Search results for: non-Newtonian flow
226 Conceptual Design of Gravity Anchor Focusing on Anchor Towing and Lowering
Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg
Abstract:
Wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis from the oil and gas industry. The unfolding of Universal heavyweight gravity anchor (UGA) for floating based foundation for floating Tension Leg Platform (TLP) sub-structures is developed in this research work. It is funded by the German Federal Ministry of Education and Research) for a three-year (2019-2022) research program called “Offshore Wind Solutions Plus (OWSplus) - Floating Offshore Wind Solutions Mecklenburg-Vorpommern.” It’s a group consists of German institutions (Universities, laboratories, and consulting companies). The part of the project is focused on the numerical modeling of gravity anchor that involves to analyze and solve fluid flow problems. Compared to gravity-based torpedo anchors, these UGA will be towed and lowered via controlled machines (tug boats) at lower speeds. This kind of installation of UGA are new to the offshore wind industry, particularly for TLP, and very few research works have been carried out in recent years. Conventional methods for transporting the anchor requires a large transportation crane vessel which involves a greater cost. This conceptual UGA anchors consists of ballasting chambers which utilizes the concept of buoyancy forces; the inside chambers are filled with the required amount of water in a way that they can float on the water for towing. After reaching the installation site, those chambers are ballasted with water for lowering. After it’s lifetime, these UGA can be unballasted (for erection or replacement) results in self-rising to the sea surface; buoyancy chambers give an advantage for using an UGA without the need of heavy machinery. However, while lowering/rising the UGA towards/away from the seabed, it experiences difficult, harsh marine environments due to the interaction of waves and currents. This leads to drifting of the anchor from the desired installation position and damage to the lowering machines. To overcome such harsh environments problems, a numerical model is built to investigate the influences of different outer contours and other fluid governing shapes that can be installed on the UGA to overcome the turbulence and drifting. The presentation will highlight the importance of the Computational Fluid Dynamics (CFD) numerical model in OpenFOAM, which is open-source programming software.Keywords: anchor lowering, towing, waves, currrents, computational fluid dynamics
Procedia PDF Downloads 166225 Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery
Authors: Jeanne Leblond, Warren Viricel, Amira Mbarek
Abstract:
Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated.Keywords: liposomes, siRNA, pH-sensitive, molecular switch
Procedia PDF Downloads 204224 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region
Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho
Abstract:
The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon
Procedia PDF Downloads 66223 The Effect of Rice Husk Ash on the Mechanical and Durability Properties of Concrete
Authors: Binyamien Rasoul
Abstract:
Portland cement is one of the most widely used construction materials in the world today; however, manufacture of ordinary Portland cement (OPC) emission significant amount of CO2 resulting environmental impact. On the other hand, rice husk ash (RHA), which is produce as by product material is generally considered to be an environmental issue as a waste material. This material (RHA) consists of non-crystalline silicon dioxide with high specific surface area and high pozzolanic reactivity. These RHA properties can demonstrate a significant influence in improving the mechanical and durability properties of mortar and concrete. Furthermore, rice husk ash can provide a cost effective and give concrete more sustainability. In this paper, chemical composition, reactive silica and fineness effect was assessed by examining five different types of RHA. Mortars and concrete specimens were molded with 5% to 50% of ash, replacing the Portland cement, and measured their compressive and tensile strength behavior. Beyond it, another two parameters had been considered: the durability of concrete blended RHA, and effect of temperature on the transformed of amorphous structure to crystalline form. To obtain the rice husk ash properties, these different types were subjected to X-Ray fluorescence to determine the chemical composition, while pozzolanic activity obtained by using X-Ray diffraction test. On the other hand, finesses and specific surface area were obtained by used Malvern Mastersizer 2000 test. The measured parameters properties of fresh mortar and concrete obtained by used flow table and slump test. While, for hardened mortar and concrete the compressive and tensile strength determined pulse the chloride ions penetration for concrete using NT Build 492 (Nord Test) – non-steady state migration test (RMT Test). The obtained test results indicated that RHA can be used as a cement replacement material in concrete with considerable proportion up to 50% percentages without compromising concrete strength. The use of RHA in the concrete as blending materials improved the different characteristics of the concrete product. The paper concludes that to exhibits a good compressive strength of OPC mortar or concrete with increase RHA replacement ratio rice husk ash should be consist of high silica content with high pozzolanic activity. Furthermore, with high amount of carbon content (12%) could be improve the strength of concrete when the silica structure is totally amorphous. As well RHA with high amount of crystalline form (25%) can be used as cement replacement when the silica content over 90%. The workability and strength of concrete increased by used of superplasticizer and it depends on the silica structure and carbon content. This study therefore is an investigation of the effect of partially replacing Ordinary Portland cement (OPC) with Rice hush Ash (RHA) on the mechanical properties and durability of concrete. This paper gives satisfactory results to use RHA in sustainable construction in order to reduce the carbon footprint associated with cement industry.Keywords: OPC, ordinary Portland cement, RHA rice husk ash, W/B water to binder ratio, CO2, carbon dioxide
Procedia PDF Downloads 192222 A Sustainability Benchmarking Framework Based on the Life Cycle Sustainability Assessment: The Case of the Italian Ceramic District
Authors: A. M. Ferrari, L. Volpi, M. Pini, C. Siligardi, F. E. Garcia Muina, D. Settembre Blundo
Abstract:
A long tradition in the ceramic manufacturing since the 18th century, primarily due to the availability of raw materials and an efficient transport system, let to the birth and development of the Italian ceramic tiles district that nowadays represents a reference point for this sector even at global level. This economic growth has been coupled to attention towards environmental sustainability issues throughout various initiatives undertaken over the years at the level of the production sector, such as certification activities and sustainability policies. In this way, starting from an evaluation of the sustainability in all its aspects, the present work aims to develop a benchmarking helping both producers and consumers. In the present study, throughout the Life Cycle Sustainability Assessment (LCSA) framework, the sustainability has been assessed in all its dimensions: environmental with the Life Cycle Assessment (LCA), economic with the Life Cycle Costing (LCC) and social with the Social Life Cycle Assessment (S-LCA). The annual district production of stoneware tiles during the 2016 reference year has been taken as reference flow for all the three assessments, and the system boundaries cover the entire life cycle of the tiles, except for the LCC for which only the production costs have been considered at the moment. In addition, a preliminary method for the evaluation of local and indoor emissions has been introduced in order to assess the impact due to atmospheric emissions on both people living in the area surrounding the factories and workers. The Life Cycle Assessment results, obtained from IMPACT 2002+ modified assessment method, highlight that the manufacturing process is responsible for the main impact, especially because of atmospheric emissions at a local scale, followed by the distribution to end users, the installation and the ordinary maintenance of the tiles. With regard to the economic evaluation, both the internal and external costs have been considered. For the LCC, primary data from the analysis of the financial statements of Italian ceramic companies show that the higher cost items refer to expenses for goods and services and costs of human resources. The analysis of externalities with the EPS 2015dx method attributes the main damages to the distribution and installation of the tiles. The social dimension has been investigated with a preliminary approach by using the Social Hotspots Database, and the results indicate that the most affected damage categories are health and safety and labor rights and decent work. This study shows the potential of the LCSA framework applied to an industrial sector; in particular, it can be a useful tool for building a comprehensive benchmark for the sustainability of the ceramic industry, and it can help companies to actively integrate sustainability principles into their business models.Keywords: benchmarking, Italian ceramic industry, life cycle sustainability assessment, porcelain stoneware tiles
Procedia PDF Downloads 127221 Global Digital Peer-to-Peer (P2P) Lending Platform Empowering Rural India: Determinants of Funding
Authors: Ankur Mehra, M. V. Shivaani
Abstract:
With increasing digitization, the world is coming closer, not only in terms of informational flow but also in terms of capital flows. And micro-finance institutions (MFIs) have perfectly leveraged this digital world by resorting to the innovative digital social peer-to-peer (P2P) lending platforms, such as, Kiva. These digital P2P platforms bring together micro-borrowers and lenders from across the world. The main objective of this study is to understand the funding preferences of social investors primarily from developed countries (such as US, UK, Australia), lending money to borrowers from rural India at zero interest rates through Kiva. Further, the objective of this study is to increase awareness about such a platform among various MFIs engaged in providing micro-loans to those in need. The sample comprises of India based micro-loan applications posted by various MFIs on Kiva lending platform over the period Sept 2012-March 2016. Out of 7,359 loans, 256 loans failed to get funded by social investors. On an average a micro-loan with 30 days to expiry gets fully funded in 7,593 minutes or 5.27 days. 62% of the loans raised on Kiva are related to livelihood, 32.5% of the loans are for funding basic necessities and balance 5.5% loans are for funding education. 47% of the loan applications have more than one borrower; while, currency exchange risk is on the social lenders for 45% of the loans. Controlling for the loan amount and loan tenure, the analyses suggest that those loan applications where the number of borrowers is more than one have a lower chance of getting funded as compared to the loan applications made by a sole borrower. Such group applications also take more time to get funded. Further, loan application by a solo woman not only has a higher chance of getting funded but as such get funded faster. The results also suggest that those loan applications which are supported by an MFI that has a religious affiliation, not only have a lower chance of getting funded, but also take longer to get funded as compared to the loan applications posted by secular MFIs. The results do not support cross-border currency risk to be a factor in explaining the determinants of loan funding. Finally, analyses suggest that loans raised for the purpose of earning livelihood and education have a higher chance of getting funded and such loans get funded faster as compared to the loans applied for purposes related to basic necessities such a clothing, housing, food, health, and personal use. The results are robust to controls for ‘MFI dummy’ and ‘year dummy’. The key implication from this study is that global social investors tend to develop an emotional connect with single woman borrowers and consequently they get funded faster Hence, MFIs should look for alternative ways for funding loans whose purpose is to meet basic needs; while, more loans related to livelihood and education should be raised via digital platforms.Keywords: P2P lending, social investing, fintech, financial inclusion
Procedia PDF Downloads 144220 Catalytic Ammonia Decomposition: Cobalt-Molybdenum Molar Ratio Effect on Hydrogen Production
Authors: Elvis Medina, Alejandro Karelovic, Romel Jiménez
Abstract:
Catalytic ammonia decomposition represents an attractive alternative due to its high H₂ content (17.8% w/w), a product stream free of COₓ, among others; however, challenges need to be addressed for its consolidation as an H₂ chemical storage technology, especially, those focused on the synthesis of efficient bimetallic catalytic systems, as an alternative to the price and scarcity of ruthenium, the most active catalyst reported. In this sense, from the perspective of rational catalyst design, adjusting the main catalytic activity descriptor, a screening of supported catalysts with different compositional settings of cobalt-molybdenum metals is presented to evaluate their effect on the catalytic decomposition rate of ammonia. Subsequently, a kinetic study on the supported monometallic Co and Mo catalysts, as well as on the bimetallic CoMo catalyst with the highest activity is shown. The synthesis of catalysts supported on γ-alumina was carried out using the Charge Enhanced Dry Impregnation (CEDI) method, all with a 5% w/w loading metal. Seeking to maintain uniform dispersion, the catalysts were oxidized and activated (In-situ activation) using a flow of anhydrous air and hydrogen, respectively, under the same conditions: 40 ml min⁻¹ and 5 °C min⁻¹ from room temperature to 600 °C. Catalytic tests were carried out in a fixed-bed reactor, confirming the absence of transport limitations, as well as an Approach to equilibrium (< 1 x 10⁻⁴). The reaction rate on all catalysts was measured between 400 and 500 ºC at 53.09 kPa NH3. The synergy theoretically (DFT) reported for bimetallic catalysts was confirmed experimentally. Specifically, it was observed that the catalyst composed mainly of 75 mol% cobalt proved to be the most active in the experiments, followed by the monometallic cobalt and molybdenum catalysts, in this order of activity as referred to in the literature. A kinetic study was performed at 10.13 – 101.32 kPa NH3 and at four equidistant temperatures between 437 and 475 °C the data were adjusted to an LHHW-type model, which considered the desorption of nitrogen atoms from the active phase surface as the rate determining step (RDS). The regression analysis were carried out under an integral regime, using a minimization algorithm based on SLSQP. The physical meaning of the parameters adjusted in the kinetic model, such as the RDS rate constant (k₅) and the lumped adsorption constant of the quasi-equilibrated steps (α) was confirmed through their Arrhenius and Van't Hoff-type behavior (R² > 0.98), respectively. From an energetic perspective, the activation energy for cobalt, cobalt-molybdenum, and molybdenum was 115.2, 106.8, and 177.5 kJ mol⁻¹, respectively. With this evidence and considering the volcano shape described by the ammonia decomposition rate in relation to the metal composition ratio, the synergistic behavior of the system is clearly observed. However, since characterizations by XRD and TEM were inconclusive, the formation of intermetallic compounds should be still verified using HRTEM-EDS. From this point onwards, our objective is to incorporate parameters into the kinetic expressions that consider both compositional and structural elements and explore how these can maximize or influence H₂ production.Keywords: CEDI, hydrogen carrier, LHHW, RDS
Procedia PDF Downloads 55219 Recycling the Lanthanides from Permanent Magnets by Electrochemistry in Ionic Liquid
Authors: Celine Bonnaud, Isabelle Billard, Nicolas Papaiconomou, Eric Chainet
Abstract:
Thanks to their high magnetization and low mass, permanent magnets (NdFeB and SmCo) have quickly became essential for new energies (wind turbines, electrical vehicles…). They contain large quantities of neodymium, samarium and dysprosium, that have been recently classified as critical elements and that therefore need to be recycled. Electrochemical processes including electrodissolution followed by electrodeposition are an elegant and environmentally friendly solution for the recycling of such lanthanides contained in permanent magnets. However, electrochemistry of the lanthanides is a real challenge as their standard potentials are highly negative (around -2.5V vs ENH). Consequently, non-aqueous solvents are required. Ionic liquids (IL) are novel electrolytes exhibiting physico-chemical properties that fulfill many requirements of the sustainable chemistry principles, such as extremely low volatility and non-flammability. Furthermore, their chemical and electrochemical properties (solvation of metallic ions, large electrochemical windows, etc.) render them very attractive media to implement alternative and sustainable processes in view of integrated processes. All experiments that will be presented were carried out using butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Linear sweep, cyclic voltammetry and potentiostatic electrochemical techniques were used. The reliability of electrochemical experiments, performed without glove box, for the classic three electrodes cell used in this study has been assessed. Deposits were obtained by chronoamperometry and were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The IL cathodic behavior under different constraints (argon, nitrogen, oxygen atmosphere or water content) and using several electrode materials (Pt, Au, GC) shows that with argon gas flow and gold as a working electrode, the cathodic potential can reach the maximum value of -3V vs Fc+/Fc; thus allowing a possible reduction of lanthanides. On a gold working electrode, the reduction potential of samarium and neodymium was found to be -1.8V vs Fc+/Fc while that of dysprosium was -2.1V vs Fc+/Fc. The individual deposits obtained were found to be porous and presented some significant amounts of C, N, F, S and O atoms. Selective deposition of neodymium in presence of dysprosium was also studied and will be discussed. Next, metallic Sm, Nd and Dy electrodes were used in replacement of Au, which induced changes in the reduction potential values and the deposit structures of lanthanides. The individual corrosion potentials were also measured in order to determine the parameters influencing the electrodissolution of these metals. Finally, a full recycling process was investigated. Electrodissolution of a real permanent magnet sample was monitored kinetically. Then, the sequential electrodeposition of all lanthanides contained in the IL was investigated. Yields, quality of the deposits and consumption of chemicals will be discussed in depth, in view of the industrial feasibility of this process for real permanent magnets recycling.Keywords: electrodeposition, electrodissolution, ionic liquids, lanthanides, rcycling
Procedia PDF Downloads 274218 Bioactive Substances-Loaded Water-in-Oil/Oil-in-Water Emulsions for Dietary Supplementation in the Elderly
Authors: Agnieszka Markowska-Radomska, Ewa Dluska
Abstract:
Maintaining a bioactive substances dense diet is important for the elderly, especially to prevent diseases and to support healthy ageing. Adequate bioactive substances intake can reduce the risk of developing chronic diseases (e.g. cardiovascular, osteoporosis, neurodegenerative syndromes, diseases of the oral cavity, gastrointestinal (GI) disorders, diabetes, and cancer). This can be achieved by introducing a comprehensive supplementation of components necessary for the proper functioning of the ageing body. The paper proposes the multiple emulsions of the W1/O/W2 (water-in-oil-in-water) type as carriers for effective co-encapsulation and co-delivery of bioactive substances in supplementation of the elderly. Multiple emulsions are complex structured systems ("drops in drops"). The functional structure of the W1/O/W2 emulsion enables (i) incorporation of one or more bioactive components (lipophilic and hydrophilic); (ii) enhancement of stability and bioavailability of encapsulated substances; (iii) prevention of interactions between substances, as well as with the external environment, delivery to a specific location; and (iv) release in a controlled manner. The multiple emulsions were prepared by a one-step method in the Couette-Taylor flow (CTF) contactor in a continuous manner. In general, a two-step emulsification process is used to obtain multiple emulsions. The paper contains a proposal of emulsion functionalization by introducing pH-responsive biopolymer—carboxymethylcellulose sodium salt (CMC-Na) to the external phase, which made it possible to achieve a release of components controlled by the pH of the gastrointestinal environment. The membrane phase of emulsions was soybean oil. The W1/O/W2 emulsions were evaluated for their characteristics (drops size/drop size distribution, volume packing fraction), encapsulation efficiency and stability during storage (to 30 days) at 4ºC and 25ºC. Also, the in vitro multi-substance co-release process were investigated in a simulated gastrointestinal environment (different pH and composition of release medium). Three groups of stable multiple emulsions were obtained: emulsions I with co-encapsulated vitamins B12, B6 and resveratrol; emulsions II with vitamin A and β-carotene; and emulsions III with vitamins C, E and D3. The substances were encapsulated in the appropriate emulsion phases depending on the solubility. For all emulsions, high encapsulation efficience (over 95%) and high volume packing fraction of internal droplets (0.54-0.76) were reached. In addition, due to the presence of a polymer (CMC-Na) with adhesive properties, high encapsulation stability during emulsions storage were achieved. The co-release study of encapsulated bioactive substances confirmed the possibility to modify the release profiles. It was found that the releasing process can be controlled through the composition, structure, physicochemical parameters of emulsions and pH of the release medium. The results showed that the obtained multiple emulsions might be used as potential liquid complex carriers for controlled/modified/site-specific co-delivery of bioactive substances in dietary supplementation in the elderly.Keywords: bioactive substance co-release, co-encapsulation, elderly supplementation, multiple emulsion
Procedia PDF Downloads 198217 The Involvement of the Homing Receptors CCR7 and CD62L in the Pathogenesis of Graft-Versus-Host Disease
Authors: Federico Herrera, Valle Gomez García de Soria, Itxaso Portero Sainz, Carlos Fernández Arandojo, Mercedes Royg, Ana Marcos Jimenez, Anna Kreutzman, Cecilia MuñozCalleja
Abstract:
Introduction: Graft-versus-host disease (GVHD) still remains the major complication associated with allogeneic stem cell transplantation (SCT). The pathogenesis involves migration of donor naïve T-cells into recipient secondary lymphoid organs. Two molecules are important in this process: CD62L and CCR7, which are characteristically expressed in naïve/central memory T-cells. With this background, we aimed to study the influence of CCR7 and CD62L on donor lymphocytes in the development and severity of GVHD. Material and methods: This single center study included 98 donor-recipient pairs. Samples were collected prospectively from the apheresis product and phenotyped by flow cytometry. CCR7 and CD62L expression in CD4+ and CD8+ T-cells were compared between patients who developed acute (n=40) or chronic GVHD (n=33) and those who did not (n=38). Results: The patients who developed acute GVHD were transplanted with a higher percentage of CCR7+CD4+ T-cells (p = 0.05) compared to the no GVHD group. These results were confirmed when these patients were divided in degrees according to the severity of the disease; the more severe disease, the higher percentage of CCR7+CD4+ T-cells. Conversely, chronic GVHD patients received a higher percentage of CCR7+CD8+ T-cells (p=0.02) in comparison to those who did not develop the complication. These data were also confirmed when patients were subdivided in degrees of the disease severity. A multivariable analysis confirmed that percentage of CCR7+CD4+ T-cells is a predictive factor of acute GVHD whereas the percentage of CCR7+CD8+ T-cells is a predictive factor of chronic GVHD. In vitro functional assays (migration and activation assays) supported the idea of CCR7+ T-cells were involved in the development of GVHD. As low levels of CD62L expression were detected in all apheresis products, we tested the hypothesis that CD62L was shed during apheresis procedure. Comparing CD62L surface levels in T-cells from the same donor immediately before collecting the apheresis product, and the final apheresis product we found that this process down-regulated CD62L in both CD4+ and CD8+ T cells (p=0.008). Interestingly, when CD62L levels were analysed in days 30 or 60 after engraftment, they recovered to baseline (p=0.008). However, to investigate the relation between CD62L expression and the development of GVHD in the recipient samples after the engraftment, no differences were observed comparing patients with GVHD to those who did not develop the disease. Discussion: Our prospective study indicates that the CCR7+ T-cells from the donor, which include naïve and central memory T-cells, contain the alloreactive cells with a high ability to mediate GVHD (in the case of both migration and activation). Therefore we suggest that the proportion and functional properties of CCR7+CD4+ and CCR7+CD8+ T-cells in the apheresis could act as a predictive biomarker to both acute and chronic GVHD respectively. Importantly, our study precludes that CD62L is lost in the apheresis and therefore it is not a reliable biomarker for the development of GVHD.Keywords: CCR7, CD62L, GVHD, SCT
Procedia PDF Downloads 287216 A Study for Effective CO2 Sequestration of Hydrated Cement by Direct Aqueous Carbonation
Authors: Hyomin Lee, Jinhyun Lee, Jinyeon Hwang, Younghoon Choi, Byeongseo Son
Abstract:
Global warming is a world-wide issue. Various carbon capture and storage (CCS) technologies for reducing CO2 concentration in the atmosphere have been increasingly studied. Mineral carbonation is one of promising method for CO2 sequestration. Waste cement generating from aggregate recycling processes of waste concrete is potentially a good raw material containing reactive components for mineral carbonation. The major goal of our long-term project is to developed effective methods for CO2 sequestration using waste cement. In the present study, the carbonation characteristics of hydrated cement were examined by conducting two different direct aqueous carbonation experiments. We also evaluate the influence of NaCl and MgCl2 as additives to increase mineral carbonation efficiency of hydrated cement. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized to the size less than 0.15 mm. 15 g of pulverized cement paste and 200 ml of solutions containing additives were reacted in ambient temperature and pressure conditions. 1M NaCl and 0.25 M MgCl2 was selected for additives after leaching test. Two different sources of CO2 was applied for direct aqueous carbonation experiment: 0.64 M NaHCO3 was used for CO2 donor in method 1 and pure CO2 gas (99.9%) was bubbling into reacting solution at the flow rate of 20 ml/min in method 2. The pH and Ca ion concentration were continuously measured with pH/ISE Multiparameter to observe carbonation behaviors. Material characterization of reacted solids was performed by TGA, XRD, SEM/EDS analyses. The carbonation characteristics of hydrated cement were significantly different with additives. Calcite was a dominant calcium carbonate mineral after the two carbonation experiments with no additive and NaCl additive. The significant amount of aragonite and vaterite as well as very fine calcite of poorer crystallinity was formed with MgCl2 additive. CSH (calcium silicate hydrate) in hydrated cement were changed to MSH (magnesium silicate hydrate). This transformation contributed to the high carbonation efficiency. Carbonation experiment with method 1 revealed that that the carbonation of hydrated cement took relatively long time in MgCl2 solution compared to that in NaCl solution and the contents of aragonite and vaterite were increased as increasing reaction time. In order to maximize carbonation efficiency in direct aqueous carbonation with CO2 gas injection (method 2), the control of solution pH was important. The solution pH was decreased with injection of CO2 gas. Therefore, the carbonation efficiency in direct aqueous carbonation was closely related to the stability of calcium carbonate minerals with pH changes. With no additive and NaCl additive, the maximum carbonation was achieved when the solution pH was greater than 11. Calcium carbonate form by mineral carbonation seemed to be re-dissolved as pH decreased below 11 with continuous CO2 gas injection. The type of calcium carbonate mineral formed during carbonation in MgCl2 solution was closely related to the variation of solution pH caused by CO2 gas injection. The amount of aragonite significantly increased with decreasing solution pH, whereas the amount of calcite decreased.Keywords: CO2 sequestration, Mineral carbonation, Cement and concrete, MgCl2 and NaCl
Procedia PDF Downloads 379215 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry
Authors: C. A. Barros, Ana P. Barroso
Abstract:
Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis
Procedia PDF Downloads 214214 Evaluation of Mixing and Oxygen Transfer Performances for a Stirred Bioreactor Containing P. chrysogenum Broths
Authors: A. C. Blaga, A. Cârlescu, M. Turnea, A. I. Galaction, D. Caşcaval
Abstract:
The performance of an aerobic stirred bioreactor for fungal fermentation was analyzed on the basis of mixing time and oxygen mass transfer coefficient, by quantifying the influence of some specific geometrical and operational parameters of the bioreactor, as well as the rheological behavior of Penicillium chrysogenum broth (free mycelia and mycelia aggregates). The rheological properties of the fungus broth, controlled by the biomass concentration, its growth rate, and morphology strongly affect the performance of the bioreactor. Experimental data showed that for both morphological structures the accumulation of fungus biomass induces a significant increase of broths viscosity and modifies the rheological behavior. For lower P. chrysogenum concentrations (both morphological conformations), the mixing time initially increases with aeration rate, reaches a maximum value and decreases. This variation can be explained by the formation of small bubbles, due to the presence of solid phase which hinders the bubbles coalescence, the rising velocity of bubbles being reduced by the high apparent viscosity of fungus broths. By biomass accumulation, the variation of mixing time with aeration rate is gradually changed, the continuous reduction of mixing time with air input flow increase being obtained for 33.5 g/l d.w. P. chrysogenum. Owing to the superior apparent viscosity, which reduces considerably the relative contribution of mechanical agitation to the broths mixing, these phenomena are more pronounced for P. chrysogenum free mycelia. Due to the increase of broth apparent viscosity, the biomass accumulation induces two significant effects on oxygen transfer rate: the diminution of turbulence and perturbation of bubbles dispersion - coalescence equilibrium. The increase of P. chrysogenum free mycelia concentration leads to the decrease of kla values. Thus, for the considered variation domain of the main parameters taken into account, namely air superficial velocity from 8.36 10-4 to 5.02 10-3 m/s and specific power input from 100 to 500 W/m3, kla was reduced for 3.7 times for biomass concentration increase from 4 to 36.5 g/l d.w. The broth containing P. crysogenum mycelia aggregates exhibits a particular behavior from the point of view of oxygen transfer. Regardless of bioreactor operating conditions, the increase of biomass concentration leads initially to the increase of oxygen mass transfer rate, the phenomenon that can be explained by the interaction of pellets with bubbles. The results are in relation with the increase of apparent viscosity of broths corresponding to the variation of biomass concentration between the mentioned limits. Thus, the apparent viscosity of the suspension of fungus mycelia aggregates increased for 44.2 times and fungus free mycelia for 63.9 times for CX increase from 4 to 36.5 g/l d.w. By means of the experimental data, some mathematical correlations describing the influences of the considered factors on mixing time and kla have been proposed. The proposed correlations can be used in bioreactor performance evaluation, optimization, and scaling-up.Keywords: biomass concentration, mixing time, oxygen mass transfer, P. chrysogenum broth, stirred bioreactor
Procedia PDF Downloads 340213 Prediction of Endotracheal Tube Size in Children by Predicting Subglottic Diameter Using Ultrasonographic Measurement versus Traditional Formulas
Authors: Parul Jindal, Shubhi Singh, Priya Ramakrishnan, Shailender Raghuvanshi
Abstract:
Background: Knowledge of the influence of the age of the child on laryngeal dimensions is essential for all practitioners who are dealing with paediatric airway. Choosing the correct endotracheal tube (ETT) size is a crucial step in pediatric patients because a large-sized tube may cause complications like post-extubation stridor and subglottic stenosis. On the other hand with a smaller tube, there will be increased gas flow resistance, aspiration risk, poor ventilation, inaccurate monitoring of end-tidal gases and reintubation may also be required with a different size of the tracheal tube. Recent advancement in ultrasonography (USG) techniques should now allow for accurate and descriptive evaluation of pediatric airway. Aims and objectives: This study was planned to determine the accuracy of Ultrasonography (USG) to assess the appropriate ETT size and compare it with physical indices based formulae. Methods: After obtaining approval from Institute’s Ethical and Research committee, and parental written and informed consent, the study was conducted on 100 subjects of either sex between 12-60 months of age, undergoing various elective surgeries under general anesthesia requiring endotracheal intubation. The same experienced radiologist performed ultrasonography. The transverse diameter was measured at the level of cricoids cartilage by USG. After USG, general anesthesia was administered using standard techniques followed by the institute. An experienced anesthesiologist performed the endotracheal intubations with uncuffed endotracheal tube (Portex Tracheal Tube Smiths Medical India Pvt. Ltd.) with Murphy’s eye. He was unaware of the finding of the ultrasonography. The tracheal tube was considered best fit if air leak was satisfactory at 15-20 cm H₂O of airway pressure. The obtained values were compared with the values of endotracheal tube size calculated by ultrasonography, various age, height, weight-based formulas and diameter of right and left little finger. The correlation of the size of the endotracheal tube by different modalities was done and Pearson's correlation coefficient was obtained. The comparison of the mean size of the endotracheal tube by ultrasonography and by traditional formula was done by the Friedman’s test and Wilcoxon sign-rank test. Results: The predicted tube size was equal to best fit and best determined by ultrasonography (100%) followed by comparison to left little finger (98%) and right little finger (97%) and age-based formula (95%) followed by multivariate formula (83%) and body length (81%) formula. According to Pearson`s correlation, there was a moderate correlation of best fit endotracheal tube with endotracheal tube size by age-based formula (r=0.743), body length based formula (r=0.683), right little finger based formula (r=0.587), left little finger based formula (r=0.587) and multivariate formula (r=0.741). There was a strong correlation with ultrasonography (r=0.943). Ultrasonography was the most sensitive (100%) method of prediction followed by comparison to left (98%) and right (97%) little finger and age-based formula (95%), the multivariate formula had an even lesser sensitivity (83%) whereas body length based formula was least sensitive with a sensitivity of 78%. Conclusion: USG is a reliable method of estimation of subglottic diameter and for prediction of ETT size in children.Keywords: endotracheal intubation, pediatric airway, subglottic diameter, traditional formulas, ultrasonography
Procedia PDF Downloads 240212 R&D Diffusion and Productivity in a Globalized World: Country Capabilities in an MRIO Framework
Authors: S. Jimenez, R.Duarte, J.Sanchez-Choliz, I. Villanua
Abstract:
There is a certain consensus in economic literature about the factors that have influenced in historical differences in growth rates observed between developed and developing countries. However, it is less clear what elements have marked different paths of growth in developed economies in recent decades. R&D has always been seen as one of the major sources of technological progress, and productivity growth, which is directly influenced by technological developments. Following recent literature, we can say that ‘innovation pushes the technological frontier forward’ as well as encourage future innovation through the creation of externalities. In other words, productivity benefits from innovation are not fully appropriated by innovators, but it also spread through the rest of the economies encouraging absorptive capacities, what have become especially important in a context of increasing fragmentation of production This paper aims to contribute to this literature in two ways, first, exploring alternative indexes of R&D flows embodied in inter-country, inter-sectorial flows of good and services (as approximation to technology spillovers) capturing structural and technological characteristic of countries and, second, analyzing the impact of direct and embodied R&D on the evolution of labor productivity at the country/sector level in recent decades. The traditional way of calculation through a multiregional input-output framework assumes that all countries have the same capabilities to absorb technology, but it is not, each one has different structural features and, this implies, different capabilities as part of literature, claim. In order to capture these differences, we propose to use a weight based on specialization structure indexes; one related with the specialization of countries in high-tech sectors and the other one based on a dispersion index. We propose these two measures because, as far as we understood, country capabilities can be captured through different ways; countries specialization in knowledge-intensive sectors, such as Chemicals or Electrical Equipment, or an intermediate technology effort across different sectors. Results suggest the increasing importance of country capabilities while increasing the trade openness. Besides, if we focus in the country rankings, we can observe that with high-tech weighted R&D embodied countries as China, Taiwan and Germany arose the top five despite not having the highest intensities of R&D expenditure, showing the importance of country capabilities. Additionally, through a fixed effects panel data model we show that, in fact, R&D embodied is important to explain labor productivity increases, in fact, even more that direct R&D investments. This is reflecting that globalization is more important than has been said until now. However, it is true that almost all analysis done in relation with that consider the effect of t-1 direct R&D intensity over economic growth. Nevertheless, from our point of view R&D evolve as a delayed flow and it is necessary some time to be able to see its effects on the economy, as some authors have already claimed. Our estimations tend to corroborate this hypothesis obtaining a gap between 4-5 years.Keywords: economic growth, embodied, input-output, technology
Procedia PDF Downloads 124211 A Case Study on Problems Originated from Critical Path Method Application in a Governmental Construction Project
Authors: Mohammad Lemar Zalmai, Osman Hurol Turkakin, Cemil Akcay, Ekrem Manisali
Abstract:
In public construction projects, determining the contract period in the award phase is one of the most important factors. The contract period establishes the baseline for creating the cash flow curve and progress payment planning in the post-award phase. If overestimated, project duration causes losses for both the owner and the contractor. Therefore, it is essential to base construction project duration on reliable forecasting. In Turkey, schedules are usually built using the bar chart (Gantt) schedule, especially for governmental construction agencies. The usage of these schedules is limited for bidding purposes. Although the bar-chart schedule is useful in some cases, it lacks logical connections between activities; it would be harder to obtain the activities that have more effects than others on the project's total duration, especially in large complex projects. In this study, a construction schedule is prepared with Critical Path Method (CPM) that addresses the above-mentioned discrepancies. CPM is a simple and effective method that displays project time and critical paths, showing results of forward and backward calculations with considering the logic relationships between activities; it is a powerful tool for planning and managing all kinds of construction projects and is a very convenient method for the construction industry. CPM provides a much more useful and precise approach than traditional bar-chart diagrams that form the basis of construction planning and control. CPM has two main application utilities in the construction field; the first one is obtaining project duration, which is called an as-planned schedule that includes as-planned activity durations with relationships between subsequent activities. Another utility is during the project execution; each activity is tracked, and their durations are recorded in order to obtain as-built schedule, which is named as a black box of the project. The latter is more useful for delay analysis, and conflict resolutions. These features of CPM have been popular around the world. However, it has not been yet extensively used in Turkey. In this study, a real construction project is investigated as a case study; CPM-based scheduling is used for establishing both of as-built and as-planned schedules. Problems that emerged during the construction phase are identified and categorized. Subsequently, solutions are suggested. Two scenarios were considered. In the first scenario, project progress was monitored based as CPM was used to track and manage progress; this was carried out based on real-time data. In the second scenario, project progress was supposedly tracked based on the assumption that the Gantt chart was used. The S-curves of the two scenarios are plotted and interpreted. Comparing the results, possible faults of the latter scenario are highlighted, and solutions are suggested. The importance of CPM implementation has been emphasized and it has been proposed to make it mandatory for preparation of construction schedule based on CPM for public construction projects contracts.Keywords: as-built, case-study, critical path method, Turkish government sector projects
Procedia PDF Downloads 119210 Arc Plasma Thermochemical Preparation of Coal to Effective Combustion in Thermal Power Plants
Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev
Abstract:
This work presents plasma technology for solid fuel ignition and combustion. Plasma activation promotes more effective and environmentally friendly low-rank coal ignition and combustion. To realise this technology at coal fired power plants plasma-fuel systems (PFS) were developed. PFS improve efficiency of power coals combustion and decrease harmful emission. PFS is pulverized coal burner equipped with arc plasma torch. Plasma torch is the main element of the PFS. Plasma forming gas is air. It is blown through the electrodes forming plasma flame. Temperature of this flame is varied from 5000 to 6000 K. Plasma torch power is varied from 100 to 350 kW and geometrical sizes are the following: the height is 0.4-0.5 m and diameter is 0.2-0.25 m. The base of the PFS technology is plasma thermochemical preparation of coal for burning. It consists of heating of the pulverized coal and air mixture by arc plasma up to temperature of coal volatiles release and char carbon partial gasification. In the PFS coal-air mixture is deficient in oxygen and carbon is oxidised mainly to carbon monoxide. As a result, at the PFS exit a highly reactive mixture is formed of combustible gases and partially burned char particles, together with products of combustion, while the temperature of the gaseous mixture is around 1300 K. Further mixing with the air promotes intensive ignition and complete combustion of the prepared fuel. PFS have been tested for boilers start up and pulverized coal flame stabilization in different countries at power boilers of 75 to 950 t/h steam productivity. They were equipped with different types of pulverized coal burners (direct flow, muffle and swirl burners). At PFS testing power coals of all ranks (lignite, bituminous, anthracite and their mixtures) were incinerated. Volatile content of them was from 4 to 50%, ash varied from 15 to 48% and heat of combustion was from 1600 to 6000 kcal/kg. To show the advantages of the plasma technology before conventional technologies of coal combustion numerical investigation of plasma ignition, gasification and thermochemical preparation of a pulverized coal for incineration in an experimental furnace with heat capacity of 3 MW was fulfilled. Two computer-codes were used for the research. The computer simulation experiments were conducted for low-rank bituminous coal of 44% ash content. The boiler operation has been studied at the conventional mode of combustion and with arc plasma activation of coal combustion. The experiments and computer simulation showed ecological efficiency of the plasma technology. When a plasma torch operates in the regime of plasma stabilization of pulverized coal flame, NOX emission is reduced twice and amount of unburned carbon is reduced four times. Acknowledgement: This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.613.21.0005, project RFMEFI61314X0005).Keywords: coal, ignition, plasma-fuel system, plasma torch, thermal power plant
Procedia PDF Downloads 278209 Curcumin and Its Analogues: Potent Natural Antibacterial Compounds against Staphylococcus aureus
Authors: Prince Kumar, Shamseer Kulangara Kandi, Diwan S. Rawat, Kasturi Mukhopadhyay
Abstract:
Staphylococcus aureus is the most pathogenic of all staphylococci, a major cause of nosocomial infections, and known for acquiring resistance towards various commonly used antibiotics. Due to the widespread use of synthetic drugs, clinicians are now facing a serious threat in healthcare. The increasing resistance in staphylococci has created a need for alternatives to these synthetic drugs. One of the alternatives is a natural plant-based medicine for both disease prevention as well as the treatment of chronic diseases. Among such natural compounds, curcumin is one of the most studied molecules and has been an integral part of traditional medicines and Ayurveda from ancient times. It is a natural polyphenolic compound with diverse pharmacological effects, including anti-inflammatory, antioxidant, anti-cancerous and antibacterial activities. In spite of its efficacy and potential, curcumin has not been approved as a therapeutic agent yet, because of its low solubility, low bioavailability, and rapid metabolism in vivo. The presence of central β-diketone moiety in curcumin is responsible for its rapid metabolism. To overcome this, in the present study, curcuminoids were designed by modifying the central β-diketone moiety of curcumin into mono carbonyl moiety and their antibacterial potency against S. aureus ATCC 29213 was determined. Further, the mode of action and hemolytic activity of the most potent curcuminoids were studied. Minimum inhibitory concentration (MIC) and in vitro killing kinetics were used to study the antibacterial activity of the designed curcuminoids. For hemolytic assay, mouse Red blood cells were incubated with curcuminoids and hemoglobin release was measured spectrophotometrically. The mode of action of curcuminoids was analysed by membrane depolarization assay using membrane potential sensitive dye 3,3’-dipropylthiacarbocyanine iodide (DiSC3(5)) through spectrofluorimetry and membrane permeabilization assay using calcein-AM through flow cytometry. Antibacterial screening of the designed library (61 curcuminoids) revealed excellent in vitro potency of six compounds against S. aureus (MIC 8 to 32 µg/ml). Moreover, these six compounds were found to be non-hemolytic up to 225 µg/ml that is much higher than their corresponding MIC values. The in vitro killing kinetics data showed five of these lead compounds to be bactericidal causing >3 log reduction in the viable cell count within 4 hrs at 5 × MIC while the sixth compound was found to be bacteriostatic. Depolarization assay revealed that all the six curcuminoids caused depolarization in their corresponding MIC range. Further, the membrane permeabilization assay showed that all the six curcuminoids caused permeabilization at 5 × MIC in 2 hrs. This membrane depolarization and permeabilization caused by curcuminoids found to be in correlation with their corresponding killing efficacy. Both these assays point out that membrane perturbations might be a primary mode of action for these curcuminoids. Overall, the present study leads us six water soluble, non-hemolytic, membrane-active curcuminoids and provided an impetus for further research on therapeutic use of these lead curcuminoids against S. aureus.Keywords: antibacterial, curcumin, minimum inhibitory concentration , Staphylococcus aureus
Procedia PDF Downloads 169208 Design, Development and Testing of Polymer-Glass Microfluidic Chips for Electrophoretic Analysis of Biological Sample
Authors: Yana Posmitnaya, Galina Rudnitskaya, Tatyana Lukashenko, Anton Bukatin, Anatoly Evstrapov
Abstract:
An important area of biological and medical research is the study of genetic mutations and polymorphisms that can alter gene function and cause inherited diseases and other diseases. The following methods to analyse DNA fragments are used: capillary electrophoresis and electrophoresis on microfluidic chip (MFC), mass spectrometry with electrophoresis on MFC, hybridization assay on microarray. Electrophoresis on MFC allows to analyse small volumes of samples with high speed and throughput. A soft lithography in polydimethylsiloxane (PDMS) was chosen for operative fabrication of MFCs. A master-form from silicon and photoresist SU-8 2025 (MicroChem Corp.) was created for the formation of micro-sized structures in PDMS. A universal topology which combines T-injector and simple cross was selected for the electrophoretic separation of the sample. Glass K8 and PDMS Sylgard® 184 (Dow Corning Corp.) were used for fabrication of MFCs. Electroosmotic flow (EOF) plays an important role in the electrophoretic separation of the sample. Therefore, the estimate of the quantity of EOF and the ways of its regulation are of interest for the development of the new methods of the electrophoretic separation of biomolecules. The following methods of surface modification were chosen to change EOF: high-frequency (13.56 MHz) plasma treatment in oxygen and argon at low pressure (1 mbar); 1% aqueous solution of polyvinyl alcohol; 3% aqueous solution of Kolliphor® P 188 (Sigma-Aldrich Corp.). The electroosmotic mobility was evaluated by the method of Huang X. et al., wherein the borate buffer was used. The influence of physical and chemical methods of treatment on the wetting properties of the PDMS surface was controlled by the sessile drop method. The most effective way of surface modification of MFCs, from the standpoint of obtaining the smallest value of the contact angle and the smallest value of the EOF, was the processing with aqueous solution of Kolliphor® P 188. This method of modification has been selected for the treatment of channels of MFCs, which are used for the separation of mixture of oligonucleotides fluorescently labeled with the length of chain with 10, 20, 30, 40 and 50 nucleotides. Electrophoresis was performed on the device MFAS-01 (IAI RAS, Russia) at the separation voltage of 1500 V. 6% solution of polydimethylacrylamide with the addition of 7M carbamide was used as the separation medium. The separation time of components of the mixture was determined from electropherograms. The time for untreated MFC was ~275 s, and for the ones treated with solution of Kolliphor® P 188 – ~ 220 s. Research of physical-chemical methods of surface modification of MFCs allowed to choose the most effective way for reducing EOF – the modification with aqueous solution of Kolliphor® P 188. In this case, the separation time of the mixture of oligonucleotides decreased about 20%. The further optimization of method of modification of channels of MFCs will allow decreasing the separation time of sample and increasing the throughput of analysis.Keywords: electrophoresis, microfluidic chip, modification, nucleic acid, polydimethylsiloxane, soft lithography
Procedia PDF Downloads 413207 Multilocal Youth and the Berlin Digital Industry: Productive Leisure as a Key Factor in European Migration
Authors: Stefano Pelaggi
Abstract:
The research is focused on youth labor and mobility in Berlin. Mobility has become a common denominator in our daily lives but it does not primarily move according to monetary incentives. Labor, knowledge and leisure overlap on this point as cities are trying to attract people who could participate in production of the innovations while the new migrants are experiencing the lifestyle of the host cities. The research will present the project of empirical study focused on Italian workers in the digital industry in Berlin, trying to underline the connection between pleasure, leisure with the choice of life abroad. Berlin has become the epicenter of the European Internet start-up scene, but people suitable to work for digital industries are not moving in Berlin to make a career, most of them are attracted to the city for different reasons. This point makes a clear exception to traditional migration flows, which are always originated from a specific search of employment opportunities or strong ties, usually families, in a place that could guarantee success in finding a job. Even the skilled migration has always been originated from a specific need, finding the right path for a successful professional life. In a society where the lack of free time in our calendar seems to be something to be ashamed, the actors of youth mobility incorporate some categories of experiential tourism within their own life path. Professional aspirations, lifestyle choices of the protagonists of youth mobility are geared towards meeting the desires and aspirations that define leisure. While most of creative work places, in particular digital industries, uses the category of fun as a primary element of corporate policy, virtually extending the time to work for the whole day; more and more people around the world are deciding their path in life, career choices on the basis of indicators linked to the realization of the self, which may include factors like a warm climate, cultural environment. All indicators that are usually eradicated from the hegemonic approach to labor. The interpretative framework commonly used seems to be mostly focused on a dualism between Florida's theories and those who highlight the absence of conflict in his studies. While the flexibility of the new creative industries is minimizing leisure, incorporating elements of leisure itself in work activities, more people choose their own path of life by placing great importance to basic needs, through a gaze on pleasure that is only partially driven by consumption. The multi localism is the co-existence of different identities and cultures that do not conflict because they reject the bind on territory. Local loses its strength of opposition to global, with an attenuation of the whole concept of citizenship, territory and even integration. A similar perspective could be useful to search a new approach to all the studies dedicated to the gentrification process, while studying the new migrations flow.Keywords: brain drain, digital industry, leisure and gentrification, multi localism
Procedia PDF Downloads 243206 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 191205 Polyurethane Membrane Mechanical Property Study for a Novel Carotid Covered Stent
Authors: Keping Zuo, Jia Yin Chia, Gideon Praveen Kumar Vijayakumar, Foad Kabinejadian, Fangsen Cui, Pei Ho, Hwa Liang Leo
Abstract:
Carotid artery is the major vessel supplying blood to the brain. Carotid artery stenosis is one of the three major causes of stroke and the stroke is the fourth leading cause of death and the first leading cause of disability in most developed countries. Although there is an increasing interest in carotid artery stenting for treatment of cervical carotid artery bifurcation therosclerotic disease, currently available bare metal stents cannot provide an adequate protection against the detachment of the plaque fragments over diseased carotid artery, which could result in the formation of micro-emboli and subsequent stroke. Our research group has recently developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet retaining the ability to preserve the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid therosclerotic stenosis. The purpose of this study is to evaluate the biomechanical property of PU membrane of different concentration configurations in order to refine the stent coating technique and enhance the clinical performance of our novel carotid covered stent. Results from this study also provide necessary material property information crucial for accurate simulation analysis for our stents. Method: Medical grade Polyurethane (ChronoFlex AR) was used to prepare PU membrane specimens. Different PU membrane configurations were subjected to uniaxial test: 22%, 16%, and 11% PU solution were made by mixing the original solution with proper amount of the Dimethylacetamide (DMAC). The specimens were then immersed in physiological saline solution for 24 hours before test. All specimens were moistened with saline solution before mounting and subsequent uniaxial testing. The specimens were preconditioned by loading the PU membrane sample to a peak stress of 5.5 Mpa for 10 consecutive cycles at a rate of 50 mm/min. The specimens were then stretched to failure at the same loading rate. Result: The results showed that the stress-strain response curves of all PU membrane samples exhibited nonlinear characteristic. For the ultimate failure stress, 22% PU membrane was significantly higher than 16% (p<0.05). In general, our preliminary results showed that lower concentration PU membrane is stiffer than the higher concentration one. From the perspective of mechanical properties, 22% PU membrane is a better choice for the covered stent. Interestingly, the hyperelastic Ogden model is able to accurately capture the nonlinear, isotropic stress-strain behavior of PU membrane with R2 of 0.9977 ± 0.00172. This result will be useful for future biomechanical analysis of our stent designs and will play an important role for computational modeling of our covered stent fatigue study.Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain
Procedia PDF Downloads 310204 Impact of Material Chemistry and Morphology on Attrition Behavior of Excipients during Blending
Authors: Sri Sharath Kulkarni, Pauline Janssen, Alberto Berardi, Bastiaan Dickhoff, Sander van Gessel
Abstract:
Blending is a common process in the production of pharmaceutical dosage forms where the high shear is used to obtain a homogenous dosage. The shear required can lead to uncontrolled attrition of excipients and affect API’s. This has an impact on the performance of the formulation as this can alter the structure of the mixture. Therefore, it is important to understand the driving mechanisms for attrition. The aim of this study was to increase the fundamental understanding of the attrition behavior of excipients. Attrition behavior of the excipients was evaluated using a high shear blender (Procept Form-8, Zele, Belgium). Twelve pure excipients are tested, with morphologies varying from crystalline (sieved), granulated to spray dried (round to fibrous). Furthermore, materials include lactose, microcrystalline cellulose (MCC), di-calcium phosphate (DCP), and mannitol. The rotational speed of the blender was set at 1370 rpm to have the highest shear with a Froude (Fr) number 9. Varying blending times of 2-10 min were used. Subsequently, after blending, the excipients were analyzed for changes in particle size distribution (PSD). This was determined (n = 3) by dry laser diffraction (Helos/KR, Sympatec, Germany). Attrition was found to be a surface phenomenon which occurs in the first minutes of the high shear blending process. An increase of blending time above 2 mins showed no change in particle size distribution. Material chemistry was identified as a key driver for differences in the attrition behavior between different excipients. This is mainly related to the proneness to fragmentation, which is known to be higher for materials such as DCP and mannitol compared to lactose and MCC. Secondly, morphology also was identified as a driver of the degree of attrition. Granular products consisting of irregular surfaces showed the highest reduction in particle size. This is due to the weak solid bonds created between the primary particles during the granulation process. Granular DCP and mannitol show a reduction of 80-90% in x10(µm) compared to a 20-30% drop for granular lactose (monohydrate and anhydrous). Apart from the granular lactose, all the remaining morphologies of lactose (spray dried-round, sieved-tomahawk, milled) show little change in particle size. Similar observations have been made for spray-dried fibrous MCC. All these morphologies have little irregular or sharp surfaces and thereby are less prone to fragmentation. Therefore, products containing brittle materials such as mannitol and DCP are more prone to fragmentation when exposed to shear. Granular products with irregular surfaces lead to an increase in attrition. While spherical, crystalline, or fibrous morphologies show reduced impact during high shear blending. These changes in size will affect the functionality attributes of the formulation, such as flow, API homogeneity, tableting, formation of dust, etc. Hence it is important for formulators to fully understand the excipients to make the right choices.Keywords: attrition, blending, continuous manufacturing, excipients, lactose, microcrystalline cellulose, shear
Procedia PDF Downloads 111203 Coordinative Remote Sensing Observation Technology for a High Altitude Barrier Lake
Authors: Zhang Xin
Abstract:
Barrier lakes are lakes formed by storing water in valleys, river valleys or riverbeds after being blocked by landslide, earthquake, debris flow, and other factors. They have great potential safety hazards. When the water is stored to a certain extent, it may burst in case of strong earthquake or rainstorm, and the lake water overflows, resulting in large-scale flood disasters. In order to ensure the safety of people's lives and property in the downstream, it is very necessary to monitor the barrier lake. However, it is very difficult and time-consuming to manually monitor the barrier lake in high altitude areas due to the harsh climate and steep terrain. With the development of earth observation technology, remote sensing monitoring has become one of the main ways to obtain observation data. Compared with a single satellite, multi-satellite remote sensing cooperative observation has more advantages; its spatial coverage is extensive, observation time is continuous, imaging types and bands are abundant, it can monitor and respond quickly to emergencies, and complete complex monitoring tasks. Monitoring with multi-temporal and multi-platform remote sensing satellites can obtain a variety of observation data in time, acquire key information such as water level and water storage capacity of the barrier lake, scientifically judge the situation of the barrier lake and reasonably predict its future development trend. In this study, The Sarez Lake, which formed on February 18, 1911, in the central part of the Pamir as a result of blockage of the Murgab River valley by a landslide triggered by a strong earthquake with magnitude of 7.4 and intensity of 9, is selected as the research area. Since the formation of Lake Sarez, it has aroused widespread international concern about its safety. At present, the use of mechanical methods in the international analysis of the safety of Lake Sarez is more common, and remote sensing methods are seldom used. This study combines remote sensing data with field observation data, and uses the 'space-air-ground' joint observation technology to study the changes in water level and water storage capacity of Lake Sarez in recent decades, and evaluate its safety. The situation of the collapse is simulated, and the future development trend of Lake Sarez is predicted. The results show that: 1) in recent decades, the water level of Lake Sarez has not changed much and remained at a stable level; 2) unless there is a strong earthquake or heavy rain, it is less likely that the Lake Sarez will be broken under normal conditions, 3) lake Sarez will remain stable in the future, but it is necessary to establish an early warning system in the Lake Sarez area for remote sensing of the area, 4) the coordinative remote sensing observation technology is feasible for the high altitude barrier lake of Sarez.Keywords: coordinative observation, disaster, remote sensing, geographic information system, GIS
Procedia PDF Downloads 127202 The Dynamics of a Droplet Spreading on a Steel Surface
Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov
Abstract:
Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading
Procedia PDF Downloads 330201 Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses
Authors: Evy Van Puymbroeck, Wim Nagy, Ken Schotte, Heng Fang, Hans De Backer
Abstract:
The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied.Keywords: finite element modelling, residual stresses, thermal-mechanical analysis, welding simulation
Procedia PDF Downloads 171200 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship
Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris
Abstract:
A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.Keywords: cruise ship, gas turbine, hull fouling, performance, propulsion, weather
Procedia PDF Downloads 165199 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends
Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman
Abstract:
Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment
Procedia PDF Downloads 339198 Modification of a Commercial Ultrafiltration Membrane by Electrospray Deposition for Performance Adjustment
Authors: Elizaveta Korzhova, Sebastien Deon, Patrick Fievet, Dmitry Lopatin, Oleg Baranov
Abstract:
Filtration with nanoporous ultrafiltration membranes is an attractive option to remove ionic pollutants from contaminated effluents. Unfortunately, commercial membranes are not necessarily suitable for specific applications, and their modification by polymer deposition is a fruitful way to adapt their performances accordingly. Many methods are usually used for surface modification, but a novel technique based on electrospray is proposed here. Various quantities of polymers were deposited on a commercial membrane, and the impact of the deposit is investigated on filtration performances and discussed in terms of charge and hydrophobicity. The electrospray deposition is a technique which has not been used for membrane modification up to now. It consists of spraying small drops of polymer solution under a high voltage between the needle containing the solution and the metallic support on which membrane is stuck. The advantage of this process lies in the small quantities of polymer that can be coated on the membrane surface compared with immersion technique. In this study, various quantities (from 2 to 40 μL/cm²) of solutions containing two charged polymers (13 mmol/L of monomer unit), namely polyethyleneimine (PEI) and polystyrene sulfonate (PSS), were sprayed on a negatively charged polyethersulfone membrane (PLEIADE, Orelis Environment). The efficacy of the polymer deposition was then investigated by estimating ion rejection, permeation flux, zeta-potential and contact angle before and after the polymer deposition. Firstly, contact angle (θ) measurements show that the surface hydrophilicity is notably improved by coating both PEI and PSS. Moreover, it was highlighted that the contact angle decreases monotonously with the amount of sprayed solution. Additionally, hydrophilicity enhancement was proved to be better with PSS (from 62 to 35°) than PEI (from 62 to 53°). Values of zeta-potential (ζ were estimated by measuring the streaming current generated by a pressure difference on both sides of a channel made by clamping two membranes. The ζ-values demonstrate that the deposits of PSS (negative at pH=5.5) allow an increase of the negative membrane charge, whereas the deposits of PEI (positive) lead to a positive surface charge. Zeta-potentials measurements also emphasize that the sprayed quantity has little impact on the membrane charge, except for very low quantities (2 μL/m²). The cross-flow filtration of salt solutions containing mono and divalent ions demonstrate that polymer deposition allows a strong enhancement of ion rejection. For instance, it is shown that rejection of a salt containing a divalent cation can be increased from 1 to 20 % and even to 35% by deposing 2 and 4 μL/cm² of PEI solution, respectively. This observation is coherent with the reversal of the membrane charge induced by PEI deposition. Similarly, the increase of negative charge induced by PSS deposition leads to an increase of NaCl rejection from 5 to 45 % due to electrostatic repulsion of the Cl- ion by the negative surface charge. Finally, a notable fall in the permeation flux due to the polymer layer coated at the surface was observed and the best polymer concentration in the sprayed solution remains to be determined to optimize performances.Keywords: ultrafiltration, electrospray deposition, ion rejection, permeation flux, zeta-potential, hydrophobicity
Procedia PDF Downloads 187197 Solids and Nutrient Loads Exported by Preserved and Impacted Low-Order Streams: A Comparison among Water Bodies in Different Latitudes in Brazil
Authors: Nicolas R. Finkler, Wesley A. Saltarelli, Taison A. Bortolin, Vania E. Schneider, Davi G. F. Cunha
Abstract:
Estimating the relative contribution of nonpoint or point sources of pollution in low-orders streams is an important tool for the water resources management. The location of headwaters in areas with anthropogenic impacts from urbanization and agriculture is a common scenario in developing countries. This condition can lead to conflicts among different water users and compromise ecosystem services. Water pollution also contributes to exporting organic loads to downstream areas, including higher order rivers. The purpose of this research is to preliminarily assess nutrients and solids loads exported by water bodies located in watersheds with different types of land uses in São Carlos - SP (Latitude. -22.0087; Longitude. -47.8909) and Caxias do Sul - RS (Latitude. -29.1634, Longitude. -51.1796), Brazil, using regression analysis. The variables analyzed in this study were Total Kjeldahl Nitrogen (TKN), Nitrate (NO3-), Total Phosphorus (TP) and Total Suspended Solids (TSS). Data were obtained in October and December 2015 for São Carlos (SC) and in November 2012 and March 2013 for Caxias do Sul (CXS). Such periods had similar weather patterns regarding precipitation and temperature. Altogether, 11 sites were divided into two groups, some classified as more pristine (SC1, SC4, SC5, SC6 and CXS2), with predominance of native forest; and others considered as impacted (SC2, SC3, CXS1, CXS3, CXS4 and CXS5), presenting larger urban and/or agricultural areas. Previous linear regression was applied for data on flow and drainage area of each site (R² = 0.9741), suggesting that the loads to be assessed had a significant relationship with the drainage areas. Thereafter, regression analysis was conducted between the drainage areas and the total loads for the two land use groups. The R² values were 0.070, 0.830, 0.752 e 0.455 respectively for SST, TKN, NO3- and TP loads in the more preserved areas, suggesting that the loads generated by runoff are significant in these locations. However, the respective R² values for sites located in impacted areas were respectively 0.488, 0.054, 0.519 e 0.059 for SST, TKN, NO3- and P loads, indicating a less important relationship between total loads and runoff as compared to the previous scenario. This study suggests three possible conclusions that will be further explored in the full-text article, with more sampling sites and periods: a) In preserved areas, nonpoint sources of pollution are more significant in determining water quality in relation to the studied variables; b) The nutrient (TKN and P) loads in impacted areas may be associated with point sources such as domestic wastewater discharges with inadequate treatment levels; and c) The presence of NO3- in impacted areas can be associated to the runoff, particularly in agricultural areas, where the application of fertilizers is common at certain times of the year.Keywords: land use, linear regression, point and non-point pollution sources, streams, water resources management
Procedia PDF Downloads 306