Search results for: distributed sensor networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5819

Search results for: distributed sensor networks

1319 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J

Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa

Abstract:

A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.

Keywords: critical path, transportation network, connectivity reliability, network model, Neo4j application, edge betweenness centrality index

Procedia PDF Downloads 140
1318 Navigating Urban Childcare Challenges: Perspectives of Dhaka City Parents

Authors: Md. Shafiullah

Abstract:

This study delves into the evolving landscape of urban childcare in Bangladesh, focusing on the experiences and challenges faced by parents in Dhaka city. This paper argues that the traditional childcare arrangement of city families is inadequate to meet the development needs of children. The study aims to explore the childcare challenges faced by urban parents as they transition from traditional family-based childcare networks to alternative caregiving arrangements amidst urbanization, economic shifts, and social transformations. Utilizing a mixed-method research approach, combining quantitative surveys (n = 200) and four qualitative interviews, the research examines the parental viewpoints on childcare practices and the role of societal norms and values. The study finds childcare crises in both the family and daycare settings. In family care, caregiving suffers from the less availability of grandparents, a lack of skills of caregivers, and a lack of child interaction. As for the daycare, it is affected by the absence of appropriate policies, a lack of quality, health and safety concerns, affordability issues, and cultural concerns. Additionally, the study highlights inadequacies in childcare policies and regulatory frameworks, calling for comprehensive reforms to address the childcare vacuum in urban areas. By shifting the focus from developed to developing countries, this study contributes to the literature and suggests policy implications for Bangladesh and beyond.

Keywords: childcare, child development, childcare policy, daycare, Bangladesh

Procedia PDF Downloads 59
1317 Development of Power System Stability by Reactive Power Planning in Wind Power Plant With Doubley Fed Induction Generators Generator

Authors: Mohammad Hossein Mohammadi Sanjani, Ashknaz Oraee, Oriol Gomis Bellmunt, Vinicius Albernaz Lacerda Freitas

Abstract:

The use of distributed and renewable sources in power systems has grown significantly, recently. One the most popular sources are wind farms which have grown massively. However, ¬wind farms are connected to the grid, this can cause problems such as reduced voltage stability, frequency fluctuations and reduced dynamic stability. Variable speed generators (asynchronous) are used due to the uncontrollability of wind speed specially Doubley Fed Induction Generators (DFIG). The most important disadvantage of DFIGs is its sensitivity to voltage drop. In the case of faults, a large volume of reactive power is induced therefore, use of FACTS devices such as SVC and STATCOM are suitable for improving system output performance. They increase the capacity of lines and also passes network fault conditions. In this paper, in addition to modeling the reactive power control system in a DFIG with converter, FACTS devices have been used in a DFIG wind turbine to improve the stability of the power system containing two synchronous sources. In the following paper, recent optimal control systems have been designed to minimize fluctuations caused by system disturbances, for FACTS devices employed. For this purpose, a suitable method for the selection of nine parameters for MPSH-phase-post-phase compensators of reactive power compensators is proposed. The design algorithm is formulated ¬¬as an optimization problem searching for optimal parameters in the controller. Simulation results show that the proposed controller Improves the stability of the network and the fluctuations are at desired speed.

Keywords: renewable energy sources, optimization wind power plant, stability, reactive power compensator, double-feed induction generator, optimal control, genetic algorithm

Procedia PDF Downloads 102
1316 Wolof Voice Response Recognition System: A Deep Learning Model for Wolof Audio Classification

Authors: Krishna Mohan Bathula, Fatou Bintou Loucoubar, FNU Kaleemunnisa, Christelle Scharff, Mark Anthony De Castro

Abstract:

Voice recognition algorithms such as automatic speech recognition and text-to-speech systems with African languages can play an important role in bridging the digital divide of Artificial Intelligence in Africa, contributing to the establishment of a fully inclusive information society. This paper proposes a Deep Learning model that can classify the user responses as inputs for an interactive voice response system. A dataset with Wolof language words ‘yes’ and ‘no’ is collected as audio recordings. A two stage Data Augmentation approach is adopted for enhancing the dataset size required by the deep neural network. Data preprocessing and feature engineering with Mel-Frequency Cepstral Coefficients are implemented. Convolutional Neural Networks (CNNs) have proven to be very powerful in image classification and are promising for audio processing when sounds are transformed into spectra. For performing voice response classification, the recordings are transformed into sound frequency feature spectra and then applied image classification methodology using a deep CNN model. The inference model of this trained and reusable Wolof voice response recognition system can be integrated with many applications associated with both web and mobile platforms.

Keywords: automatic speech recognition, interactive voice response, voice response recognition, wolof word classification

Procedia PDF Downloads 122
1315 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran

Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani

Abstract:

The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.

Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation

Procedia PDF Downloads 245
1314 Geomatic Techniques to Filter Vegetation from Point Clouds

Authors: M. Amparo Núñez-Andrés, Felipe Buill, Albert Prades

Abstract:

More and more frequently, geomatics techniques such as terrestrial laser scanning or digital photogrammetry, either terrestrial or from drones, are being used to obtain digital terrain models (DTM) used for the monitoring of geological phenomena that cause natural disasters, such as landslides, rockfalls, debris-flow. One of the main multitemporal analyses developed from these models is the quantification of volume changes in the slopes and hillsides, either caused by erosion, fall, or land movement in the source area or sedimentation in the deposition zone. To carry out this task, it is necessary to filter the point clouds of all those elements that do not belong to the slopes. Among these elements, vegetation stands out as it is the one we find with the greatest presence and its constant change, both seasonal and daily, as it is affected by factors such as wind. One of the best-known indexes to detect vegetation on the image is the NVDI (Normalized Difference Vegetation Index), which is obtained from the combination of the infrared and red channels. Therefore it is necessary to have a multispectral camera. These cameras are generally of lower resolution than conventional RGB cameras, while their cost is much higher. Therefore we have to look for alternative indices based on RGB. In this communication, we present the results obtained in Georisk project (PID2019‐103974RB‐I00/MCIN/AEI/10.13039/501100011033) by using the GLI (Green Leaf Index) and ExG (Excessive Greenness), as well as the change to the Hue-Saturation-Value (HSV) color space being the H coordinate the one that gives us the most information for vegetation filtering. These filters are applied both to the images, creating binary masks to be used when applying the SfM algorithms, and to the point cloud obtained directly by the photogrammetric process without any previous filter or the one obtained by TLS (Terrestrial Laser Scanning). In this last case, we have also tried to work with a Riegl VZ400i sensor that allows the reception, as in the aerial LiDAR, of several returns of the signal. Information to be used for the classification on the point cloud. After applying all the techniques in different locations, the results show that the color-based filters allow correct filtering in those areas where the presence of shadows is not excessive and there is a contrast between the color of the slope lithology and the vegetation. As we have advanced in the case of using the HSV color space, it is the H coordinate that responds best for this filtering. Finally, the use of the various returns of the TLS signal allows filtering with some limitations.

Keywords: RGB index, TLS, photogrammetry, multispectral camera, point cloud

Procedia PDF Downloads 161
1313 Assessing Climate-Induced Species Range Shifts and Their Impacts on the Protected Seascape on Canada’s East Coast Using Species Distribution Models and Future Projections

Authors: Amy L. Irvine, Gabriel Reygondeau, Derek P. Tittensor

Abstract:

Marine protected areas (MPAs) within Canada’s exclusive economic zone help ensure the conservation and sustainability of marine ecosystems and the continued provision of ecosystem services to society (e.g., food, carbon sequestration). With ongoing and accelerating climate change, however, MPAs may become undermined in terms of their effectiveness at fulfilling these outcomes. Many populations of species, especially those at their thermal range limits, may shift to cooler waters or become extirpated due to climate change, resulting in new species compositions and ecological interactions within static MPA boundaries. While Canadian MPA management follows international guidelines for marine conservation, no consistent approach exists for adapting MPA networks to climate change and the resulting altered ecosystem conditions. To fill this gap, projected climate-driven shifts in species distributions on Canada’s east coast were analyzed to identify when native species emigrate and novel species immigrate within the network and how high mitigation and carbon emission scenarios influence these timelines. Indicators of the ecological changes caused by these species' shifts in the biological community were also developed. Overall, our research provides projections of climate change impacts and helps to guide adaptive management responses within the Canadian east coast MPA network.

Keywords: climate change, ecosystem modeling, marine protected areas, management

Procedia PDF Downloads 108
1312 A BERT-Based Model for Financial Social Media Sentiment Analysis

Authors: Josiel Delgadillo, Johnson Kinyua, Charles Mutigwe

Abstract:

The purpose of sentiment analysis is to determine the sentiment strength (e.g., positive, negative, neutral) from a textual source for good decision-making. Natural language processing in domains such as financial markets requires knowledge of domain ontology, and pre-trained language models, such as BERT, have made significant breakthroughs in various NLP tasks by training on large-scale un-labeled generic corpora such as Wikipedia. However, sentiment analysis is a strong domain-dependent task. The rapid growth of social media has given users a platform to share their experiences and views about products, services, and processes, including financial markets. StockTwits and Twitter are social networks that allow the public to express their sentiments in real time. Hence, leveraging the success of unsupervised pre-training and a large amount of financial text available on social media platforms could potentially benefit a wide range of financial applications. This work is focused on sentiment analysis using social media text on platforms such as StockTwits and Twitter. To meet this need, SkyBERT, a domain-specific language model pre-trained and fine-tuned on financial corpora, has been developed. The results show that SkyBERT outperforms current state-of-the-art models in financial sentiment analysis. Extensive experimental results demonstrate the effectiveness and robustness of SkyBERT.

Keywords: BERT, financial markets, Twitter, sentiment analysis

Procedia PDF Downloads 157
1311 Hybrid Sol-Gel Coatings for Corrosion Protection of AA6111-T4 Aluminium Alloy

Authors: Shadatul Hanom Rashid, Xiaorong Zhou

Abstract:

Hybrid sol-gel coatings are the blend of both advantages of inorganic and organic networks have been reported as environmentally friendly anti-corrosion surface pre-treatment for several metals, including aluminum alloys. In this current study, Si-Zr hybrid sol-gel coatings were synthesized from (3-glycidoxypropyl)trimethoxysilane (GPTMS), tetraethyl orthosilicate (TEOS) and zirconium(IV) propoxide (TPOZ) precursors and applied on AA6111 aluminum alloy by dip coating technique. The hybrid sol-gel coatings doped with different concentrations of cerium nitrate (Ce(NO3)3) as a corrosion inhibitor were also prepared and the effect of Ce(NO3)3 concentrations on the morphology and corrosion resistance of the coatings were examined. The surface chemistry and morphology of the hybrid sol-gel coatings were analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion behavior of the coated aluminum alloy samples was evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that good corrosion resistance of hybrid sol-gel coatings were prepared from hydrolysis and condensation reactions of GPTMS, TEOS and TPOZ precursors deposited on AA6111 aluminum alloy. When the coating doped with cerium nitrate, the properties were improved significantly. The hybrid sol-gel coatings containing lower concentration of cerium nitrate offer the best inhibition performance. A proper doping concentration of Ce(NO3)3 can effectively improve the corrosion resistance of the alloy, while an excessive concentration of Ce(NO3)3 would reduce the corrosion protection properties, which is associated with defective morphology and instability of the sol-gel coatings.

Keywords: AA6111, Ce(NO3)3, corrosion, hybrid sol-gel coatings

Procedia PDF Downloads 163
1310 Supply Chain of Energy Resources and Its Alternatives Due to the Arab Spring: The Case of Egyptian Natural Gas Flow to Jordan

Authors: Moh’d Anwer Al-Shboul

Abstract:

The year 2011 was a challenging year for Jordanian economy, which felt a variety of effects from the Arab Spring which took place in neighboring countries. Since February, 5th 2012, the Arab Gas Supply Pipeline, which carries natural gas from Egypt through the Sinai Peninsula and to Jordan and Israel, has been attacked more than 39 times. Jordan imported about 80 percent of its necessity of natural gas (about 250 million cubic feet of natural gas per day) from Egypt to generate particularly electricity, with the reminder of being produced locally. Jordan has utilized multiple alternatives to address the interruption of available natural gas supply from Egypt. The Jordanian distributed power plants now rely on the use of heavy fuel oil and diesel for electricity generation, in this case, it costs Jordan about four times than natural gas. The substitution of Egyptian natural gas supplies by fuel oil and diesel, coupled with the 32 percent rise in global fuel prices, has increased Jordan’s energy import bill by over 50 percent in 2011, reaching more than 16 percent of the 2011 GDP. The increase in the cost of electricity generation pushed the Jordanian economy to borrow from multiple internal and external resource channels, thus increasing the public debt. The Jordanian government’s short-term solution to the reduced natural gas supply from Egypt was alternatively purchasing the necessary quantities from some Gulf countries such as Qatar and/or Saudi Arabia, which can be imported with two possible methods. The first method is to rent a ship equipped with a liquefied natural gas (LNG) terminal, which is currently operating. The second method requires equipping the Aqaba port with an LNG terminal, which also currently is operating. In the long-term, a viable solution to depending on importing expensive and often unreliable natural gas supplies from surrounding countries is to depend more heavily on renewable supply energy, including solar, wind, and water energy.

Keywords: energy supply resources, Arab spring, liquefied natural gas, pipeline, Jordan

Procedia PDF Downloads 146
1309 Estimation of Time Loss and Costs of Traffic Congestion: The Contingent Valuation Method

Authors: Amira Mabrouk, Chokri Abdennadher

Abstract:

The reduction of road congestion which is inherent to the use of vehicles is an obvious priority to public authority. Therefore, assessing the willingness to pay of an individual in order to save trip-time is akin to estimating the change in price which was the result of setting up a new transport policy to increase the networks fluidity and improving the level of social welfare. This study holds an innovative perspective. In fact, it initiates an economic calculation that has the objective of giving an estimation of the monetized time value during the trips made in Sfax. This research is founded on a double-objective approach. The aim of this study is to i) give an estimation of the monetized value of time; an hour dedicated to trips, ii) determine whether or not the consumer considers the environmental variables to be significant, iii) analyze the impact of applying a public management of the congestion via imposing taxation of city tolls on urban dwellers. This article is built upon a rich field survey led in the city of Sfax. With the use of the contingent valuation method, we analyze the “declared time preferences” of 450 drivers during rush hours. Based on the fond consideration of attributed bias of the applied method, we bring to light the delicacy of this approach with regards to the revelation mode and the interrogative techniques by following the NOAA panel recommendations bearing the exception of the valorization point and other similar studies about the estimation of transportation externality.

Keywords: willingness to pay, contingent valuation, time value, city toll

Procedia PDF Downloads 445
1308 Effect of Rehabilitative Nursing Program on Pain Intensity and Functional Status among Patients with Discectomy

Authors: Amal Shehata

Abstract:

Low back pain related to disc prolapse is localized in the lumbar area and it may be radiated to the lower extremities, starting from neurons near or around the spinal canal. Most of the population may be affected with disc prolapse within their lifetime and leads to lost productivity, disability and loss of function. The study purpose was to examine the effect of rehabilitative nursing program on pain intensity and functional status among patients with discectomy. Design: Aquasi experimental design was utilized. Setting: The study was carried out at neurosurgery department and out patient's clinic of Menoufia University and Teaching hospitals at Menoufia governorate, Egypt. Instrument of the study: Five Instruments were used for data collection: Structured interviewing questionnaire, Functional assessment instrument, Observational check list, Numeric rating Scale and Oswestry low back pain disability questionnaire. Results: There was an improvement in mean total knowledge score about disease process, discectomy and rehabilitation program in study group (25.32%) than control group (7.32%). There was highly statistically significant improvement in lumbar flexibility among study group (80%) than control group (30%) after rehabilitation program than before. Also there was a decrease in pain score in study group (58% no pain) than control group (28% no pain) after rehabilitation program. There was an improvement in total disability score of study group (zero %) regarding effect of pain on the activity of daily living after rehabilitation program than control group (16%). Conclusion: Application of rehabilitative nursing program for patient with discectomy had proven a positive effect in relation to knowledge score, pain reduction, activity of daily living and functional abilities. Recommendation: A continuous rehabilitative nursing program should be carried out for all patients immediately after discectomy surgery on regular basis. Also A colored illustrated booklet about rehabilitation program should be available and distributed for all patients before surgery.

Keywords: discectomy, rehabilitative nursing program, pain intensity, functional status

Procedia PDF Downloads 144
1307 The Second Generation of Tyrosine Kinase Inhibitor Afatinib Controls Inflammation by Regulating NLRP3 Inflammasome Activation

Authors: Shujun Xie, Shirong Zhang, Shenglin Ma

Abstract:

Background: Chronic inflammation might lead to many malignancies, and inadequate resolution could play a crucial role in tumor invasion, progression, and metastases. A randomised, double-blind, placebo-controlled trial shows that IL-1β inhibition with canakinumab could reduce incident lung cancer and lung cancer mortality in patients with atherosclerosis. The process and secretion of proinflammatory cytokine IL-1β are controlled by the inflammasome. Here we showed the correlation of the innate immune system and afatinib, a tyrosine kinase inhibitor targeting epidermal growth factor receptor (EGFR) in non-small cell lung cancer. Methods: Murine Bone marrow derived macrophages (BMDMs), peritoneal macrophages (PMs) and THP-1 were used to check the effect of afatinib on the activation of NLRP3 inflammasome. The assembly of NLRP3 inflammasome was check by co-immunoprecipitation of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), disuccinimidyl suberate (DSS)-cross link of ASC. Lipopolysaccharide (LPS)-induced sepsis and Alum-induced peritonitis were conducted to confirm that afatinib could inhibit the activation of NLRP3 in vivo. Peripheral blood mononuclear cells (PBMCs) from non-small cell lung cancer (NSCLC) patients before or after taking afatinib were used to check that afatinib inhibits inflammation in NSCLC therapy. Results: Our data showed that afatinib could inhibit the secretion of IL-1β in a dose-dependent manner in macrophage. Moreover, afatinib could inhibit the maturation of IL-1β and caspase-1 without affecting the precursors of IL-1β and caspase-1. Next, we found that afatinib could block the assembly of NLRP3 inflammasome and the ASC speck by blocking the interaction of the sensor protein NLRP3 and the adaptor protein ASC. We also found that afatinib was able to alleviate the LPS-induced sepsis in vivo. Conclusion: Our study found that afatinib could inhibit the activation of NLRP3 inflammasome in macrophage, providing new evidence that afatinib could target the innate immune system to control chronic inflammation. These investigations will provide significant experimental evidence in afatinib as therapeutic drug for non-small cell lung cancer or other tumors and NLRP3-related diseases and will explore new targets for afatinib.

Keywords: inflammasome, afatinib, inflammation, tyrosine kinase inhibitor

Procedia PDF Downloads 125
1306 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid

Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni

Abstract:

In Zambia recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines to upgrade power systems into smart grids target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, there are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we introduce a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.

Keywords: anomaly, availability, detection, edge, maintainability, reliability, stochastic

Procedia PDF Downloads 115
1305 Privacy Protection Principles of Omnichannel Approach

Authors: Renata Mekovec, Dijana Peras, Ruben Picek

Abstract:

The advent of the Internet, mobile devices and social media is revolutionizing the experience of retail customers by linking multiple sources through various channels. Omnichannel retailing is a retailing that combines multiple channels to allow customers to seamlessly leverage all the distribution information online and offline while shopping. Therefore, today data are an asset more critical than ever for all organizations. Nonetheless, because of its heterogeneity through platforms, developers are currently facing difficulties in dealing with personal data. Considering the possibilities of omnichannel communication, this paper presents channel categorization that could enhance the customer experience of omnichannel center called hyper center. The purpose of this paper is fundamentally to describe the connection between the omnichannel hyper center and the customer, with particular attention to privacy protection. The first phase was finding the most appropriate channels of communication for hyper center. Consequently, a selection of widely used communication channels has been identified and analyzed with regard to the effect requirements for optimizing user experience. The evaluation criteria are divided into 3 groups: general, user profile and channel options. For each criterion the weight of importance for omnichannel communication was defined. The most important thing was to consider how the hyper center can make user identification while respecting the privacy protection requirements. The study carried out also shows what customer experience across digital networks would look like, based on an omnichannel approach owing to privacy protection principles.

Keywords: personal data, privacy protection, omnichannel communication, retail

Procedia PDF Downloads 150
1304 Comparison of the Effect of Nano Calcium Carbonate and CaCO₃ on Egg Production, Egg Traits and Calcium Retention in Laying Japanese Quail

Authors: Farhad Ahmadi, Hamed Kimiaee, Fariba Rahimi

Abstract:

This research study focuses on the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail. The study aims to determine the impact of nano calcium carbonate (NCC) and calcium carbonate (CC) on these factors. The research was conducted using a total of 280 laying quail with an average age of 8 weeks. The quails were randomly distributed in a completely randomized design (CRD) with 7 treatments, 4 replications, and 10 quails in each pen. The study lasted for 90 days. The experimental diets included a control group (T1) with a basal diet consisting of 3.17% CaCO₃, and other groups supplemented with different levels (0.5%, 0.1%, and 0.15%) of either calcium carbonate (CC) or nano calcium carbonate (NCC). The quails had free access to water and feed throughout the study period. Findings: The results of the study showed that NCC at the levels of 0.1% and 0.15% (T6 and T7) improved eggshell thickness, shell thickness, and shell breaking strength compared to the control group. Although not statistically significant, there was an increasing trend in quail egg production and calcium retention in the calcareous shell of the egg in birds that consumed the experimental diets containing different levels of NCC compared to the control and other treatment groups. Quail egg production was recorded monthly for each treatment group. At the end of the study, a total of 40 eggs (10 eggs/replicate) from each treatment group were randomly selected for analysis. Parameters such as eggshell thickness, shell thickness, shell breaking strength, and calcium retention were measured. Statistical analysis was performed to compare the results between the different treatment groups. In conclusion, this study suggests that NCC at the levels of 0.1% and 0.15% can improve the quantity and quality of eggs and calcium retention in laying Japanese quail. These findings highlight the potential benefits of using NCC as a calcium source in quail diets. Further research could be conducted to explore the mechanisms behind these improvements and optimize the dosage of NCC for maximum effect.

Keywords: egg, calcium, nanoparticles, physiology

Procedia PDF Downloads 50
1303 Assessment of Spatial and Temporal Variations of Some Biological Water Quality Parameters in Mat River, Albania

Authors: Etleva Hamzaraj, Eva Kica, Anila Paparisto, Pranvera Lazo

Abstract:

Worldwide demographic developments of recent decades have been associated with negative environmental consequences. For this reason, there is a growing interest in assessing the state of natural ecosystems or assessing human impact on them. In this respect, this study aims to evaluate the change in water quality of the Mat River for a period of about ten years to highlight human impact. In one year, period of study, several biological and environmental parameters are determined to evaluate river water quality, and the data collected are compared with those of a similar study in 2007. Samples are collected every month in five stations evenly distributed along the river. Total coliform bacteria, the number of heterotrophic bacteria in water, and benthic macroinvertebrates are used as biological parameters of water quality. The most probable number index is used for evaluation of total coliform bacteria in water, while the number of heterotrophic bacteria is determined by counting colonies on plates with Plate Count Agar, cultivated with 0.1 ml sample after series dilutions. Benthic macroinvertebrates are analyzed by the number of individuals per taxa, the value of biotic index, EPT Richness Index value and tolerance value. Environmental parameters like pH, temperature, and electrical conductivity are measured onsite. As expected, the bacterial load was higher near urban areas, and the pollution increased with the course of the river. The maximum concentration of fecal coliforms was 1100 MPN/100 ml in summer and near the most urbanized area of the river. The data collected during this study show that after about ten years, there is a change in water quality of Mat River. According to a similar study carried out in 2007, the water of Mat River was of ‘excellent’ quality. But, according to this study, the water was classified as of ‘excellent’ quality only in one sampling site, near river source, while in all other stations was of ‘good’ quality. This result is based on biological and environmental parameters measured. The human impact on the quality of water of Mat River is more than evident.

Keywords: water quality, coliform bacteria, MPN index, benthic macroinvertebrates, biotic index

Procedia PDF Downloads 123
1302 Rural Water Management Strategies and Irrigation Techniques for Sustainability. Nigeria Case Study; Kwara State

Authors: Faith Eweluegim Enahoro-Ofagbe

Abstract:

Water is essential for sustaining life. As a limited resource, effective water management is vital. Water scarcity has become more common due to the effects of climate change, land degradation, deforestation, and population growth, especially in rural communities, which are more susceptible to water-related issues such as water shortage, water-borne disease, et c., due to the unsuccessful implementation of water policies and projects in Nigeria. Since rural communities generate the majority of agricultural products, they significantly impact on water management for sustainability. The development of methods to advance this goal for residential and agricultural usage in the present and the future is a challenge for rural residents. This study evaluated rural water supply systems and irrigation management techniques to conserve water in Kwara State, North-Central Nigeria. Suggesting some measures to conserve water resources for sustainability, off-season farming, and socioeconomic security that will remedy water degradation, unemployment which is one of the causes of insecurity in the country, by considering the use of fabricated or locally made irrigation equipment, which are affordable by rural farmers, among other recommendations. Questionnaires were distributed to respondents in the study area for quantitative evaluation of irrigation methods practices. For physicochemical investigation, samples were also gathered from their available water sources. According to the study's findings, 30 percent of farmers adopted intelligent irrigation management techniques to conserve water resources, saving 45% of the water previously used for irrigation. 70 % of farmers practice seasonal farming. Irrigation water is drawn from river channels, streams, and unlined and unprotected wells. 60% of these rural residents rely on private boreholes for their water needs, while 40% rely on government-supplied rural water. Therefore, the government must develop additional water projects, raise awareness, and offer irrigation techniques that are simple to adapt for water management, increasing socio-economic productivity, security, and water sustainability.

Keywords: water resource management, sustainability, irrigation, rural water management, irrigation management technique

Procedia PDF Downloads 117
1301 A Comprehensive Methodology for Voice Segmentation of Large Sets of Speech Files Recorded in Naturalistic Environments

Authors: Ana Londral, Burcu Demiray, Marcus Cheetham

Abstract:

Speech recording is a methodology used in many different studies related to cognitive and behaviour research. Modern advances in digital equipment brought the possibility of continuously recording hours of speech in naturalistic environments and building rich sets of sound files. Speech analysis can then extract from these files multiple features for different scopes of research in Language and Communication. However, tools for analysing a large set of sound files and automatically extract relevant features from these files are often inaccessible to researchers that are not familiar with programming languages. Manual analysis is a common alternative, with a high time and efficiency cost. In the analysis of long sound files, the first step is the voice segmentation, i.e. to detect and label segments containing speech. We present a comprehensive methodology aiming to support researchers on voice segmentation, as the first step for data analysis of a big set of sound files. Praat, an open source software, is suggested as a tool to run a voice detection algorithm, label segments and files and extract other quantitative features on a structure of folders containing a large number of sound files. We present the validation of our methodology with a set of 5000 sound files that were collected in the daily life of a group of voluntary participants with age over 65. A smartphone device was used to collect sound using the Electronically Activated Recorder (EAR): an app programmed to record 30-second sound samples that were randomly distributed throughout the day. Results demonstrated that automatic segmentation and labelling of files containing speech segments was 74% faster when compared to a manual analysis performed with two independent coders. Furthermore, the methodology presented allows manual adjustments of voiced segments with visualisation of the sound signal and the automatic extraction of quantitative information on speech. In conclusion, we propose a comprehensive methodology for voice segmentation, to be used by researchers that have to work with large sets of sound files and are not familiar with programming tools.

Keywords: automatic speech analysis, behavior analysis, naturalistic environments, voice segmentation

Procedia PDF Downloads 283
1300 Computer Network Applications, Practical Implementations and Structural Control System Representations

Authors: El Miloudi Djelloul

Abstract:

The computer network play an important position for practical implementations of the differently system. To implement a system into network above all is needed to know all the configurations, which is responsible to be a part of the system, and to give adequate information and solution in realtime. So if want to implement this system for example in the school or relevant institutions, the first step is to analyze the types of model which is needed to be configured and another important step is to organize the works in the context of devices, as a part of the general system. Often before configuration, as important point is descriptions and documentations from all the works into the respective process, and then to organize in the aspect of problem-solving. The computer network as critic infrastructure is very specific so the paper present the effectiveness solutions in the structured aspect viewed from one side, and another side is, than the paper reflect the positive aspect in the context of modeling and block schema presentations as an better alternative to solve the specific problem because of continually distortions of the system from the line of devices, programs and signals or packed collisions, which are in movement from one computer node to another nodes.

Keywords: local area networks, LANs, block schema presentations, computer network system, computer node, critical infrastructure packed collisions, structural control system representations, computer network, implementations, modeling structural representations, companies, computers, context, control systems, internet, software

Procedia PDF Downloads 367
1299 Improvement of Plantain Leaves Nutritive Value in Goats by Urea Treatment and Nitrogen Supplements

Authors: Marie Lesly Fontin, Audalbert Bien-Aimé, Didier Marlier, Yves Beckers

Abstract:

Fecal digestibility of mature plantain leaves was determined in castrated Creolegoatsin order to better assess them. Five diets made from plantain leaves were used in an in vivo digestibility study on 20 castrated Creole goats over three periods using a completely random design in order to assess their apparent fecal digestibility (Dg). These diets consisted of sun-dried leaves (DL), sun-dried urea treated leaves (DUTL, 5kg of urea per 100kg of raw product ensilaged during 90 days with 60 kg of water), sun-dried leaves + hoopvine (Trichostigma octandrum, L)(DLH, DL: 61.4% + Hoopvine: 38.6%), sun-dried leaves + urea (DLU, DL: 98.2%+ U: 1.8%), and fresh leaves. (FL).0.5% of salt diluted with water was added to diets before distribution to the goats. A mineral lick block was available for each goat in its digestibility cage. During each period, diets were distributed to meet the maintenance needs of the goats for 21 days, including 14 days of adaptation and 7 days of measurement. Offered and refused diets and feces were weighed every day, and samples were taken for laboratory analysis. Results showed that the urea treatment increasedCP (Crude Protein) content of DL by 44% (from 10.4% for DL to 15.0% for DUTL) and decreased their NDF (Neutral Detergent Fiber) content (55.5% to 52.4%). Large amounts of refused feed (around 40%) were observed in goats fed with FL, DLU, and DL diets, for which no significant difference was observed for DM (Dry Matter) intakes (40.3; 36.6 and 35.1g/kg0.75 respectively) (p>0.05). DM intakes of DUTL (59.9 g/kg0.75) were significantly (p<0.05) greater than DLH (50.2 g/kg0.75). DM Dg of DL was very low (29.2%). However, supplementation with hoopvine and urea treatment resulted in a significant increase of DM Dg (40.3% and 42.1%, respectively), but the addition of urea (DLU) had no effect on it. FL showed a DM Dg similar to DHL and DUTL diets (39.0%). OM (Organic Matter)Dg was higher for the DUTL diet (45.1%), followed by DLH (40.9%), then by DLU and FL (32.9% and 40.7% respectively) and finally by DL (29.8%). CP Dg was higher for the FL diet (65.7%) and lower for the DL diet (39.9%). NDF Dg was also increased with urea treatment (54.8% for DUTL) and with the addition of hoopvine (41.4%) compared to the DL diet (31.0% for DLH). In conclusion, urea treatment and complementation with hoopvine of plantain leaves are the best treatments among those tested for increasing the nutritive value of this foragein the castrated Creole goats.

Keywords: apparent fecal digestibility, nitrogen supplements, plantain leaves, urea treatment

Procedia PDF Downloads 222
1298 Unsupervised Learning and Similarity Comparison of Water Mass Characteristics with Gaussian Mixture Model for Visualizing Ocean Data

Authors: Jian-Heng Wu, Bor-Shen Lin

Abstract:

The temperature-salinity relationship is one of the most important characteristics used for identifying water masses in marine research. Temperature-salinity characteristics, however, may change dynamically with respect to the geographic location and is quite sensitive to the depth at the same location. When depth is taken into consideration, however, it is not easy to compare the characteristics of different water masses efficiently for a wide range of areas of the ocean. In this paper, the Gaussian mixture model was proposed to analyze the temperature-salinity-depth characteristics of water masses, based on which comparison between water masses may be conducted. Gaussian mixture model could model the distribution of a random vector and is formulated as the weighting sum for a set of multivariate normal distributions. The temperature-salinity-depth data for different locations are first used to train a set of Gaussian mixture models individually. The distance between two Gaussian mixture models can then be defined as the weighting sum of pairwise Bhattacharyya distances among the Gaussian distributions. Consequently, the distance between two water masses may be measured fast, which allows the automatic and efficient comparison of the water masses for a wide range area. The proposed approach not only can approximate the distribution of temperature, salinity, and depth directly without the prior knowledge for assuming the regression family, but may restrict the complexity by controlling the number of mixtures when the amounts of samples are unevenly distributed. In addition, it is critical for knowledge discovery in marine research to represent, manage and share the temperature-salinity-depth characteristics flexibly and responsively. The proposed approach has been applied to a real-time visualization system of ocean data, which may facilitate the comparison of water masses by aggregating the data without degrading the discriminating capabilities. This system provides an interface for querying geographic locations with similar temperature-salinity-depth characteristics interactively and for tracking specific patterns of water masses, such as the Kuroshio near Taiwan or those in the South China Sea.

Keywords: water mass, Gaussian mixture model, data visualization, system framework

Procedia PDF Downloads 151
1297 Optimization of Headspace Solid Phase Microextraction (SPME) Technique Coupled with GC MS for Identification of Volatile Organic Compounds Released by Trogoderma Variabile

Authors: Thamer Alshuwaili, Yonglin Ren, Bob Du, Manjree Agarwal

Abstract:

The warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae), is a major pest of packaged and processed stored products. Warehouse beetle is the common name which was given by Okumura (1972). This pest has been reported to infest 119 different commodities, and it is distributed throughout the tropical and subtropical parts of the world. Also, it is difficult to control because of the insect's ability to stay without food for long times, and it can survive for years under dry conditions and low-moisture food, and it has also developed resistance to many insecticides. The young larvae of these insects can cause damage to seeds, but older larvae prefer to feed on whole grains. The percentage of damage caused by these insects range between 30-70% in the storage. T. variabile is the species most responsible for causing significant damage in grain stores worldwide. Trogoderma spp. is a huge problem for cereal grains, and there are many countries, such as the USA, Australia, China, Kenya, Uganda and Tanzania who have specific quarantine regulations against possible importation. Also, grain stocks can be almost completely destroyed because of the massive populations the insect may develop. However, the purpose of the current research was to optimize conditions to collect volatile organic compound from Trogoderma variabile at different life stages by using headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and flame ionization detection (FID). Using SPME technique to extract volatile from insects is an efficient, straightforward and nondestructive method. Result of the study shows that 15 insects were optimal number for larvae and adults. Selection of the number of insects depend on the height of the peak area and the number of peaks. Sixteen hours were optimized as the best extraction time for larvae and 8 hours was the optimal number of adults.

Keywords: Trogoderma variabile, warehouse beetle , GC-MS, Solid phase microextraction

Procedia PDF Downloads 134
1296 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 73
1295 Research Action Fields at the Nexus of Digital Transformation and Supply Chain Management: Findings from Practitioner Focus Group Workshops

Authors: Brandtner Patrick, Staberhofer Franz

Abstract:

Logistics and Supply Chain Management are of crucial importance for organisational success. In the era of Digitalization, several implications and improvement potentials for these domains arise, which at the same time could lead to decreased competitiveness and could endanger long-term company success if ignored or neglected. However, empirical research on the issue of Digitalization and benefits purported to it by practitioners is scarce and mainly focused on single technologies or separate, isolated Supply Chain blocks as e.g. distribution logistics or procurement only. The current paper applies a holistic focus group approach to elaborate practitioner use cases at the nexus of the concepts of Supply Chain Management (SCM) and Digitalization. In the course of three focus group workshops with over 45 participants from more than 20 organisations, a comprehensive set of benefit entitlements and areas for improvement in terms of applying digitalization to SCM is developed. The main results of the paper indicate the relevance of Digitalization being realized in practice. In the form of seventeen concrete research action fields, the benefit entitlements are aggregated and transformed into potential starting points for future research projects in this area. The main contribution of this paper is an empirically grounded basis for future research projects and an overview of actual research action fields from practitioners’ point of view.

Keywords: digital supply chain, digital transformation, supply chain management, value networks

Procedia PDF Downloads 185
1294 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 83
1293 Real-Time Pedestrian Detection Method Based on Improved YOLOv3

Authors: Jingting Luo, Yong Wang, Ying Wang

Abstract:

Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.

Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3

Procedia PDF Downloads 147
1292 Effects of Four Dietary Oils on Cholesterol and Fatty Acid Composition of Egg Yolk in Layers

Authors: A. F. Agboola, B. R. O. Omidiwura, A. Oyeyemi, E. A. Iyayi, A. S. Adelani

Abstract:

Dietary cholesterol has elicited the most public interest as it relates with coronary heart disease. Thus, humans have been paying more attention to health, thereby reducing consumption of cholesterol enriched food. Egg is considered as one of the major sources of human dietary cholesterol. However, an alternative way to reduce the potential cholesterolemic effect of eggs is to modify the fatty acid composition of the yolk. The effect of palm oil (PO), soybean oil (SO), sesame seed oil (SSO) and fish oil (FO) supplementation in the diets of layers on egg yolk fatty acid, cholesterol, egg production and egg quality parameters were evaluated in a 42-day feeding trial. One hundred and five Isa Brown laying hens of 34 weeks of age were randomly distributed into seven groups of five replicates and three birds per replicate in a completely randomized design. Seven corn-soybean basal diets (BD) were formulated: BD+No oil (T1), BD+1.5% PO (T2), BD+1.5% SO (T3), BD+1.5% SSO (T4), BD+1.5% FO (T5), BD+0.75% SO+0.75% FO (T6) and BD+0.75% SSO+0.75% FO (T7). Five eggs were randomly sampled at day 42 from each replicate to assay for the cholesterol, fatty acid profile of egg yolk and egg quality assessment. Results showed that there were no significant (P>0.05) differences observed in production performance, egg cholesterol and egg quality parameters except for yolk height, albumen height, yolk index, egg shape index, haugh unit, and yolk colour. There were no significant differences (P>0.05) observed in total cholesterol, high density lipoprotein and low density lipoprotein levels of egg yolk across the treatments. However, diets had effect (P<0.05) on TAG (triacylglycerol) and VLDL (very low density lipoprotein) of the egg yolk. The highest TAG (603.78 mg/dl) and VLDL values (120.76 mg/dl) were recorded in eggs of hens on T4 (1.5% sesame seed oil) and was similar to those on T3 (1.5% soybean oil), T5 (1.5% fish oil) and T6 (0.75% soybean oil + 0.75% fish oil). However, results revealed a significant (P<0.05) variations on eggs’ summation of polyunsaturated fatty acid (PUFA). In conclusion, it is suggested that dietary oils could be included in layers’ diets to produce designer eggs low in cholesterol and high in PUFA especially omega-3 fatty acids.

Keywords: dietary oils, egg cholesterol, egg fatty acid profile, egg quality parameters

Procedia PDF Downloads 316
1291 SIM (Subscriber Identity Module) Banking

Authors: Okanta Andrew, Richmond Kweku Frempong

Abstract:

As mobile networks are upgraded with technologies like WAP, GPRS and UMTS to deliver next-generation multimedia services, so are the banks and other financial institutions also getting ready to unleash the financial products on the mobile platform to meet growing demand for mobile based application services. Hence, the onset of Unstructured Supplementary Services (USSD) Banking which would make banking services available at anywhere, anytime through a string of interactive SMS sessions between a mobile device and an application server of a service provider. The aim of this studies was to find out whether the public will accept the sim banking service when it is implemented. Our target group includes: Working class. E. g. Businessmen/women, office workers, fishermen, market women, teachers etc. Nonworking class. E. g. Students (Tertiary, Senior High School), housewives. etc. The survey was in the form of a questionnaire and a verbal interview (video) which was to investigate their idea about the current banking system and the yet to be introduced sim banking concept. Meanwhile, some challenges accompanied the progression of data gathering because some populace showed reluctance in freeing their information. One other suggestion was that government should put measures against foremost challenges obstructing sim banking in Ghana counter to computers hackers. Government and individual have a key role to undertake to give suitable support to facelift the sim banking industry in the country. It was also suggested that Government put strong regulations on the use of sim banking products and services to streamline all the activities and also create awareness of the need for sim banking and emphasize its relevance in the aspect of national GDP.

Keywords: banking, mobile banking, SIM banking, mobile banking in Ghana

Procedia PDF Downloads 488
1290 Cadaveric Dissection versus Systems-Based Anatomy: Testing Final Year Student Surface Anatomy Knowledge to Compare the Long-Term Effectiveness of Different Course Structures

Authors: L. Sun, T. Hargreaves, Z. Ahmad

Abstract:

Newly-qualified Foundation Year 1 doctors in the United Kingdom are frequently expected to perform practical skills involving the upper limb in clinical practice (for example, venipuncture, cannulation, and blood gas sampling). However, a move towards systems-based undergraduate medical education in the United Kingdom often precludes or limits dedicated time to anatomy teaching with cadavers or prosections, favouring only applied anatomy in the context of pathology. The authors hypothesised that detailed anatomical knowledge may consequently be adversely affected, particularly with respect to long-term retention. A simple picture quiz and accompanying questionnaire testing the identification of 7 upper limb surface landmarks was distributed to a total of 98 final year medical students from two universities - one with a systems-based curriculum, and one with a dedicated longitudinal dissection-based anatomy module in the first year of study. Students with access to dissection and prosection-based anatomy teaching performed more strongly, with a significantly higher rate of correct identification of all but one of the landmarks. Furthermore, it was notable that none of the students who had previously undertaken a systems-based course scored full marks, compared with 20% of those who had participated in the more dedicated anatomy course. This data suggests that a traditional, dissection-based approach to undergraduate anatomy teaching is superior to modern system-based curricula, in terms of aiding long-term retention of anatomical knowledge pertinent to newly-qualified doctors. The authors express concern that this deficit in proficiency could be detrimental to patient care in clinical practice, and propose that, where dissection-led anatomy teaching is not available, further anatomy revision modules are implemented throughout undergraduate education to aid knowledge retention and support clinical excellence.

Keywords: dissection, education, surface anatomy, upper limb

Procedia PDF Downloads 137