Search results for: fuzzy genetic network programming
3048 Adolf Portmann: A Thinker of Self-Expressive Life
Authors: Filip Jaroš
Abstract:
The Swiss scholar Adolf Portmann (1897-1982) was an outstanding figure in the history of biology and the philosophy of the life sciences. Portmann’s biological theory is primarily focused on the problem of animal form (Gestalt), and it poses a significant counterpart to neo-Darwinian theories about the explanatory primacy of a genetic level over the outer appearance of animals. Besides that, Portmann’s morphological studies related to species-specific ontogeny and the influence of environmental surroundings can be classified as the antecedents of contemporary synthetic approaches such as “eco-evo-devo, “extended synthesis or biosemiotics. The most influential of Portmann’s concepts up to the present is his thesis of a social womb (Soziale Mutterschos): human children are born physiologically premature in comparison with other primates, and they find a second womb in a social environment nurturing their healthy development. It is during the first year of extra-uterine life when a specific human nature is formed, characterized by the strong tie between an individual and a broader historical, cultural whole. In my paper, I will closely analyze: a) the historical coordinates of Portmann’s philosophy of the life sciences (e.g., the philosophical anthropology of A. Gehlen, H. Plessner, and their concept of humans as beings “open to the world”), b) the relation of Portmann’s concept of the social womb to contemporary theories of infant birth evolution.Keywords: adolf portmann, extended synthesis, philosophical anthropology, social womb
Procedia PDF Downloads 2463047 Prevalence of Methylenetetrahydrofolate Reductase A1298C Variant in Tunisian Childhood Acute Lymphoblastic Leukemia
Authors: Rim Frikha, Maha Ben Jema, Moez Elloumi, Tarek Rebai
Abstract:
Background: Acute lymphoblastic leukemia (ALL); a common blood cancer characterized by the interaction between genetic and environmental factors. Methylenetetrahydrofolate reductase (MTHFR) is an essential folate metabolic enzyme in the processes of DNA synthesis and methylation. A common functional variant of the MTHFR gene, the A1298C, which induces disturbances in folate metabolism, may affect susceptibility to ALL. Objective: The present study aimed to assess the prevalence of MTHFR polymorphism A1298 > C in Tunisian children with ALL. Materials and Methods: A total of 28 Tunisian ALL children were enrolled in this study. Genomic DNA was extracted from whole venous blood collected in ethylenediaminetetraacetic acid (EDTA). Genotyping was carried out with restriction fragment length polymorphism (RFLP) using MboII restriction enzyme. Genotype distribution and allele frequency of MTHFR A1298C was calculated in ALL patients. Results: The A1298C variant of MTHFR was found in 11(19.6%) heterozygous and one homozygous patient (3.5%). Conclusions: This result highlights that A1298C polymorphism of MTHFR is common in Tunisian childhood ALL and suggests that this variant may have a potential role in leukemogenesis. Genotyping of large samples and different ethnicities are required to validate these findings.Keywords: methylenetetrahydrofolate reductase, acute lymphoblastic leukemia, A1298C variant, prevalence
Procedia PDF Downloads 1393046 Factorization of Computations in Bayesian Networks: Interpretation of Factors
Authors: Linda Smail, Zineb Azouz
Abstract:
Given a Bayesian network relative to a set I of discrete random variables, we are interested in computing the probability distribution P(S) where S is a subset of I. The general idea is to write the expression of P(S) in the form of a product of factors where each factor is easy to compute. More importantly, it will be very useful to give an interpretation of each of the factors in terms of conditional probabilities. This paper considers a semantic interpretation of the factors involved in computing marginal probabilities in Bayesian networks. Establishing such a semantic interpretations is indeed interesting and relevant in the case of large Bayesian networks.Keywords: Bayesian networks, D-Separation, level two Bayesian networks, factorization of computation
Procedia PDF Downloads 5343045 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence
Authors: Carolina Zambrana, Grover Zurita
Abstract:
The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence
Procedia PDF Downloads 853044 Motion Performance Analyses and Trajectory Planning of the Movable Leg-Foot Lander
Authors: Shan Jia, Jinbao Chen, Jinhua Zhou, Jiacheng Qian
Abstract:
In response to the functional limitations of the fixed landers, those are to expand the detection range by the use of wheeled rovers with unavoidable path-repeatability in deep space exploration currently, a movable lander based on the leg-foot walking mechanism is presented. Firstly, a quadruped landing mechanism based on pushrod-damping is proposed. The configuration is of the bionic characteristics such as hip, knee and ankle joints, and the multi-function main/auxiliary buffers based on the crumple-energy absorption and screw-nut mechanism. Secondly, the workspace of the end of the leg-foot mechanism is solved by Monte Carlo method, and the key points on the desired trajectory of the end of the leg-foot mechanism are fitted by cubic spline curve. Finally, an optimal time-jerk trajectory based on weight coefficient is planned and analyzed by an adaptive genetic algorithm (AGA). The simulation results prove the rationality and stability of walking motion of the movable leg-foot lander in the star catalogue. In addition, this research can also provide a technical solution integrating of soft-landing, large-scale inspection and material transfer for future star catalogue exploration, and can even serve as the technical basis for developing the reusable landers.Keywords: motion performance, trajectory planning, movable, leg-foot lander
Procedia PDF Downloads 1453043 Multi-Objective Optimization for Aircraft Fleet Management: A Parametric Approach
Authors: Xin-Yu Li, Dung-Ying Lin
Abstract:
Fleet availability is a crucial indicator for an aircraft fleet. However, in practice, fleet planning involves many resource and safety constraints, such as annual and monthly flight training targets and maximum engine usage limits. Due to safety considerations, engines must be removed for mandatory maintenance and replacement of key components. This situation is known as the "threshold." The annual number of thresholds is a key factor in maintaining fleet availability. However, the traditional method heavily relies on experience and manual planning, which may result in ineffective engine usage and affect the flight missions. This study aims to address the challenges of fleet planning and availability maintenance in aircraft fleets with resource and safety constraints. The goal is to effectively optimize engine usage and maintenance tasks. This study has four objectives: minimizing the number of engine thresholds, minimizing the monthly lack of flight hours, minimizing the monthly excess of flight hours, and minimizing engine disassembly frequency. To solve the resulting formulation, this study uses parametric programming techniques and ϵ-constraint method to reformulate multi-objective problems into single-objective problems, efficiently generating Pareto fronts. This method is advantageous when handling multiple conflicting objectives. It allows for an effective trade-off between these competing objectives. Empirical results and managerial insights will be provided.Keywords: aircraft fleet, engine utilization planning, multi-objective optimization, parametric method, Pareto optimality
Procedia PDF Downloads 353042 Genetic Determinants of Ovarian Response to Gonadotropin Stimulation in Women Undergoing Assisted Reproductive Treatment
Authors: D. Tohlob, E. Abo Hashem, N. Ghareeb, M. Ghanem, R. Elfarahaty, S. A. Roberts, P. Pemberton, L. Mohiyiddeen, W. G. Newman
Abstract:
Gonadotropin stimulation is used in females undergoing assisted reproductive treatment for ovulation induction, but ovarian response is variable and unpredictable in these women. More effective protocols and individualization of treatment are needed to increase the success rate of IVF/ICSI cycles. We genotyped seven variants reported in previous studies to be associated with ovarian response (number of ova retrieved and total gonadotropin dose) in women undergoing IVF treatment including FSHR variants Asn 680 Ser (c.2039 A > G), Thr 307 Ala (c. 919 > A), -29 G > A, HRG c.610 C > T gene, BMP15 -9 C > G, AMH Ile 49 Ser (c.146 G > T), and AMHR -489A˃G in 118 Egyptian females attending Mansoura Integrated Fertility Center in Egypt, these females were undergoing their first cycle of controlled ovarian hyper stimulation for IVF/ICSI treatment. They were analyzed by TaqMan allelic discrimination assay in Manchester Center of Genomic Medicine. We found no evidence of any significant difference (p value < 0.05) in the number of eggs retrieved or the gonadotropin dose used between individuals in all genotypes except for HRG c.610 C > T gene polymorphism where regression analysis gives a p value of 0.04 with a fewer eggs number in TT genotyped females. These results indicate that these variants do not provide sufficient clinically relevant data to individualize the treatment protocols.Keywords: controlled ovarian hyperstimulation, gene variants, ovarian response, assisted reproduction
Procedia PDF Downloads 3233041 Classic Training of a Neural Observer for Estimation Purposes
Authors: R. Loukil, M. Chtourou, T. Damak
Abstract:
This paper investigates the training of multilayer neural network using the classic approach. Then, for estimation purposes, we suggest the use of a specific neural observer that we study its training algorithm which is the back-propagation one in the case of the disponibility of the state and in the case of an unmeasurable state. A MATLAB simulation example will be studied to highlight the usefulness of this kind of observer.Keywords: training, estimation purposes, neural observer, back-propagation, unmeasurable state
Procedia PDF Downloads 5803040 Application of the Global Optimization Techniques to the Optical Thin Film Design
Authors: D. Li
Abstract:
Optical thin films are used in a wide variety of optical components and there are many software tools programmed for advancing multilayer thin film design. The available software packages for designing the thin film structure may not provide optimum designs. Normally, almost all current software programs obtain their final designs either from optimizing a starting guess or by technique, which may or may not involve a pseudorandom process, that give different answers every time, depending upon the initial conditions. With the increasing power of personal computers, functional methods in optimization and synthesis of optical multilayer systems have been developed such as DGL Optimization, Simulated Annealing, Genetic Algorithms, Needle Optimization, Inductive Optimization and Flip-Flop Optimization. Among these, DGL Optimization has proved its efficiency in optical thin film designs. The application of the DGL optimization technique to the design of optical coating is presented. A DGL optimization technique is provided, and its main features are discussed. Guidelines on the application of the DGL optimization technique to various types of design problems are given. The innovative global optimization strategies used in a software tool, OnlyFilm, to optimize multilayer thin film designs through different filter designs are outlined. OnlyFilm is a powerful, versatile, and user-friendly thin film software on the market, which combines optimization and synthesis design capabilities with powerful analytical tools for optical thin film designers. It is also the only thin film design software that offers a true global optimization function.Keywords: optical coatings, optimization, design software, thin film design
Procedia PDF Downloads 3203039 Assessment and Optimisation of Building Services Electrical Loads for Off-Grid or Hybrid Operation
Authors: Desmond Young
Abstract:
In building services electrical design, a key element of any project will be assessing the electrical load requirements. This needs to be done early in the design process to allow the selection of infrastructure that would be required to meet the electrical needs of the type of building. The type of building will define the type of assessment made, and the values applied in defining the maximum demand for the building, and ultimately the size of supply or infrastructure required, and the application that needs to be made to the distribution network operator, or alternatively to an independent network operator. The fact that this assessment needs to be undertaken early in the design process provides limits on the type of assessment that can be used, as different methods require different types of information, and sometimes this information is not available until the latter stages of a project. A common method applied in the earlier design stages of a project, typically during stages 1,2 & 3, is the use of benchmarks. It is a possibility that some of the benchmarks applied are excessive in relation to the current loads that exist in a modern installation. This lack of accuracy is based on information which does not correspond to the actual equipment loads that are used. This includes lighting and small power loads, where the use of more efficient equipment and lighting has reduced the maximum demand required. The electrical load can be used as part of the process to assess the heat generated from the equipment, with the heat gains from other sources, this feeds into the sizing of the infrastructure required to cool the building. Any overestimation of the loads would contribute to the increase in the design load for the heating and ventilation systems. Finally, with the new policies driving the industry to decarbonise buildings, a prime example being the recently introduced London Plan, loads are potentially going to increase. In addition, with the advent of the pandemic and changes to working practices, and the adoption of electric heating and vehicles, a better understanding of the loads that should be applied will aid in ensuring that infrastructure is not oversized, as a cost to the client, or undersized to the detriment of the building. In addition, more accurate benchmarks and methods will allow assessments to be made for the incorporation of energy storage and renewable technologies as these technologies become more common in buildings new or refurbished.Keywords: energy, ADMD, electrical load assessment, energy benchmarks
Procedia PDF Downloads 1183038 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain
Authors: Bita Payami-Shabestari, Dariush Eslami
Abstract:
The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.Keywords: economic production quantity, random cost, supply chain management, vendor-managed inventory
Procedia PDF Downloads 1323037 Synchronization of Semiconductor Laser Networks
Authors: R. M. López-Gutiérrez, L. Cardoza-Avendaño, H. Cervantes-de Ávila, J. A. Michel-Macarty, C. Cruz-Hernández, A. Arellano-Delgado, R. Carmona-Rodríguez
Abstract:
In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interesting case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulated by Matlab. These results are applicable to private communication.Keywords: chaotic laser, network, star topology, synchronization
Procedia PDF Downloads 5693036 Distributed Cost-Based Scheduling in Cloud Computing Environment
Authors: Rupali, Anil Kumar Jaiswal
Abstract:
Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc. Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively. Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model
Procedia PDF Downloads 1713035 Relationship Between Brain Entropy Patterns Estimated by Resting State fMRI and Child Behaviour
Authors: Sonia Boscenco, Zihan Wang, Euclides José de Mendoça Filho, João Paulo Hoppe, Irina Pokhvisneva, Geoffrey B.C. Hall, Michael J. Meaney, Patricia Pelufo Silveira
Abstract:
Entropy can be described as a measure of the number of states of a system, and when used in the context of physiological time-based signals, it serves as a measure of complexity. In functional connectivity data, entropy can account for the moment-to-moment variability that is neglected in traditional functional magnetic resonance imaging (fMRI) analyses. While brain fMRI resting state entropy has been associated with some pathological conditions like schizophrenia, no investigations have explored the association between brain entropy measures and individual differences in child behavior in healthy children. We describe a novel exploratory approach to evaluate brain fMRI resting state data in two child cohorts, and MAVAN (N=54, 4.5 years, 48% males) and GUSTO (N = 206, 4.5 years, 48% males) and its associations to child behavior, that can be used in future research in the context of child exposures and long-term health. Following rs-fMRI data pre-processing and Shannon entropy calculation across 32 network regions of interest to acquire 496 unique functional connections, partial correlation coefficient analysis adjusted for sex was performed to identify associations between entropy data and Strengths and Difficulties questionnaire in MAVAN and Child Behavior Checklist domains in GUSTO. Significance was set at p < 0.01, and we found eight significant associations in GUSTO. Negative associations were found between two frontoparietal regions and cerebellar posterior and oppositional defiant problems, (r = -0.212, p = 0.006) and (r = -0.200, p = 0.009). Positive associations were identified between somatic complaints and four default mode connections: salience insula (r = 0.202, p < 0.01), dorsal attention intraparietal sulcus (r = 0.231, p = 0.003), language inferior frontal gyrus (r = 0.207, p = 0.008) and language posterior superior temporal gyrus (r = 0.210, p = 0.008). Positive associations were also found between insula and frontoparietal connection and attention deficit / hyperactivity problems (r = 0.200, p < 0.01), and insula – default mode connection and pervasive developmental problems (r = 0.210, p = 0.007). In MAVAN, ten significant associations were identified. Two positive associations were found = with prosocial scores: the salience prefrontal cortex and dorsal attention connection (r = 0.474, p = 0.005) and the salience supramarginal gyrus and dorsal attention intraparietal sulcus (r = 0.447, p = 0.008). The insula and prefrontal connection were negatively associated with peer problems (r = -0.437, p < 0.01). Conduct problems were negatively associated with six separate connections, the left salience insula and right salience insula (r = -0.449, p = 0.008), left salience insula and right salience supramarginal gyrus (r = -0.512, p = 0.002), the default mode and visual network (r = -0.444, p = 0.009), dorsal attention and language network (r = -0.490, p = 0.003), and default mode and posterior parietal cortex (r = -0.546, p = 0.001). Entropy measures of resting state functional connectivity can be used to identify individual differences in brain function that are correlated with variation in behavioral problems in healthy children. Further studies applying this marker into the context of environmental exposures are warranted.Keywords: child behaviour, functional connectivity, imaging, Shannon entropy
Procedia PDF Downloads 2073034 Cognitive Footprints: Analytical and Predictive Paradigm for Digital Learning
Authors: Marina Vicario, Amadeo Argüelles, Pilar Gómez, Carlos Hernández
Abstract:
In this paper, the Computer Research Network of the National Polytechnic Institute of Mexico proposes a paradigmatic model for the inference of cognitive patterns in digital learning systems. This model leads to metadata architecture useful for analysis and prediction in online learning systems; especially on MOOc's architectures. The model is in the design phase and expects to be tested through an institutional of courses project which is going to develop for the MOOc.Keywords: cognitive footprints, learning analytics, predictive learning, digital learning, educational computing, educational informatics
Procedia PDF Downloads 4813033 Development of a Matlab® Program for the Bi-Dimensional Truss Analysis Using the Stiffness Matrix Method
Authors: Angel G. De Leon Hernandez
Abstract:
A structure is defined as a physical system or, in certain cases, an arrangement of connected elements, capable of bearing certain loads. The structures are presented in every part of the daily life, e.g., in the designing of buildings, vehicles and mechanisms. The main goal of a structure designer is to develop a secure, aesthetic and maintainable system, considering the constraint imposed to every case. With the advances in the technology during the last decades, the capabilities of solving engineering problems have increased enormously. Nowadays the computers, play a critical roll in the structural analysis, pitifully, for university students the vast majority of these software are inaccessible due to the high complexity and cost they represent, even when the software manufacturers offer student versions. This is exactly the reason why the idea of developing a more reachable and easy-to-use computing tool. This program is designed as a tool for the university students enrolled in courser related to the structures analysis and designs, as a complementary instrument to achieve a better understanding of this area and to avoid all the tedious calculations. Also, the program can be useful for graduated engineers in the field of structural design and analysis. A graphical user interphase is included in the program to make it even simpler to operate it and understand the information requested and the obtained results. In the present document are included the theoretical basics in which the program is based to solve the structural analysis, the logical path followed in order to develop the program, the theoretical results, a discussion about the results and the validation of those results.Keywords: stiffness matrix method, structural analysis, Matlab® applications, programming
Procedia PDF Downloads 1253032 Thinking about the Loss of Social Networking Sites May Expand the Distress of Social Exclusion
Authors: Wen-Bin Chiou, Hsiao-Chiao Weng
Abstract:
Social networking sites (SNS) such as Facebook and Twitter are low-cost tools that can promote the creation of social connections by providing a convenient platform that can be accessed at any time. In the current research, a laboratory experiment was conducted test the hypothesis that reminders of losing SNS would alter the impact of social events, especially those involving social exclusion. Specifically, this study explored whether losing SNS would intensify perceived social distress induced by exclusionary bogus feedback. Eighty-eight Facebook users (46 females, 42 males; mean age = 22.6 years, SD = 3.1 years) were recruited via campus posters and flyers at a national university in southern Taiwan. After participants provided consent, they were randomly assigned to a 2 (SNS non-use vs. neutral) between-subjects experiment. Participants completed an ostensible survey about online social networking in which we included an item about the time spent on SNS per day. The last question was used to manipulate thoughts about losing SNS access. Participants under the non-use condition were asked to record three conditions that would render them unable to use SNS (e.g., a network adaptor problem, malfunctioning cable modem, or problems with Internet service providers); participants under the neutral condition recorded three conditions that would render them unable to log onto the college website (e.g., server maintenance, local network or firewall problems). Later, this experiment employed a bogus-feedback paradigm to induce social exclusion. Participants then rated their social distress on a four-item scale, identical to that of Experiment 1 (α = .84). The results showed that thoughts of losing SNS intensified distress caused by social exclusion, suggesting that the loss of SNS has a similar effect to the loss of a primary source for social reconnections. Moreover, the priming effects of SNS on perceived distress were more prominent for heavy users. The demonstrated link between the idea of losing SNS use and increased pain of social exclusion manifests the importance of SNS as a crucial gateway for acquiring and rebuilding social connections. Use of online social networking appears to be a two-edged sword for coping with social exclusion in human lives in the e-society.Keywords: online social networking, perceived distress, social exclusion, SNS
Procedia PDF Downloads 4243031 Pharmacodynamic Enhancement of Repetitive rTMS Treatment Outcomes for Major Depressive Disorder
Authors: A. Mech
Abstract:
Repetitive transcranial magnetic stimulation has proven to be a valuable treatment option for patients who have failed to respond to multiple courses of antidepressant medication. In fact, the American Psychiatric Association recommends TMS after one failed treatment course of antidepressant medication. Genetic testing has proven valuable for pharmacokinetic variables, which, if understood, could lead to more efficient dosing of psychotropic medications to improve outcomes. Pharmacodynamic testing can identify biomarkers, which, if addressed, can improve patients' outcomes in antidepressant therapy. Monotherapy treatment of major depressive disorder with methylated B vitamin treatment has been shown to be safe and effective in patients with MTHFR polymorphisms without waiting for multiple trials of failed medication treatment for depression. Such treatment has demonstrated remission rates similar to antidepressant clinical trials. Combining pharmacodynamics testing with repetitive TMS treatment with NeuroStar has shown promising potential for enhancing remission rates and durability of treatment. In this study, a retrospective chart review (ongoing) of patients who obtained repetitive TMS treatment enhanced by dietary supplementation guided by Pharmacodynamic testing, displayed a greater remission rate (90%) than patients treated with only NeuroStar TMS (62%).Keywords: improved remission rate, major depressive disorder, pharmacodynamic testing, rTMS outcomes
Procedia PDF Downloads 603030 The impact of Breast Cancer Polymorphism on Breast Cancer
Authors: Roudabeh Vakil Monfared, Farhad Mashayekhi
Abstract:
Breast cancer is the most common malignancy type among women with about 1 million new cases each year. The immune system plays an important role in the breast cancer development. OX40L (also known as TNFSF4), a membrane protein, which is a member of the tumor necrosis factor super family binds to its receptor OX40 and this co-stimulation has a crucial role in T-cell proliferation, survival and cytokine release. Due to the importance of the T-cells in anti-tumor activities of OX40L we studied the association of rs3850641 (T→C) polymorphism of OX40L gene with breast cancer. The study included 123 women with breast cancer and 126 healthy volunteers with no signs of cancer. Genomic DNA was extracted from blood leucocytes. Genotype and allele frequencies were determined in patients and control cases with the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and the analysis was performed by Med Calc. The prevalence of genotype frequencies of TT, CT and CC were 60.9%, 30.08% and 8.9 % in patients with breast cancer and 74.6 %, 18.25 % and 7.14 % in healthy volunteers while the T and C allelic frequency was 76.01% and 23.98 % in patients and 83.73% and 16.26% in healthy controls. Respectively Statistical analysis has shown no significant difference from the comparison of either genotype (P=0.06). According to these results, the rs3850641 SNP has no association with the susceptibility of breast cancer in a population in northern Iran. However, further studies in larger populations including other genetic and environmental factors are required to achieve conclusion.Keywords: OX40L, gene, polymorphism, breast cancer
Procedia PDF Downloads 5383029 Mathematical modeling of the calculation of the absorbed dose in uranium production workers with the genetic effects.
Authors: P. Kazymbet, G. Abildinova, K.Makhambetov, M. Bakhtin, D. Rybalkina, K. Zhumadilov
Abstract:
Conducted cytogenetic research in workers Stepnogorsk Mining-Chemical Combine (Akmola region) with the study of 26341 chromosomal metaphase. Using a regression analysis with program DataFit, version 5.0, dependence between exposure dose and the following cytogenetic exponents has been studied: frequency of aberrant cells, frequency of chromosomal aberrations, frequency of the amounts of dicentric chromosomes, and centric rings. Experimental data on calibration curves "dose-effect" enabled the development of a mathematical model, allowing on data of the frequency of aberrant cells, chromosome aberrations, the amounts of dicentric chromosomes and centric rings calculate the absorbed dose at the time of the study. In the dose range of 0.1 Gy to 5.0 Gy dependence cytogenetic parameters on the dose had the following equation: Y = 0,0067е^0,3307х (R2 = 0,8206) – for frequency of chromosomal aberrations; Y = 0,0057е^0,3161х (R2 = 0,8832) –for frequency of cells with chromosomal aberrations; Y =5 Е-0,5е^0,6383 (R2 = 0,6321) – or frequency of the amounts of dicentric chromosomes and centric rings on cells. On the basis of cytogenetic parameters and regression equations calculated absorbed dose in workers of uranium production at the time of the study did not exceed 0.3 Gy.Keywords: Stepnogorsk, mathematical modeling, cytogenetic, dicentric chromosomes
Procedia PDF Downloads 4843028 Design of Bidirectional Wavelength Division Multiplexing Passive Optical Network in Optisystem Environment
Authors: Ashiq Hussain, Mahwash Hussain, Zeenat Parveen
Abstract:
Now a days the demand for broadband service has increased. Due to which the researchers are trying to find a solution to provide a large amount of service. There is a shortage of bandwidth because of the use of downloading video, voice and data. One of the solutions to overcome this shortage of bandwidth is to provide the communication system with passive optical components. We have increased the data rate in this system. From experimental results we have concluded that the quality factor has increased by adding passive optical networks.Keywords: WDM-PON, optical fiber, BER, Q-factor, eye diagram
Procedia PDF Downloads 5153027 Deep Q-Network for Navigation in Gazebo Simulator
Authors: Xabier Olaz Moratinos
Abstract:
Drone navigation is critical, particularly during the initial phases, such as the initial ascension, where pilots may fail due to strong external interferences that could potentially lead to a crash. In this ongoing work, a drone has been successfully trained to perform an ascent of up to 6 meters at speeds with external disturbances pushing it up to 24 mph, with the DQN algorithm managing external forces affecting the system. It has been demonstrated that the system can control its height, position, and stability in all three axes (roll, pitch, and yaw) throughout the process. The learning process is carried out in the Gazebo simulator, which emulates interferences, while ROS is used to communicate with the agent.Keywords: machine learning, DQN, Gazebo, navigation
Procedia PDF Downloads 833026 Dynamic Network Approach to Air Traffic Management
Authors: Catia S. A. Sima, K. Bousson
Abstract:
Congestion in the Terminal Maneuvering Areas (TMAs) of larger airports impacts all aspects of air traffic flow, not only at national level but may also induce arrival delays at international level. Hence, there is a need to monitor appropriately the air traffic flow in TMAs so that efficient decisions may be taken to manage their occupancy rates. It would be desirable to physically increase the existing airspace to accommodate all existing demands, but this question is entirely utopian and, given this possibility, several studies and analyses have been developed over the past decades to meet the challenges that have arisen due to the dizzying expansion of the aeronautical industry. The main objective of the present paper is to propose concepts to manage and reduce the degree of uncertainty in the air traffic operations, maximizing the interest of all involved, ensuring a balance between demand and supply, and developing and/or adapting resources that enable a rapid and effective adaptation of measures to the current context and the consequent changes perceived in the aeronautical industry. A central task is to emphasize the increase in air traffic flow management capacity to the present day, taking into account not only a wide range of methodologies but also equipment and/or tools already available in the aeronautical industry. The efficient use of these resources is crucial as the human capacity for work is limited and the actors involved in all processes related to air traffic flow management are increasingly overloaded and, as a result, operational safety could be compromised. The methodology used to answer and/or develop the issues listed above is based on the advantages promoted by the application of Markov Chain principles that enable the construction of a simplified model of a dynamic network that describes the air traffic flow behavior anticipating their changes and eventual measures that could better address the impact of increased demand. Through this model, the proposed concepts are shown to have potentials to optimize the air traffic flow management combined with the operation of the existing resources at each moment and the circumstances found in each TMA, using historical data from the air traffic operations and specificities found in the aeronautical industry, namely in the Portuguese context.Keywords: air traffic flow, terminal maneuvering area, TMA, air traffic management, ATM, Markov chains
Procedia PDF Downloads 1353025 Dynamic Communications Mapping in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina
Abstract:
In this paper, we propose heuristic for dynamic communications mapping that considers the placement of communications in order to optimize the overall performance. The mapping technique uses a newly proposed Algorithm to place communications between the tasks. The placement we propose of the communications leads to a better optimization of several performance metrics (time and energy consumption). Experimental results show that the proposed mapping approach provides significant performance improvements when compared to those using static routing.Keywords: Multi-Processor Systems-on-Chip (MPSoCs), Network-on-Chip (NoC), heterogeneous architectures, dynamic mapping heuristics
Procedia PDF Downloads 5403024 A Survey of Dynamic QoS Methods in Sofware Defined Networking
Authors: Vikram Kalekar
Abstract:
Modern Internet Protocol (IP) networks deploy traditional and modern Quality of Service (QoS) management methods to ensure the smooth flow of network packets during regular operations. SDN (Software-defined networking) networks have also made headway into better service delivery by means of novel QoS methodologies. While many of these techniques are experimental, some of them have been tested extensively in controlled environments, and few of them have the potential to be deployed widely in the industry. With this survey, we plan to analyze the approaches to QoS and resource allocation in SDN, and we will try to comment on the possible improvements to QoS management in the context of SDN.Keywords: QoS, policy, congestion, flow management, latency, delay index terms-SDN, delay
Procedia PDF Downloads 1983023 Genetic Approach to Target Putative PKS Genes Involved in Ochratoxin a Biosynthesis within Aspergillus Section Nigri, As a Main Cause of Human Nephropathy
Authors: Sabah Ben Fredj Melki, Yves Brygoo, Ahmed Mliki
Abstract:
A 700 pb PCR-derived DNA fragment was isolated from Aspergillus carbonarius, Aspergillus niger, and Aspergillus tubingensis using degenerated primers (LC1-LC2c) and two newly designed primer pairs (KSLB-LC6) for Aspergillus niger and (AFl1F-LC2) for Aspergillus tubingensis developed for the acyl transferase (AT) and the KS domains of fungal PKSs. DNA from the most of black Aspergillus species currently recognized was tested. Herein, we report on the identification and characterisation of a part of the novel putative OTA-polyketide synthase gene in A. carbonarius “ACPks”, A. niger “ANPks” and A. tubingenis “ATPks”. The sequences were aligned and analyzed using phylogenetic methods. Primers used in this study showed general applicability and other Aspergillus species belonging to section Nigri were successfully amplified especially in A. niger and A. tubingenis. The predicted amino acid sequences “ACPks” displayed 66 to 81% similarities to different polyketide synthase genes while “ANPks” similarities varied from 68 to 71% and “ATPks” were from 81 to 97%. The AT and the KS domains appeared to be specific for a particular type of fungal PKSs and were related to PKSs involved in different mycotoxin biosynthesis pathways, including ochratoxin A. The sequences presented in this work have a high utility for the discovery of novel fungal PKS gene clusters.Keywords: Pks genes, OTA Biosynthesis, Aspergillus Nigri, sequence analysis
Procedia PDF Downloads 763022 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 1823021 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 3053020 Feature Selection of Personal Authentication Based on EEG Signal for K-Means Cluster Analysis Using Silhouettes Score
Authors: Jianfeng Hu
Abstract:
Personal authentication based on electroencephalography (EEG) signals is one of the important field for the biometric technology. More and more researchers have used EEG signals as data source for biometric. However, there are some disadvantages for biometrics based on EEG signals. The proposed method employs entropy measures for feature extraction from EEG signals. Four type of entropies measures, sample entropy (SE), fuzzy entropy (FE), approximate entropy (AE) and spectral entropy (PE), were deployed as feature set. In a silhouettes calculation, the distance from each data point in a cluster to all another point within the same cluster and to all other data points in the closest cluster are determined. Thus silhouettes provide a measure of how well a data point was classified when it was assigned to a cluster and the separation between them. This feature renders silhouettes potentially well suited for assessing cluster quality in personal authentication methods. In this study, “silhouettes scores” was used for assessing the cluster quality of k-means clustering algorithm is well suited for comparing the performance of each EEG dataset. The main goals of this study are: (1) to represent each target as a tuple of multiple feature sets, (2) to assign a suitable measure to each feature set, (3) to combine different feature sets, (4) to determine the optimal feature weighting. Using precision/recall evaluations, the effectiveness of feature weighting in clustering was analyzed. EEG data from 22 subjects were collected. Results showed that: (1) It is possible to use fewer electrodes (3-4) for personal authentication. (2) There was the difference between each electrode for personal authentication (p<0.01). (3) There is no significant difference for authentication performance among feature sets (except feature PE). Conclusion: The combination of k-means clustering algorithm and silhouette approach proved to be an accurate method for personal authentication based on EEG signals.Keywords: personal authentication, K-mean clustering, electroencephalogram, EEG, silhouettes
Procedia PDF Downloads 2903019 Songwriting in the Postdigital Age: Using TikTok and Instagram as Online Informal Learning Technologies
Authors: Matthias Haenisch, Marc Godau, Julia Barreiro, Dominik Maxelon
Abstract:
In times of ubiquitous digitalization and the increasing entanglement of humans and technologies in musical practices in the 21st century, it is to be asked, how popular musicians learn in the (post)digital Age. Against the backdrop of the increasing interest in transferring informal learning practices into formal settings of music education the interdisciplinary research association »MusCoDA – Musical Communities in the (Post)Digital Age« (University of Erfurt/University of Applied Sciences Clara Hoffbauer Potsdam, funded by the German Ministry of Education and Research, pursues the goal to derive an empirical model of collective songwriting practices from the study of informal lelearningf songwriters and bands that can be translated into pedagogical concepts for music education in schools. Drawing on concepts from Community of Musical Practice and Actor Network Theory, lelearnings considered not only as social practice and as participation in online and offline communities, but also as an effect of heterogeneous networks composed of human and non-human actors. Learning is not seen as an individual, cognitive process, but as the formation and transformation of actor networks, i.e., as a practice of assembling and mediating humans and technologies. Based on video stimulated recall interviews and videography of online and offline activities, songwriting practices are followed from the initial idea to different forms of performance and distribution. The data evaluation combines coding and mapping methods of Grounded Theory Methodology and Situational Analysis. This results in network maps in which both the temporality of creative practices and the material and spatial relations of human and technological actors are reconstructed. In addition, positional analyses document the power relations between the participants that structure the learning process of the field. In the area of online informal lelearninginitial key research findings reveal a transformation of the learning subject through the specific technological affordances of TikTok and Instagram and the accompanying changes in the learning practices of the corresponding online communities. Learning is explicitly shaped by the material agency of online tools and features and the social practices entangled with these technologies. Thus, any human online community member can be invited to directly intervene in creative decisions that contribute to the further compositional and structural development of songs. At the same time, participants can provide each other with intimate insights into songwriting processes in progress and have the opportunity to perform together with strangers and idols. Online Lelearnings characterized by an increase in social proximity, distribution of creative agency and informational exchange between participants. While it seems obvious that traditional notions not only of lelearningut also of the learning subject cannot be maintained, the question arises, how exactly the observed informal learning practices and the subject that emerges from the use of social media as online learning technologies can be transferred into contexts of formal learningKeywords: informal learning, postdigitality, songwriting, actor-network theory, community of musical practice, social media, TikTok, Instagram, apps
Procedia PDF Downloads 134