Search results for: future water resources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18613

Search results for: future water resources

14143 Oncological Consequences of Heavy Metal Deposits in Jos East, Plateau State, Nigeria

Authors: Jasini Waida, Usman Rilwan, S. I. Ikpughul, E. I. Ugwu

Abstract:

Carcinogenic substances are those that induce tumours (benign or malignant), increase their incidence or malignancy, or shorten the time of tumour occurrence when they get into the body through inhalation, injection, dermal application, or ingestion. Using X-Ray Fluorescence, this study reveals the accumulation of heavy metals in Jos East. The results of this study showed that the Geo-Accumulation Index (Igeo) of water for different heavy metals decreased in the order of Cd (0.15) > Cr and As (0.03) > Pb (-0.13) > Ni (-0.6). The soil content for different heavy metals decreased in the order of As and Cd (0.4) > Ni, Cr and Pb (0.2). The edible plants for different heavy metals decreased in the order of Cd (0.512) > As (0.25) > Pb (0.23) > Ni (0.01) > Ni (-0.06). 21% of these points are uncontaminated, except for a few points that are found within the uncontaminated to moderately contaminated level. It is possible to conclude that the area is uncontaminated to moderately contaminated, necessitating regulation. Hence, this study can be used as reference data for regulatory bodies like the Nigerian Nuclear Regulatory Authority (NNRA) and the rest.

Keywords: heavy metals, soil, plants, water, contamination factor

Procedia PDF Downloads 77
14142 Improvement of the Mechanical Behavior of an Environmental Concrete Based on Demolished

Authors: Larbi Belagraa

Abstract:

The universal need to conserve resources, protect the environment and use energy efficiently must necessarily be felt in the field of concrete technology. The recycling of construction and demolition waste as a source of aggregates for the production of concrete has attracted growing interest from the construction industry. In Algeria, the depletion of natural deposits of aggregates and the difficulties in setting up new quarries; makes it necessary to seek new sources of supply, to meet the need for aggregates for the major projects launched by the Algerian government in the last decades. In this context, this work is a part of the approach to provide answers to concerns about the lack of aggregates for concrete. It also aims to develop the inert fraction of demolition materials and mainly concrete construction demolition waste(C&D) as a source of aggregates for the manufacture of new hydraulic concretes based on recycled aggregates. This experimental study presents the results of physical and mechanical characterizations of natural and recycled aggregates, as well as their influence on the properties of fresh and hardened concrete. The characterization of the materials used has shown that the recycled aggregates have heterogeneity, a high water absorption capacity, and a medium quality hardness. However, the limits prescribed by the standards in force do not disqualify these materials of use for application as recycled aggregate concrete type (RAC). The results obtained from the present study show that acceptable mechanical, compressive, and flexural strengths of RACs are obtained using Superplasticizer SP 45 and 5% replacement of cement with silica fume based on recycled aggregates, compared to those of natural concretes. These mechanical performances demonstrate a characteristic resistance at 28 days in compression within the limits of 30 to 40 MPa without any particular suitable technology .to be adapted in the case.

Keywords: recycled aggregates, concrete(RAC), superplasticizer, silica fume, compressive strength

Procedia PDF Downloads 168
14141 Representative Concentration Pathways Approach on Wolbachia Controlling Dengue Virus in Aedes aegypti

Authors: Ida Bagus Mandhara Brasika, I Dewa Gde Sathya Deva

Abstract:

Wolbachia is recently developed as the natural enemy of Dengue virus (DENV). It inhibits the replication of DENV in Aedes aegypti. Both DENV and its vector, Aedes aegypty, are sensitive to climate factor especially temperature. The changing of climate has a direct impact on temperature which means changing the vector transmission. Temperature has been known to effect Wolbachia density as it has an ideal temperature to grow. Some scenarios, which are known as Representative Concentration Pathways (RCPs), have been developed by Intergovernmental Panel on Climate Change (IPCC) to predict the future climate based on greenhouse gases concentration. These scenarios are applied to mitigate the future change of Aedes aegypti migration and how Wolbachia could control the virus. The prediction will determine the schemes to release Wolbachia-injected Aedes aegypti to reduce DENV transmission.

Keywords: Aedes aegypti, climate change, dengue virus, Intergovernmental Panel on Climate Change, representative concentration pathways, Wolbachia

Procedia PDF Downloads 295
14140 Expert Solutions to Affordable Housing Finance Challenges in Developing Economies

Authors: Timothy Akinwande, Eddie C. M. Hui

Abstract:

Housing the urban poor has remained a challenge for many years across the world, especially in developing economies, despite the apparent research attention and policy interventions. It is apt to investigate the prevalent affordable housing (AH) provision challenges using unconventional approaches. It is pragmatic to thoroughly examine housing experts to provide supply-side solutions to AH challenges and investigate informal settlers to deduce solutions from AH demand viewpoints. This study being the supply-side investigation of an ongoing research, interrogated housing experts to determine significant expert solutions. Focus group discussions and in-depth interviews were conducted with housing experts in Nigeria. Through descriptive, content, and systematic thematic analyses of data, major findings are that deliberate finance models designed for the urban poor are the most significant housing finance solution in developing economies. Other findings are that adequately implemented rent control policies, deliberate PPP approaches like inclusionary housing and land-value capture, and urban renewal programmes to enlighten and tutor the urban poor on how to earn more, spend wisely, and invest in their own better housing will effectively solve AH finance challenges. Study findings are informative for the best approaches to achieve effective, affordable housing finance for the urban poor in Nigeria, which is indispensable for the achievement of sustainable development goals. This research’s originality lies in the exploration of experts’ opinions in relation to AH finance to produce an equation model of critical solutions to AH finance challenges. Study data are useful resources for future pro-poor housing studies. This study makes housing policy-oriented recommendations toward effective, affordable housing for the urban poor in developing countries.

Keywords: affordable housing, effective affordable housing, housing policy, housing research, sustainable development, urban poor

Procedia PDF Downloads 79
14139 Short-Term Effects of Environmentally Relevant Concentrations of Organic UV Filters on Signal Crayfish Pacifastacus Leniusculus

Authors: Viktoriia Malinovska, Iryna Kuklina, Katerina Grabicova, Milos Buric, Pavel Kozak

Abstract:

Personal care products, including organic UV filters, are considered emerging contaminants and their toxic effects have been a concern for the last decades. Sunscreen compounds continually enter the surface waters via sewage water treatment due to incomplete removal and during human recreational and laundry activities. Despite the environmental occurrence of organic UV filters in the freshwater environment, little is known about their impacts on aquatic biota. In this study, environmentally relevant concentrations of 5-Benzoyl-4-hydroxy-2-methoxybenzenesulfonic acid (BP-4, 2.5 µg/L) and 2-Phenylbenzimidazole-5-sulfonic acid (PBSA, 3 µg/L) were used to evaluate the cardiac and locomotor responses of signal crayfish Pacifastacus leniusculus during a short time period. The effects of these compounds were evident in experimental animals. Specimens exposed to both tested compounds exhibited significantly bigger changes in distance moved and time movement than controls. Significant differences in changes in mean heart rate were detected in both PBSA and BP-4 experimental groups compared to control groups. Such behavioral and physiological alterations demonstrate the ecological effects of selected sunscreen compounds during a short time period. Since the evidence of the impacts of sunscreen compounds is scarce, the knowledge of how organic UV filters influence aquatic organisms is of key importance for future research.

Keywords: aquatic pollutants, behavior, freshwaters, heart rate, invertebrate

Procedia PDF Downloads 101
14138 Effects of Temperature and Mechanical Abrasion on Microplastics

Authors: N. Singh, G. K. Darbha

Abstract:

Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.

Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering

Procedia PDF Downloads 156
14137 A Dynamic Approach for Evaluating the Climate Change Risks on Building Performance

Authors: X. Lu, T. Lu, S. Javadi

Abstract:

A simple dynamic approach is presented for analyzing thermal and moisture dynamics of buildings, which is of particular relevance to understanding climate change impacts on buildings, including assessment of risks and applications of resilience strategies. With the goal to demonstrate the proposed modeling methodology, to verify the model, and to show that wooden materials provide a mechanism that can facilitate the reduction of moisture risks and be more resilient to global warming, a wooden church equipped with high precision measurement systems was taken as a test building for full-scale time-series measurements. Sensitivity analyses indicate a high degree of accuracy in the model prediction regarding the indoor environment. The model is then applied to a future projection of climate indoors aiming to identify significant environmental factors, the changing temperature and humidity, and effective response to the climate change impacts. The paper suggests that wooden building materials offer an effective and resilient response to anticipated future climate changes.

Keywords: dynamic model, forecast, climate change impact, wooden structure, buildings

Procedia PDF Downloads 145
14136 Assessment of the Properties of Microcapsules with Different Polymeric Shells Containing a Reactive Agent for their Suitability in Thermoplastic Self-healing Materials

Authors: Małgorzata Golonka, Jadwiga Laska

Abstract:

Self-healing polymers are one of the most investigated groups of smart materials. As materials engineering has recently focused on the design, production and research of modern materials and future technologies, researchers are looking for innovations in structural, construction and coating materials. Based on available scientific articles, it can be concluded that most of the research focuses on the self-healing of cement, concrete, asphalt and anticorrosion resin coatings. In our study, a method of obtaining and testing the properties of several types of microcapsules for use in self-healing polymer materials was developed. A method to obtain microcapsules exhibiting various mechanical properties, especially compressive strength was developed. The effect was achieved by using various polymer materials to build the shell: urea-formaldehyde resin (UFR), melamine-formaldehyde resin (MFR), melamine-urea-formaldehyde resin (MUFR). Dicyclopentadiene (DCPD) was used as the core material due to the possibility of its polymerization according to the ring-opening olefin metathesis (ROMP) mechanism in the presence of a solid Grubbs catalyst showing relatively high chemical and thermal stability. The ROMP of dicyclopentadiene leads to a polymer with high impact strength, high thermal resistance, good adhesion to other materials and good chemical and environmental resistance, so it is potentially a very promising candidate for the self-healing of materials. The capsules were obtained by condensation polymerization of formaldehyde with urea, melamine or copolymerization with urea and melamine in situ in water dispersion, with different molar ratios of formaldehyde, urea and melamine. The fineness of the organic phase dispersed in water, and consequently the size of the microcapsules, was regulated by the stirring speed. In all cases, to establish such synthesis conditions as to obtain capsules with appropriate mechanical strength. The microcapsules were characterized by determining the diameters and their distribution and measuring the shell thickness using digital optical microscopy and scanning electron microscopy, as well as confirming the presence of the active substance in the core by FTIR and SEM. Compression tests were performed to determine mechanical strength of the microcapsules. The highest repeatability of microcapsule properties was obtained for UFR resin, while the MFR resin had the best mechanical properties. The encapsulation efficiency of MFR was much lower compared to UFR, though. Therefore, capsules with a MUFR shell may be the optimal solution. The chemical reaction between the active substance present in the capsule core and the catalyst placed outside the capsules was confirmed by FTIR spectroscopy. The obtained autonomous repair systems (microcapsules + catalyst) were introduced into polyethylene in the extrusion process and tested for the self-repair of the material.

Keywords: autonomic self-healing system, dicyclopentadiene, melamine-urea-formaldehyde resin, microcapsules, thermoplastic materials

Procedia PDF Downloads 38
14135 Improving Enhanced Oil Recovery by Using Alkaline-Surfactant-Polymer Injection and Nanotechnology

Authors: Amir Gerayeli, Babak Moradi

Abstract:

The continuously declining oil reservoirs and reservoirs aging have created a huge demand for utilization of Enhanced Oil Recovery (EOR) methods recently. Primary and secondary oil recovery methods have various limitations and are not practical for all reservoirs. Therefore, it is necessary to use chemical methods to improve oil recovery efficiency by reducing oil and water surface tension, increasing sweeping efficiency, and reducing displacer phase viscosity. One of the well-known methods of oil recovery is Alkaline-Surfactant-Polymer (ASP) flooding that shown to have significant impact on enhancing oil recovery. As some of the biggest oil reservoirs including those of Iran’s are fractional reservoirs with substantial amount of trapped oil in their fractures, the use of Alkaline-Surfactant-Polymer (ASP) flooding method is increasingly growing, the method in which the impact of several parameters including type and concentration of the Alkaline, Surfactant, and polymer are particularly important. This study investigated the use of Nano particles to improve Enhanced Oil Recovery (EOR). The study methodology included performing several laboratory tests on drill cores extracted from Karanj Oil field Asmary Formation in Khuzestan, Iran. In the experiments performed, Sodium dodecyl benzenesulfonate (SDBS) and 1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) were used as surfactant, hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer, Sodium hydroxide (NaOH) as alkaline, and Silicon dioxide (SiO2) and Magnesium oxide (MgO) were used as Nano particles. The experiment findings suggest that water viscosity increased from 1 centipoise to 5 centipoise when hydrolyzed polyacrylamide (HPAM) and guar gum were used as polymer. The surface tension between oil and water was initially measured as 25.808 (mN/m). The optimum surfactant concentration was found to be 500 p, at which the oil and water tension surface was measured to be 2.90 (mN/m) when [C12mim] [Cl] was used, and 3.28 (mN/m) when SDBS was used. The Nano particles concentration ranged from 100 ppm to 1500 ppm in this study. The optimum Nano particle concentration was found to be 1000 ppm for MgO and 500 ppm for SiO2.

Keywords: alkaline-surfactant-polymer, ionic liquids, relative permeability, reduced surface tension, tertiary enhanced oil recovery, wettability change

Procedia PDF Downloads 148
14134 Thermodynamic and Spectroscopic Investigation of Binary 2,2-Dimethyl-1-Propanol+ CO₂ Gas Hydrates

Authors: Seokyoon Moon, Yun-Ho Ahn, Heejoong Kim, Sujin Hong, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is a non-stoichiometric crystalline compound consisting of host water-framework and low molecular weight guest molecules. Small gaseous molecules such as CH₄, CO₂, and N₂ can be captured in the host water framework lattices of the gas hydrate with specific temperature and pressure conditions. The three well-known crystal structures of structure I (sI), structure II (sII), and structure H (sH) are determined by the size and shape of guest molecules. In this study, we measured the phase equilibria of binary (2,2-dimethyl-1-propanol + CO₂, CH₄, N₂) hydrates to explore their fundamental thermodynamic characteristics. We identified the structure of the binary gas hydrate by employing synchrotron high-resolution powder diffraction (HRPD), and the guest distributions in the lattice of gas hydrate were investigated via dispersive Raman and ¹³C solid-state nuclear magnetic resonance (NMR) spectroscopies. The end-to-end distance of 2,2-dimethyl-1-propanol was calculated to be 7.76 Å, which seems difficult to be enclathrated in large cages of sI or sII. However, due to the flexibility of the host water framework, binary hydrates of sI or sII types can be formed with the help of small gas molecule. Also, the synchrotron HRPD patterns revealed that the binary hydrate structure highly depends on the type of help gases; a cubic Fd3m sII hydrate was formed with CH₄ or N₂, and a cubic Pm3n sI hydrate was formed with CO₂. Interestingly, dispersive Raman and ¹³C NMR spectra showed that the unique tuning phenomenon occurred in binary (2,2-dimethyl-1-propanol + CO₂) hydrate. By optimizing the composition of NPA, we can achieve both thermodynamic stability and high CO₂ storage capacity for the practical application to CO₂ capture.

Keywords: clathrate, gas hydrate, neopentyl alcohol, CO₂, tuning phenomenon

Procedia PDF Downloads 231
14133 Designing a Smart City Relying on Renewable Energies: A Solution in the Concept of Sustainable Development

Authors: Mina Bakhshi

Abstract:

Nowadays, issues such as various types of pollution, problems caused by energy consumption, population density, social activities, difficulties related to urban access and communication, transportation, etc., have challenged different communities and become the subject of their discussions. In response to this issue, theories and movements have emerged to achieve sustainable urban development, including the smart growth movement. This theory emphasizes that the physical growth and expansion of cities should serve the community and the environment, aiming to improve the quality of life and promote the use of renewable energy resources for sustainability. The smart city network system not only improves the economic situation of the society and benefits the environment but also enables the achievement of important issues such as sustainable development, continuity, and diversity of energy resources. In this article, we investigate the impact of using renewable energy sources on optimizing energy consumption and reducing pollution caused by fossil fuels with the help of smart city development. The aim of this article is to introduce renewable energy sources and their utilization as a solution to address the energy crisis and reduce environmental pollution. This research has attempted to introduce the smart city and the use of renewable energy sources as a method for solving many urban problems and achieving efficient urban control and management.

Keywords: smart city, renewable energy sources, sustainable development, sustainable city

Procedia PDF Downloads 61
14132 Numerical Analysis of Rapid Drawdown in Dams Based on Brazilian Standards

Authors: Renato Santos Paulinelli Raposo, Vinicius Resende Domingues, Manoel Porfirio Cordao Neto

Abstract:

Rapid drawdown is one of the cases referred to ground stability study in dam projects. Due to the complexity generated by the combination of loads and the difficulty in determining the parameters, analyses of rapid drawdown are usually performed considering the immediate reduction of water level upstream. The proposal of a simulation, considering the gradual reduction in water level upstream, requires knowledge of parameters about consolidation and those related to unsaturated soil. In this context, the purpose of this study is to understand the methodology of collection and analysis of parameters to simulate a rapid drawdown in dams. Using a numerical tool, the study is complemented with a hypothetical case study that can assist the practical use of data compiled. The referenced dam presents homogeneous section composed of clay soil, a height of 70 meters, a width of 12 meters, and upstream slope with inclination 1V:3H.

Keywords: dam, GeoStudio, rapid drawdown, stability analysis

Procedia PDF Downloads 251
14131 System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data

Authors: Luís Pina

Abstract:

The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.

Keywords: GSM, marine biology, marine turtles, unstructured supplementary service data (USSD)

Procedia PDF Downloads 201
14130 Acid Attack on Cement Mortars Modified with Rubber Aggregates and EVA Polymer Binder

Authors: Konstantinos Sotiriadis, Michael Tupý, Nikol Žižková, Vít Petránek

Abstract:

The acid attack on cement mortars modified with rubber aggregates and EVA polymer binder was studied. Mortar specimens were prepared using a type CEM I 42.5 Portland cement and siliceous sand, as well as by substituting 25% of sand with shredded used automobile tires, and by adding EVA polymer in two percentages (5% and 10% of cement mass). Some specimens were only air cured, at laboratory conditions, and their compressive strength and water absorption were determined. The rest specimens were stored in acid solutions (HCl, H2SO4, HNO3) after 28 days of initial curing, and stored at laboratory temperature. Compressive strength tests, mass measurements and visual inspection took place for 28 days. Compressive strength and water absorption of the air-cured specimens were significantly decreased when rubber aggregates are used. The addition of EVA polymer further reduced water absorption, while had no important impact on strength. Compressive strength values were affected in a greater extent by hydrochloric acid solution, followed by sulfate and nitric acid solutions. The addition of EVA polymer decreased compressive strength loss for the specimens with rubber aggregates stored in hydrochloric and nitric acid solutions. The specimens without polymer binder showed similar mass loss, which was higher in sulfate acid solution followed by hydrochloric and nitric acid solutions. The use of EVA polymer delayed mass loss, while its content did not affect it significantly.

Keywords: acid attack, mortar, EVA polymer, rubber aggregates

Procedia PDF Downloads 281
14129 The Awareness of Sustainability Concerns in Design Studio Education Process: A Case from TOBB ETU University, Interior Architecture Department in Turkey

Authors: Pelin Atav, Gözen Güner Aktaş, Nur Ayalp

Abstract:

Today’s world has started to develop design process within an interdisciplinary working environment. There is an aim of creating the most permanent design for the future. While satisfying people’s needs, environment and people relationships should be considered. When this relationship was considered for the future, the sustainability term comes to mind. The term Sustainability has been adapted very well by designer and architects. It is also one of the main and significant parts of the design process. As the education process cultivates the future professionals, the awareness of those concepts in the education process has a vital importance. The question is stated as thus: Are the 3rd and 4th year design studio students, familiar and sensitive to the concept of sustainability in the TOBB ETU University Interior Design Studio. Design studios and the instructors should be taken into consideration while this sustainability term is taught. The term "Sustainability" can not be learned without making any application in the actual real world. While students make this study, They can have the chance to search the topic of sustainability step by step. Due to having various extent, sustainability term becomes quite a comprehensive issue. In order not to create negative consequences, designers and architects work by adapting this term. In terms of material, construction process, lighting, building service, furniture, systems that are used, energy consumption issues that are considered and creating positive drawbacks for the future are aimed. This research is aimed at how university education shapes designer’s works in terms of sustainability. By giving a project that is a main interest in the field of sustainability, students are expected to reach well-thought-of results and analysis. Project process were conducted with instructor and student studies together. According to critics from their instructors, students try to product well- designed results. TOBB University was choosen as a research area situated in Ankara in Turkey. Third and fourth class (interior designer/architect department) students who are from the Faculty of Fine Arts Design and Architecture are the subject group selected for this study. Aim of this study is demonstrating sustainability as a term having application in design studio. Thus, awareness of sustainability terms will be evaluated and its development process in the university education will be observed. Consequently, results that are expected is how sustainability term is conducted in project and for the sustainability term awareness in design studios and their projects have been sufficient or not.

Keywords: design education, design process, interior design studios, sustainability

Procedia PDF Downloads 275
14128 Cement Matrix Obtained with Recycled Aggregates and Micro/Nanosilica Admixtures

Authors: C. Mazilu, D. P. Georgescu, A. Apostu, R. Deju

Abstract:

Cement mortars and concretes are some of the most used construction materials in the world, global cement production being expected to grow to approx. 5 billion tons, until 2030. But, cement is an energy intensive material, the cement industry being responsible for cca. 7% of the world's CO2 emissions. Also, natural aggregates represent non-renewable resources, exhaustible, which must be used efficiently. A way to reduce the negative impact on the environment is the use of additional hydraulically active materials, as a partial substitute for cement in mortars and concretes and/or the use of recycled concrete aggregates (RCA) for the recovery of construction waste, according to EU Directive 2018/851. One of the most effective active hydraulic admixtures is microsilica and more recently, with the technological development on a nanometric scale, nanosilica. Studies carried out in recent years have shown that the introduction of SiO2 nanoparticles into cement matrix improves the properties, even compared to microsilica. This is due to the very small size of the nanosilica particles (<100nm) and the very large specific surface, which helps to accelerate cement hydration and acts as a nucleating agent to generate even more calcium hydrosilicate which densifies and compacts the structure. The cementitious compositions containing recycled concrete aggregates (RCA) present, in generally, inferior properties compared to those obtained with natural aggregates. Depending on the degree of replacement of natural aggregate, decreases the workability of mortars and concretes with RAC, decrease mechanical resistances and increase drying shrinkage; all being determined, in particular, by the presence to the old mortar attached to the original aggregate from the RAC, which makes its porosity high and the mixture of components to require more water for preparation. The present study aims to use micro and nanosilica for increase the performance of some mortars and concretes obtained with RCA. The research focused on two types of cementitious systems: a special mortar composition used for encapsulating Low Level radioactive Waste (LLW); a composition of structural concrete, class C30/37, with the combination of exposure classes XC4+XF1 and settlement class S4. The mortar was made with 100% recycled aggregate, 0-5 mm sort and in the case of concrete, 30% recycled aggregate was used for 4-8 and 8-16 sorts, according to EN 206, Annex E. The recycled aggregate was obtained from a specially made concrete for this study, which after 28 days was crushed with the help of a Retsch jaw crusher and further separated by sieving on granulometric sorters. The partial replacement of cement was done progressively, in the case of the mortar composition, with microsilica (3, 6, 9, 12, 15% wt.), nanosilica (0.75, 1.5, 2.25% wt.), respectively mixtures of micro and nanosilica. The optimal combination of silica, from the point of view of mechanical resistance, was later used also in the case of the concrete composition. For the chosen cementitious compositions, the influence of micro and/or nanosilica on the properties in the fresh state (workability, rheological characteristics) and hardened state (mechanical resistance, water absorption, freeze-thaw resistance, etc.) is highlighted.

Keywords: cement, recycled concrete aggregates, micro/nanosilica, durability

Procedia PDF Downloads 58
14127 Effect of Plant Growth Regulator on Vegetative Growth and Yield Components of Winter Wheat under Different Levels of Irrigation

Authors: Mohammed Ahmed Alghamdi

Abstract:

Field experiment were carried out to investigate the effect of the plant growth regulator on vegetative growth and yield components of reduced height isogenic lines of the wheat (Triticum aestivum L.) cultivar Mercia. The Field experiment compared the growth regulator response of seven isogenic lines of Mercia. Growth regulators reduced plant height significantly in all lines. Growth regulator decreased total dry matter and grain yield with greatest reduction generally for the control and Rht8 lines. Rht1 was the least affected. There were few significant effects of growth regulator on gas exchange and chlorophyll fluorescence but the trend was for greater values with growth regulator. In this field experiment, a rate of 2.0 l ha-1 applied just before the third node detectable stage under non water stressed and water stressed conditions gave slight increases in yield of up to 14% except for line Rht10 which increased significantly in non-stressed conditions. In the second glasshouse experiment, a rate of 2.5 l ha-1 applied at the start of stem elongation under 30% FC and 100% FC gave reductions in yield up to 16% for the growth regulator and 55% under water stress. In the field experiment, rates of 2.5 and 3.0 l ha-1 applied at the start of stem elongation gave reductions in yield up to 20% mainly through individual seed weight. In the final glasshouse experiment, rates of 2.5 and 3.0 l ha-1 applied at 6 leaves unfolded and 1st node detectable both reduced grain yield.

Keywords: growth regulator, irrigation, isogenic lines, yield, winter wheat

Procedia PDF Downloads 451
14126 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates

Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.

Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump

Procedia PDF Downloads 45
14125 An Analytical Survey of Construction Changes: Gaps and Opportunities

Authors: Ehsan Eshtehardian, Saeed Khodaverdi

Abstract:

This paper surveys the studies on construction change and reveals some of the potential future works. A full-scale investigation of change literature, including change definitions, types, causes and effects, and change management systems, is accomplished to explore some of the coming change trends. It is tried to pick up the critical works in each section to deduct a true timeline of construction changes. The findings show that leaping from best practice guides in late 1990s and generic process models in the early 2000s to very advanced modeling environments in the mid-2000s and the early 2010s have made gaps along with opportunities for change researchers in order to develop some more easy and applicable models. Another finding is that there is a compelling similarity between the change and risk prediction models. Therefore, integrating these two concepts, specifically from proactive management point of view, may lead to a synergy and help project teams avoid rework. Also, the findings show that exploitation of cause-effect relationship models, in order to facilitate the dispute resolutions, seems to be an interesting field for future works.

Keywords: construction change, change management systems, dispute resolutions, change literature

Procedia PDF Downloads 292
14124 Viability of Eggshells Ash Affecting the Setting Time of Cement

Authors: Fazeera Ujin, Kamran Shavarebi Ali, Zarina Yasmin Hanur Harith

Abstract:

This research paper reports on the feasibility and viability of eggshells ash and its effects on the water content and setting time of cement. An experiment was carried out to determine the quantity of water required in order to follow standard cement paste of normal consistency in accordance with MS EN 196-3:2007. The eggshells ash passing the 90µm sieve was used in the investigation. Eggshells ash with percentage of 0%, 0.1%, 0.5%, 1.0%, 1.5% and 2.0% were constituted to replace the cement. Chemical properties of both eggshells ash and cement are compared. From the results obtained, both eggshells ash and cement have the same chemical composition and primary composition which is the calcium compounds. Results from the setting time show that by adding the eggshells ash to the cement, the setting time of the cement decreases. In short, the higher amount of eggshells ash, the faster the rate of setting and apply to all percentage of eggshells ash that were used in this investigation. Both initial and final setting times fulfill the setting time requirements by Malaysian Standard. Hence, it is suggested that eggshells ash can be used as an admixture in concrete mix.

Keywords: construction materials, eggshells ash, solid waste, setting time

Procedia PDF Downloads 386
14123 Soil Moisture Regulation in Irrigated Agriculture

Authors: I. Kruashvili, I. Inashvili, K. Bziava, M. Lomishvili

Abstract:

Seepage capillary anomalies in the active layer of soil, related to the soil water movement, often cause variation of soil hydrophysical properties and become one of the main objectives of the hydroecology. It is necessary to mention that all existing equations for computing the seepage flow particularly from soil channels, through dams, bulkheads, and foundations of hydraulic engineering structures are preferable based on the linear seepage law. Regarding the existing beliefs, anomalous seepage is based on postulates according to which the fluid in free volume is characterized by resistance against shear deformation and is presented in the form of initial gradient. According to the above-mentioned information, we have determined: Equation to calculate seepage coefficient when the velocity of transition flow is equal to seepage flow velocity; by means of power function, equations for the calculation of average and maximum velocities of seepage flow have been derived; taking into consideration the fluid continuity condition, average velocity for calculation of average velocity in capillary tube has been received.

Keywords: seepage, soil, velocity, water

Procedia PDF Downloads 457
14122 The Relationship between HR Disclosure and Employee’s Turnover: Study on the Telecommunication Sector in Jordan

Authors: Dina Ahmed Alkhodary

Abstract:

Human Resources are the individual skills, knowledge, attitude, capabilities and experience collected to produce wealth to the company. Human Resource disclosure is the process of involving, reporting, and sharing the Investments made in the Human Resources of an Organization that such as organizations short goals and objectives, employees creation value, training and development plan are presently not accounted for in the conventional accounting practices which is importance nowadays to reduce the employee`s turnover. For the purpose of the study 3 telecommunications companies in Jordan have been selected. Telecommunication industry has been chosen for this study since it is a successful sector in Jordan and Human resource disclosure practices were adopted in all the selected companies and companies was aware to the HR practices. The objective of the study is to find out the HR disclosures practices of the telecommunication Companies in Jordan and to find the relationship between the HR Disclosures practices and employees’ turnover which has been measured by leaver proficiencies, remaining member proficiencies and the new comers proficiencies. The researcher has used the questioner to collect data for the research purpose. Results reveal that There are human resource disclosure practices in telecommunication companies in Jordan but in some areas only and has found There that there is a significant relationship between the human resource disclosure practices of the telecommunication companies in Jordan and Employees turnover. It is important to the companies to disclose more information and it’s important to the researchers to study the HR disclosure in the other industries in Jordan to increase the awareness about it.

Keywords: HR, disclosure, employee, turnover

Procedia PDF Downloads 305
14121 Biodiesel Production from Yellow Oleander Seed Oil

Authors: S. Rashmi, Devashish Das, N. Spoorthi, H. V. Manasa

Abstract:

Energy is essential and plays an important role for overall development of a nation. The global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment, renewable and carbon neutral biodiesel are necessary for environment and economic sustainability. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. Fossil fuels remain the dominant source of primary energy, accounting for 84% of the overall increase in demand. Today biodiesel has come to mean a very specific chemical modification of natural oils. Objectives: To produce biodiesel from yellow oleander seed oil, to test the yield of biodiesel using different types of catalyst (KOH & NaOH). Methodology: Oil is extracted from dried yellow oleander seeds using Soxhlet extractor and oil expeller (bulk). The FFA content of the oil is checked and depending on the FFA value either two steps or single step process is followed to produce biodiesel. Two step processes includes esterfication and transesterification, single step includes only transesterification. The properties of biodiesel are checked. Engine test is done for biodiesel produced. Result: It is concluded that biodiesel quality parameters such as yield(85% & 90%), flash point(1710C & 1760C),fire point(1950C & 1980C), viscosity(4.9991 and 5.21 mm2/s) for the biodiesel from seed oil of Thevetiaperuviana produced by using KOH & NaOH respectively. Thus the seed oil of Thevetiaperuviana is a viable feedstock for good quality fuel.The outcomes of our project are a substitute for conventional fuel, to reduce petro diesel requirement,improved performance in terms of emissions. Future prospects: Optimization of biodiesel production using response surface method.

Keywords: yellow oleander seeds, biodiesel, quality parameters, renewable sources

Procedia PDF Downloads 440
14120 Numeric Modeling of Condensation of Water Vapor from Humid Air in a Room

Authors: Nguyen Van Que, Nguyen Huy The

Abstract:

This paper presents combined natural and forced convection of humid air flow. The film condensation of water vapour on a cold floor was investigated using ANSYS Fluent software. User-defined Functions(UDFs) were developed and added to address the issue of film condensation at the surface of the floor. Those UDFs were validated by analytical results on a flat plate. The film condensation model based on mass transfer was used to solve phase change. On the floor, condensation rate was obtained by mass fraction change near the floor. The study investigated effects of inlet velocity, inlet relative humidity and cold floor temperature on the condensation rate. The simulations were done in both 2D and 3D models to show the difference and need for 3D modeling of condensation.

Keywords: heat and mass transfer, convection, condensation, relative humidity, user-defined functions

Procedia PDF Downloads 319
14119 The Correlation between Territory Planning and Logistics Development: Methodological Approach

Authors: Ebtissem Sassi, Abdellatif Benabdelhafid, Sami Hammami

Abstract:

Congestion, pollution and space misuse are the major risks in the hinterland. Management of these risks is a major issue for all the actors intervening in territory management. A good mastery of these risks is based on the consideration of environmental and physical constraints since the implementation of a policy integrates simultaneously an efficient use, territorial resources, and financial resources which become increasingly rare. Yet, this balance can be difficult to establish simultaneously by all the actors. Indeed, every actor has often the tendency to favor these objectives in detriment to others. In this framework, we have fixed the objective of designing and achieving a model which will centralize multidisciplinary data and serve the analysis tool as well as a decision support tool. In this article, we will elaborate some methodological axes allowing the good management of the territory system through (i) determination of the structural factors of the decision support system, (ii) integration of methods tools favoring the territorial decisional process. Logistics territory geographic information system is a model dealing with this issue. The objective of this model is to facilitate the exchanges between the actors around a common question which was the research subject of human sciences researchers (geography, economy), nature sciences (ecology) as well as finding an optimal solution for simultaneous responses to all these objectives.

Keywords: complexity, territory, logistics, territory planning, conceptual model, GIS, MCA

Procedia PDF Downloads 128
14118 Effect of Clay Content on the Drained Shear Strength

Authors: Navid Khayat

Abstract:

Drained shear strength of saturated soils is fully understood. Shear strength of unsaturated soils is usually expressed in terms of soil suction. Evaluation of shear strength of compacted mixtures of sand–clay at optimum water content is main purpose of this research. To prepare the required samples, first clay and sand are mixed in 10, 30, 50, and 70 percent by dry weight and then compacted at the proper optimum water content according to the standard proctor test. The samples were sheared in direct shear machine. Stress –strain relationship of samples indicated a ductile behavior. Most of the samples showed a dilatancy behavior during the shear and the tendency for dilatancy increased with the increase in sand proportion. The results show that with the increase in percentage of sand a decrease in cohesion intercept c' for mixtures and an increase in the angle of internal friction Φ’is observed.

Keywords: clay, sand, drained shear strength, cohesion intercept

Procedia PDF Downloads 429
14117 Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms

Authors: Dimitrios Ntardas, Alexandros Tzanetos, Georgios Dounias

Abstract:

High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.

Keywords: hybrid meta-heuristic methods, substation construction, resource allocation, time-cost efficiency

Procedia PDF Downloads 147
14116 Risk Reassessment Using GIS Technologies for the Development of Emergency Response Management Plans for Water Treatment Systems

Authors: Han Gul Lee

Abstract:

When water treatments utilities are designed, an initial construction site risk assessment is conducted. This helps us to understand general safety risks that each utility needs to be complemented in the designing stage. Once it’s built, an additional risk reassessment process secures and supplements its disaster management and response plan. Because of its constantly changing surroundings with city renovation and developments, the degree of various risks that each facility has to face changes. Therefore, to improve the preparedness for spill incidents or disasters, emergency managers should run spill simulations with the available scientific technologies. This research used a two-dimensional flow routing model to simulate its spill disaster scenario based on its digital elevation model (DEM) collected with drone technologies. The results of the simulations can help emergency managers to supplement their response plan with concrete situational awareness in advance. Planning based on this simulation model minimizes its potential loss and damage when an incident like earthquakes man-made disaster happens, which could eventually be a threat in a public health context. This pilot research provides an additional paradigm to increase the preparedness to spill disasters. Acknowledgment: This work was supported by Korea Environmental Industry & Technology Institute (KEITI) through Environmental R&D Project on the Disaster Prevention of Environmental Facilities Program funded by Korea Ministry of Environment (MOE) (No.202002860001).

Keywords: risk assessment, disaster management, water treatment utilities, situational awareness, drone technologies

Procedia PDF Downloads 137
14115 Engagement Resources Use by Expert and Novice EFL Academic Writers

Authors: Moharram Sharifi

Abstract:

The purpose of this study was to show how expert and novice writers take positions and stances in Research Articles and Master of Art theses Introductions, so Engagement resources were investigated in 30 Research Articles and 30 Master of Art theses written by Iranian non-native speakers. Through paired samples t-test analysis, we found out that the mean occurrences of heteroglossic items in both RA and Master thesis Introductions were larger than those of monoglossic items, indicating the awareness of both groups of writers to ‘engage’ alternative positions in Introduction sections. The results also revealed that expansive choices were preferred over contractive options in both corpora, implying both groups of writers respect alternative voices cautiously by welcoming rather than closing down the possibility of different perspectives and stances. Furthermore, unlike novice academic writers who used more Attribute features than Entertainment ones in their MATs introduction sections, expert academic writers employed a balanced number of Entertainment and Attribute in their RA introduction sections. The balanced deployment of entertaining and Attribute features in RA Introductions by expert writers might be characteristics of the writers’ demonstration of politeness, which is commonly accepted as an essential feature in academic writing discourse. Finally, through qualitative analysis, it was demonstrated that MAT writers, as novice academic writers, suffered from lacking appropriate evaluative stances and authorial voices toward propositions.

Keywords: novice, expert, engagement, RA Introductions, MA Thesis

Procedia PDF Downloads 32
14114 Surface Modified Electrospun Expanded Polystyrene Fibre with Superhydrophobic/Superoleophillic Properties as Potential Oil Membrane

Authors: S. Oluwagbemiga Alayande, E. Olugbenga Dare, Titus A. M. Msagati, A. Kehinde Akinlabi , P. O. Aiyedun

Abstract:

This paper presents a cheap route procedure for the preparation of a potential oil membrane with superhydrophobic /superoleophillic properties for selective removal of crude oil from water. In these study, expanded polystyrene (EPS) was electrospun to produce beaded fibers in which zeolite was introduced to the polymer matrix in order to impart rough surface to non-beaded fiber. Films of the EPS and EPS/Zeolite solutions were also made for comparative study. The electrospun fibers EPS, EPS/Zeolite and resultant films were characterized using SEM, BET, FTIR and optical contact angle. The fibers exhibited superhydrophic and superoleophillic wetting properties with water and crude oil. The selective removal of crude oil presents new opportunity for the re-use of EPS as adsorbent in petroleum/petrochemical industry.

Keywords: expanded polystyrene, superhydrophobic, superoleophillic, oil-membrane

Procedia PDF Downloads 462