it was found that the result of system efficiency was the highest level with a mean of 4.10.Keywords: community enterprise, digital commerce, promotion of product distribution, Samut Songkhram province
Procedia PDF Downloads 1533944 [Keynote Talk] The Practices and Issues of Career Education: Focusing on Career Development Course on Various Problems of Society
Authors: Azusa Katsumata
Abstract:
Several universities in Japan have introduced activities aimed at the mutual enlightenment of a diversity of people in career education. However, several programs emphasize on delivering results, and on practicing the prepared materials as planned. Few programs focus on unexpected failures and setbacks. This way of learning is important in career education so that classmates can help each other, overcome difficulties, draw out each other’s strengths, and learn from them. Seijo University in Tokyo offered excursion focusing Various Problems of Society, as second year career education course, Students will learn about contraception, infertility, homeless people, LGBT, and they will discuss based on the excursion. This paper aims to study the ‘learning platform’ created by a series of processes such as the excursion, the discussion, and the presentation. In this course, students looked back on their lives and imagined the future in concrete terms, performing tasks in groups. The students came across a range of values through lectures and conversations, thereby developing feelings of self-efficacy. We conducted a questionnaire to measure the development of career in class. From the results of the questionnaire, we can see, in the example of this class, that students respected diversity and understood the importance of uncertainty and discontinuity. Whereas the students developed career awareness, they actually did not come across that scene and would do so only in the future when it became necessary. In this class, students consciously considered social problems, but did not develop the practical skills necessary to deal with these. This is appropriate for one of project, but we need to consider how this can be incorporated into future courses. University constitutes only a single period in life-long career formation. Thus, further research may be indicated to determine whether the positive effects of career education at university continue to contribute to individual careers going forward.Keywords: career education of university, excursion, learning platform, problems of society
Procedia PDF Downloads 2703943 Evaluation of the Efficacy of Basic Life Support Teaching in Second and Third Year Medical Students
Authors: Bianca W. O. Silva, Adriana C. M. Andrade, Gustavo C. M. Lucena, Virna M. S. Lima
Abstract:
Introduction: Basic life support (BLS) involves the immediate recognition of cardiopulmonary arrest. Each year, 359.400 and 275.000 individuals with cardiac arrest are attended in emergency departments in USA and Europe. Brazilian data shows that 200.000 cardiac arrests occur every year, and half of them out of the hospital. Medical schools around the world teach BLS in the first years of the course, but studies show that there is a decline of the knowledge as the years go by, affecting the chain of survival. The objective was to analyze the knowledge of medical students about BLS and the retention of this learning throughout the course. Methods: This study included 150 students who were at the second and third year of a medical school in Salvador, Bahia, Brazil. The instrument of data collection was a structured questionnaire composed of 20 questions based on the 2015 American Heart Association guideline. The Pearson Chi-square test was used in order to study the association between previous training, sex and semester with the degree of knowledge of the students. The Kruskal-Wallis test was used to evaluate the different yields obtained between the various semesters. The number of correct answers was described by average and quartiles. Results: Regarding the degree of knowledge, 19.6% of the female students reached the optimal classification, a better outcome than the achieved by the male participants. Of those with previous training, 33.33% were classified as good and optimal, none of the students reached the optimal classification and only 2.2% of them were classified as bad (those who did not have 52.6% of correct answers). The analysis of the degree of knowledge related to each semester revealed that the 5th semester had the highest outcome: 30.5%. However, the acquaintance presented by the semesters was generally unsatisfactory, since 50% of the students, or more, demonstrated knowledge levels classified as bad or regular. When confronting the different semesters and the achieved scores, the value of p was 0.831. Conclusion: It is important to focus on the training of medical professionals that are capable of facing emergency situations, improving the systematization of care, and thereby increasing the victims' possibility of survival.Keywords: basic life support, cardiopulmonary ressucitacion, education, medical students
Procedia PDF Downloads 1893942 An Efficient Machine Learning Model to Detect Metastatic Cancer in Pathology Scans Using Principal Component Analysis Algorithm, Genetic Algorithm, and Classification Algorithms
Authors: Bliss Singhal
Abstract:
Machine learning (ML) is a branch of Artificial Intelligence (AI) where computers analyze data and find patterns in the data. The study focuses on the detection of metastatic cancer using ML. Metastatic cancer is the stage where cancer has spread to other parts of the body and is the cause of approximately 90% of cancer-related deaths. Normally, pathologists spend hours each day to manually classifying whether tumors are benign or malignant. This tedious task contributes to mislabeling metastasis being over 60% of the time and emphasizes the importance of being aware of human error and other inefficiencies. ML is a good candidate to improve the correct identification of metastatic cancer, saving thousands of lives and can also improve the speed and efficiency of the process, thereby taking fewer resources and time. So far, the deep learning methodology of AI has been used in research to detect cancer. This study is a novel approach to determining the potential of using preprocessing algorithms combined with classification algorithms in detecting metastatic cancer. The study used two preprocessing algorithms: principal component analysis (PCA) and the genetic algorithm, to reduce the dimensionality of the dataset and then used three classification algorithms: logistic regression, decision tree classifier, and k-nearest neighbors to detect metastatic cancer in the pathology scans. The highest accuracy of 71.14% was produced by the ML pipeline comprising of PCA, the genetic algorithm, and the k-nearest neighbor algorithm, suggesting that preprocessing and classification algorithms have great potential for detecting metastatic cancer.Keywords: breast cancer, principal component analysis, genetic algorithm, k-nearest neighbors, decision tree classifier, logistic regression
Procedia PDF Downloads 913941 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows
Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham
Abstract:
In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis
Procedia PDF Downloads 713940 Applying Multiple Intelligences to Teach Buddhist Doctrines in a Classroom
Authors: Phalaunnnaphat Siriwongs
Abstract:
The classroom of the 21st century is an ever changing forum for new and innovative thoughts and ideas. With increasing technology and opportunity, students have rapid access to information that only decades ago would have taken weeks to obtain. Unfortunately, new techniques and technology are not the cure for the fundamental problems that have plagued the classroom ever since education was established. Class size has been an issue long debated in academia. While it is difficult to pin point an exact number, it is clear that in this case more does not mean better. By looking into the success and pitfalls of classroom size the true advantages of smaller classes will become clear. Previously, one class was comprised of 50 students. Being seventeen and eighteen- year- old students, sometimes it was quite difficult for them to stay focused. To help them understand and gain much knowledge, a researcher introduced “The Theory of Multiple Intelligence” and this, in fact, enabled students to learn according to their own learning preferences no matter how they were being taught. In this lesson, the researcher designed a cycle of learning activities involving all intelligences so that everyone had equal opportunities to learn.Keywords: multiple intelligences, role play, performance assessment, formative assessment
Procedia PDF Downloads 2793939 Synergism in the Inquiry Lab: An Analysis of Time Targets and Achievement
Authors: John M. Basey, Clinton D. Francis, Maxwell B. Joseph
Abstract:
After gathering data from experimental procedures, inquiry-oriented-science labs often allow students the freedom to stay and complete the write up in class or leave lab early and complete the write up later. Teachers must decide whether to allow students this freedom to self-regulate this time. Student interviews have indicated four time-target strategies that may influence how students utilize this time: grade-target-A, grade-target-C, time-limited, and proficiency. The hypothesis tested was that variability in class composition relative to the four grade-target strategies has an impact on when students leave class, which in turn may influence their overall learning as exemplified by grades. Students were divided into the four indicated groups with a survey. Class composition and the GTA teaching the class had significant impacts on how long students stayed in class with class composition having the greatest impact. A factor analysis identified two factors. Factor 1 included classes with percentages of grade-target students opposite time-limited/proficiency students and explained 43% of the variance. Factor 2 included classes with percentages of grade-target-A/proficiency students opposite grade-target-C students and explained 33% of the variance. Students who stayed longer received significantly higher grades (P = 0.008) with no significant relationships between grade and Factor 1 or Factor 2 (P > 0.05). The time students stayed in class was significantly positively related to Factor 1 (P = 0.006) and significantly negatively related to Factor 2 (P = 0.008). These results support the hypothesis and indicate that teachers may want to know the composition of student-target strategies before deciding on how to have students allocate study time at the end of inquiry-oriented labs. According to these results, ideal classes for self-regulation have a high proportion of proficiency and time-limited students and a low proportion of grade-target students, or a high proportion of grade-target-A and proficiency students and a low proportion of grade-target-C students. Non-ideal classes for self-regulation were comprised of the inverse proportions.Keywords: grades, inquiry lab design, synergism in student motivation, class composition
Procedia PDF Downloads 1343938 Links and Blocks: the Role of Language in Samuel Beckett’s Selected Plays
Authors: Su-Lien Liao
Abstract:
This article explores the language in the four plays of Samuel Beckett–Waiting for Godot, Endgame, Krapp’s Last Tape, and Footfalls. It considers the way in which Beckett uses language, especially through fragmentation utterances, repetitions, monologues, contradictions, and silence. It discusses the function of language in modern society, in the theater of the absurd, and in the plays. Paradoxically enough, his plays attempts to communicate the incommunicability of language.Keywords: language, Samuel Beckett, theater of the absurd, foreign language teaching
Procedia PDF Downloads 4483937 Jointly Learning Python Programming and Analytic Geometry
Authors: Cristina-Maria Păcurar
Abstract:
The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.Keywords: analytic geometry, conics, python, quadrics
Procedia PDF Downloads 3023936 Electrophysiological Correlates of Statistical Learning in Children with and without Developmental Language Disorder
Authors: Ana Paula Soares, Alexandrina Lages, Helena Oliveira, Francisco-Javier Gutiérrez-Domínguez, Marisa Lousada
Abstract:
From an early age, exposure to a spoken language allows us to implicitly capture the structure underlying the succession of the speech sounds in that language and to segment it into meaningful units (words). Statistical learning (SL), i.e., the ability to pick up patterns in the sensory environment even without intention or consciousness of doing it, is thus assumed to play a central role in the acquisition of the rule-governed aspects of language and possibly to lie behind the language difficulties exhibited by children with development language disorder (DLD). The research conducted so far has, however, led to inconsistent results, which might stem from the behavioral tasks used to test SL. In a classic SL experiment, participants are first exposed to a continuous stream (e.g., syllables) in which, unbeknownst to the participants, stimuli are grouped into triplets that always appear together in the stream (e.g., ‘tokibu’, ‘tipolu’), with no pauses between each other (e.g., ‘tokibutipolugopilatokibu’) and without any information regarding the task or the stimuli. Following exposure, SL is assessed by asking participants to discriminate between triplets previously presented (‘tokibu’) from new sequences never presented together during exposure (‘kipopi’), i.e., to perform a two-alternative-forced-choice (2-AFC) task. Despite the widespread use of the 2-AFC to test SL, it has come under increasing criticism as it is an offline post-learning task that only assesses the result of the learning that had occurred during the previous exposure phase and that might be affected by other factors beyond the computation of regularities embedded in the input, typically the likelihood two syllables occurring together, a statistic known as transitional probability (TP). One solution to overcome these limitations is to assess SL as exposure to the stream unfolds using online techniques such as event-related potentials (ERP) that is highly sensitive to the time-course of the learning in the brain. Here we collected ERPs to examine the neurofunctional correlates of SL in preschool children with DLD, and chronological-age typical language development (TLD) controls who were exposed to an auditory stream in which eight three-syllable nonsense words, four of which presenting high-TPs and the other four low-TPs, to further analyze whether the ability of DLD and TLD children to extract-word-like units from the steam was modulated by words’ predictability. Moreover, to ascertain if the previous knowledge of the to-be-learned-regularities affected the neural responses to high- and low-TP words, children performed the auditory SL task, firstly, under implicit, and, subsequently, under explicit conditions. Although behavioral evidence of SL was not obtained in either group, the neural responses elicited during the exposure phases of the SL tasks differentiated children with DLD from children with TLD. Specifically, the results indicated that only children from the TDL group showed neural evidence of SL, particularly in the SL task performed under explicit conditions, firstly, for the low-TP, and, subsequently, for the high-TP ‘words’. Taken together, these findings support the view that children with DLD showed deficits in the extraction of the regularities embedded in the auditory input which might underlie the language difficulties.Keywords: development language disorder, statistical learning, transitional probabilities, word segmentation
Procedia PDF Downloads 1913935 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers
Procedia PDF Downloads 2763934 Role of Higher Education Commission (HEC) in Strengthening the Academia and Industry Relationships: The Case of Pakistan
Authors: Shah Awan, Fahad Sultan, Shahid Jan Kakakhel
Abstract:
Higher education in the 21st century has been faced with game-changing developments impacting teaching and learning and also strengthening the academia and industry relationship. The academia and industry relationship plays a key role in economic development in developed, developing and emerging economies. The partnership not only explores innovation but also provide a real time experience of the theoretical knowledge. For this purpose, the paper assessing the role of HEC in the Pakistan and discusses the way in academia and industry contribute their role in improving Pakistani economy. Successive studies have reported the importance of innovation and technology , research development initiatives in public sector universities, and the significance of role of higher education commission in strengthening the academia and industrial relationship to improve performance and minimize failure. The paper presents the results of interviews conducted, using semi-structured interviews amongst 26 staff members of two public sector universities, higher education commission and managers from corporate sector.The study shows public sector universities face the several barriers in developing economy like Pakistan, to establish the successful collaboration between universities and industry. Of the participants interviewed, HEC provides an insufficient road map to improve organisational capabilities in facilitating and enhance the performance. The results of this study have demonstrated that HEC has to embrace and internalize support to industry and public sector universities to compete in the era of globalization. Publication of this research paper will help higher education sector to further strengthen research sector through industry and university collaboration. The research findings corroborate the findings of Dooley and Kirk who highlights the features of university-industry collaboration. Enhanced communication has implications for the quality of the product and human resource. Crucial for developing economies, feasible organisational design and framework is essential for the university-industry relationship.Keywords: higher education commission, role, academia and industry relationship, Pakistan
Procedia PDF Downloads 4733933 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 823932 Prosodic Transfer in Foreign Language Learning: A Phonetic Crosscheck of Intonation and F₀ Range between Italian and German Native and Non-Native Speakers
Authors: Violetta Cataldo, Renata Savy, Simona Sbranna
Abstract:
Background: Foreign Language Learning (FLL) is characterised by prosodic transfer phenomena regarding pitch accents placement, intonation patterns, and pitch range excursion from the learners’ mother tongue to their Foreign Language (FL) which suggests that the gradual development of general linguistic competence in FL does not imply an equally correspondent improvement of the prosodic competence. Topic: The present study aims to monitor the development of prosodic competence of learners of Italian and German throughout the FLL process. The primary object of this study is to investigate the intonational features and the f₀ range excursion of Italian and German from a cross-linguistic perspective; analyses of native speakers’ productions point out the differences between this pair of languages and provide models for the Target Language (TL). A following crosscheck compares the L2 productions in Italian and German by non-native speakers to the Target Language models, in order to verify the occurrence of prosodic interference phenomena, i.e., type, degree, and modalities. Methodology: The subjects of the research are university students belonging to two groups: Italian native speakers learning German as FL and German native speakers learning Italian as FL. Both of them have been divided into three subgroups according to the FL proficiency level (beginners, intermediate, advanced). The dataset consists of wh-questions placed in situational contexts uttered in both speakers’ L1 and FL. Using a phonetic approach, analyses have considered three domains of intonational contours (Initial Profile, Nuclear Accent, and Terminal Contour) and two dimensions of the f₀ range parameter (span and level), which provide a basis for comparison between L1 and L2 productions. Findings: Results highlight a strong presence of prosodic transfer phenomena affecting L2 productions in the majority of both Italian and German learners, irrespective of their FL proficiency level; the transfer concerns all the three domains of the contour taken into account, although with different modalities and characteristics. Currently, L2 productions of German learners show a pitch span compression on the domain of the Terminal Contour compared to their L1 towards the TL; furthermore, German learners tend to use lower pitch range values in deviation from their L1 when improving their general linguistic competence in Italian FL proficiency level. Results regarding pitch range span and level in L2 productions by Italian learners are still in progress. At present, they show a similar tendency to expand the pitch span and to raise the pitch level, which also reveals a deviation from the L1 possibly in the direction of German TL. Conclusion: Intonational features seem to be 'resistant' parameters to which learners appear not to be particularly sensitive. By contrast, they show a certain sensitiveness to FL pitch range dimensions. Making clear which the most resistant and the most sensitive parameters are when learning FL prosody could lay groundwork for the development of prosodic trainings thanks to which learners could finally acquire a clear and natural pronunciation and intonation.Keywords: foreign language learning, German, Italian, L2 prosody, pitch range, transfer
Procedia PDF Downloads 2903931 Voting Representation in Social Networks Using Rough Set Techniques
Authors: Yasser F. Hassan
Abstract:
Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices
Procedia PDF Downloads 3983930 Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain
Authors: Amal M. Alrayes, Hayat M. Ali
Abstract:
Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.Keywords: Web 2.0, higher education, acceptance, students' perception
Procedia PDF Downloads 3433929 Dermoscopy Compliance: Improving Melanoma Detection Pathways Through Quality Improvement
Authors: Max Butler
Abstract:
Melanoma accounts for 80% of skin cancer-related deaths globally. The poor prognosis and increasing incidence of melanoma impose a significant burden on global healthcare systems. Early detection, precise diagnosis, and preventative strategies are critical to improving patient outcomes. Dermoscopy is the gold standard for specialist assessments of pigmented skin lesions, as it can differentiate between benign and malignant growths with greater accuracy than visual inspection. In the United Kingdom, guidelines from the National Institute of Clinical Excellence (NICE) state dermoscopy should be used in all specialist assessments of pigmented skin lesions. Compliance with this guideline is low, resulting in missed and delayed melanoma diagnoses. To address this problem, a quality improvement project was initiated at Buckinghamshire Healthcare Trust (BHT) within the plastic surgery department. The target group was a trainee and consultant plastic surgeons conducting outpatient skin cancer clinics. Analysis of clinic documentation over a one-month period found that only 62% (38/61) of patients referred with pigmented skin lesions were examined using dermoscopy. To increase dermoscopy rates, teaching was delivered to the department highlighting national guidelines and the evidence base for dermoscopic examination. In addition, clinic paperwork was redesigned to include a text box for dermoscopic examination. Reauditing after the intervention found a significant increase in dermoscopy rates (52/61, p = 0.014). In conclusion, implementing a quality improvement project with targeted teaching and documentation template templates successfully increased dermoscopy rates. This is a promising step toward improving early melanoma detection and patient outcomes.Keywords: melanoma, dermoscopy, plastic surgery, quality improvement
Procedia PDF Downloads 753928 An Energy Efficient Clustering Approach for Underwater Wireless Sensor Networks
Authors: Mohammad Reza Taherkhani
Abstract:
Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make a connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.Keywords: underwater sensor networks, clustering, learning automata, energy consumption
Procedia PDF Downloads 3673927 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 543926 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario
Authors: Sarita Agarwal, Deepika Delsa Dean
Abstract:
Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation
Procedia PDF Downloads 1343925 Process Driven Architecture For The ‘Lessons Learnt’ Knowledge Sharing Framework: The Case Of A ‘Lessons Learnt’ Framework For KOC
Authors: Rima Al-Awadhi, Abdul Jaleel Tharayil
Abstract:
On a regular basis, KOC engages into various types of Projects. However, due to very nature and complexity involved, each project experience generates a lot of ‘learnings’ that need to be factored into while drafting a new contract and thus avoid repeating the same mistakes. But, many a time these learnings are localized and remain as tacit leading to scope re-work, larger cycle time, schedule overrun, adjustment orders and claims. Also, these experiences are not readily available to new employees leading to steep learning curve and longer time to competency. This is to share our experience in designing and implementing a process driven architecture for the ‘lessons learnt’ knowledge sharing framework in KOC. It high-lights the ‘lessons learnt’ sharing process adopted, integration with the organizational processes, governance framework, the challenges faced and learning from our experience in implementing a ‘lessons learnt’ framework.Keywords: lessons learnt, knowledge transfer, knowledge sharing, successful practices, Lessons Learnt Workshop, governance framework
Procedia PDF Downloads 5803924 A Case Study on How Biomedical Engineering (BME) Outreach Programmes Serve as An Alternative Educational Approach to Form and Develop the BME Community in Hong Kong
Authors: Sum Lau, Wing Chung Cleo Lau, Wing Yan Chu, Long Ching Ip, Wan Yin Lo, Jo Long Sam Yau, Ka Ho Hui, Sze Yi Mak
Abstract:
Biomedical engineering (BME) is an interdisciplinary subject where knowledge about biology and medicine is applied to novel applications, solving clinical problems. This subject is crucial for cities such as Hong Kong, where the burden on the medical system is rising due to reasons like the ageing population. Hong Kong, who is actively boosting technological advancements in recent years, sets BME, or biotechnology, as a major category, as reflected in the 2018-19 Budget, where biotechnology was one of the four pillars for development. Over the years, while resources in terms of money and space have been provided, there has been a lack of talents expressed by both the academia and industry. While exogenous factors, such as COVID, may have hindered talents from outside Hong Kong to come, endogenous factors should also be considered. In particular, since there are already a few local universities offering BME programmes, their curriculum or style of education requires to be reviewed to intensify the network of the BME community and support post-academic career development. It was observed that while undergraduate (UG) studies focus on knowledge teaching with some technical training and postgraduate (PG) programmes concentrate on upstream research, the programmes are generally confined to the academic sector and lack connections to the industry. In light of that, a “Biomedical Innovation and Outreach Programme 2022” (“B.I.O.2022”) was held to connect students and professors from academia with clinicians and engineers from the industry, serving as a comparative approach to conventional education methods (UG and PG programmes from tertiary institutions). Over 100 participants, including undergraduates, postgraduates, secondary school students, researchers, engineers, and clinicians, took part in various outreach events such as conference and site visits, all held from June to July 2022. As a case study, this programme aimed to tackle the aforementioned problems with the theme of “4Cs” (connection, communication, collaboration, and commercialisation). The effectiveness of the programme is investigated by its ability to serve as an adult and continuing education and the effectiveness of causing social change to tackle current societal challenges, with the focus on tackling the lack of talents engaging in biomedical engineering. In this study, B.I.O.2022 is found to be able to complement the traditional educational methods, particularly in terms of knowledge exchange between the academia and the industry. With enhanced communications between participants from different career stages, there were students who followed up to visit or even work with the professionals after the programme. Furthermore, connections between the academia and industry could foster the generation of new knowledge, which ultimately pointed to commercialisation, adding value to the BME industry while filling the gap in terms of human resources. With the continuation of events like B.I.O.2022, it provides a promising starting point for the development and relationship strengthening of a BME community in Hong Kong, and shows potential as an alternative way of adult education or learning with societal benefits.Keywords: biomedical engineering, adult education for social change, comparative methods and principles, lifelong learning, faced problems, promises, challenges and pitfalls
Procedia PDF Downloads 120