Search results for: wheat biomass yield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3424

Search results for: wheat biomass yield

3004 Hydrothermal Liquefaction for Astaxanthin Extraction from Wet Algae

Authors: Spandana Ramisetty, Mandan Chidambaram, Ramesh Bhujade

Abstract:

Algal biomass is not only a potential source for biocrude but also for high value chemicals like carotenoids, fatty acids, proteins, polysaccharides, vitamins etc. Astaxanthin is one such high value vital carotenoid which has extensive applications in pharmaceutical, aquaculture, poultry and cosmetic industries and expanding as dietary supplement to humans. Green microalgae Haematococcus pluvialis is identified as the richest natural source of astaxanthin and is the key source of commercial astaxanthin. Several extraction processes from wet and dry Haematococcus pluvialis biomass have been explored by researchers. Extraction with supercritical CO₂ and various physical disruption techniques like mortar and pestle, homogenization, ultrasonication and ball mill from dried algae are widely used extraction methods. However, these processes require energy intensive drying of biomass that escalates overall costs notably. From the process economics perspective, it is vital to utilize wet processing technology in order to eliminate drying costs. Hydrothermal liquefaction (HTL) is a thermo-chemical conversion process that converts wet biomass containing over 80% water to bio-products under high temperature and high pressure conditions. Astaxanthin is a lipid soluble pigment and is usually extracted along with lipid component. Mild HTL at 200°C and 60 bar has been demonstrated by researchers in a microfluidic platform achieving near complete extraction of astaxanthin from wet biomass. There is very limited work done in this field. An integrated approach of sequential HTL offers cost-effective option to extract astaxanthin/lipid from wet algal biomass without drying algae and also recovering water, minerals and nutrients. This paper reviews past work and evaluates the astaxanthin extraction processes with focus on hydrothermal extraction.

Keywords: astaxanthin, extraction, high value chemicals, hydrothermal liquefaction

Procedia PDF Downloads 282
3003 Evaluation of Different Cowpea Genotypes Using Grain Yield and Canning Quality Traits

Authors: Magdeline Pakeng Mohlala, R. L. Molatudi, M. A. Mofokeng

Abstract:

Cowpea (Vigna unguiculata (L.) Walp) is an important annual leguminous crop in semi-arid and tropics. Most of cowpea grain production in South Africa is mainly used for domestic consumption, as seed planting and little or none gets to be used in industrial processing; thus, there is a need to expand the utilization of cowpea through industrial processing. Agronomic traits contribute to the understanding of the association between yield and its component traits to facilitate effective selection for yield improvement. The aim of this study was to evaluate cowpea genotypes using grain yield and canning quality traits. The field experiment was conducted in two locations in Limpopo Province, namely Syferkuil Agricultural Experimental farm and Ga-Molepo village during 2017/2018 growing season and canning took place at ARC-Grain Crops Potchefstroom. The experiment comprised of 100 cowpea genotypes laid out in a Randomized Complete Block Designs (RCBD). The grain yield, yield components, and canning quality traits were analysed using Genstat software. About 62 genotypes were suitable for canning, 38 were not due to their seed coat texture, and water uptake was less than 80% resulting in too soft (mushy) seeds. Grain yield for RV115, 99k-494-6, ITOOK1263, RV111, RV353 and 53 other genotypes recorded high positive association with number of branches, pods per plant, and number of seeds per pod, unshelled weight and shelled weight for Syferkuil than at Ga-Molepo are therefore recommended for canning quality.

Keywords: agronomic traits, canning quality, genotypes, yield

Procedia PDF Downloads 124
3002 Wood Decay Fungal Strains Useful for Bio-Composite Material Production

Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino

Abstract:

Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.

Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi

Procedia PDF Downloads 115
3001 Perspectives and Challenges Functional Bread with Yeast Extract to Improve Human Diet

Authors: Jelena Filipović, Milenko Košutić, Vladimir Filipović

Abstract:

In the last decades, the urban population has been characterized by sedentary lifestyles, low physical activity, and "fast food". These changes in diet and physical nonactivity have been associated with an increase in chronic diseases. Bread is one of the most popular wheat products consumed worldwide. Spelt wheat has shown potential in various food applications, including bread, pasta, breakfast cereal, and other products of altered nutritional characteristics compared to conventional wheat products. It has very high protein content and even 30 to 60% higher concentration of mineral elements Fe, Zn, Cu, Mg and P compared to Triticum Aestivum. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and it is an old cultivar. So it can be used for organic and health-safe food. Changes in the formulation of bread with the aim of improving its nutritional and functional properties usually lead to changes in the dough's properties, which are related to the quality of the finished product. The aim of this paper is to research the impact of adding yeast extract to bread on sensory characteristics and consumer acceptance of a new product as a key factor for the successful marketing of a distinct product. The sensory analysis of bread with 5% yeast extract is as follows: the technological quality is very good (3.8), and the color of the product is excellent (4.85). Based on data, consumers' survey declared that they liked the taste of bread with 5% yeast extract (74%), consumers marked the product as likable (70%), and 75% of the total number of respondents would buy this new product. This paper is promoting a type of bread with 5% yeast extract (Z score 0.80) to improve diet and a product intended for consumers conscious about their health and diet.

Keywords: bread, yeast extract, sensory analysis, consumer survey, score analysis

Procedia PDF Downloads 27
3000 Influence of Torrefied Biomass on Co-Combustion Behaviors of Biomass/Lignite Blends

Authors: Aysen Caliskan, Hanzade Haykiri-Acma, Serdar Yaman

Abstract:

Co-firing of coal and biomass blends is an effective method to reduce carbon dioxide emissions released by burning coals, thanks to the carbon-neutral nature of biomass. Besides, usage of biomass that is renewable and sustainable energy resource mitigates the dependency on fossil fuels for power generation. However, most of the biomass species has negative aspects such as low calorific value, high moisture and volatile matter contents compared to coal. Torrefaction is a promising technique in order to upgrade the fuel properties of biomass through thermal treatment. That is, this technique improves the calorific value of biomass along with serious reductions in the moisture and volatile matter contents. In this context, several woody biomass materials including Rhododendron, hybrid poplar, and ash-tree were subjected to torrefaction process in a horizontal tube furnace at 200°C under nitrogen flow. In this way, the solid residue obtained from torrefaction that is also called as 'biochar' was obtained and analyzed to monitor the variations taking place in biomass properties. On the other hand, some Turkish lignites from Elbistan, Adıyaman-Gölbaşı and Çorum-Dodurga deposits were chosen as coal samples since these lignites are of great importance in lignite-fired power stations in Turkey. These lignites were blended with the obtained biochars for which the blending ratio of biochars was kept at 10 wt% and the lignites were the dominant constituents in the fuel blends. Burning tests of the lignites, biomasses, biochars, and blends were performed using a thermogravimetric analyzer up to 900°C with a heating rate of 40°C/min under dry air atmosphere. Based on these burning tests, properties relevant to burning characteristics such as the burning reactivity and burnout yields etc. could be compared to justify the effects of torrefaction and blending. Besides, some characterization techniques including X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) were also conducted for the untreated biomass and torrefied biomass (biochar) samples, lignites and their blends to examine the co-combustion characteristics elaborately. Results of this study revealed the fact that blending of lignite with 10 wt% biochar created synergistic behaviors during co-combustion in comparison to the individual burning of the ingredient fuels in the blends. Burnout and ignition performances of each blend were compared by taking into account the lignite and biomass structures and characteristics. The blend that has the best co-combustion profile and ignition properties was selected. Even though final burnouts of the lignites were decreased due to the addition of biomass, co-combustion process acts as a reasonable and sustainable solution due to its environmentally friendly benefits such as reductions in net carbon dioxide (CO2), SOx and hazardous organic chemicals derived from volatiles.

Keywords: burnout performance, co-combustion, thermal analysis, torrefaction pretreatment

Procedia PDF Downloads 317
2999 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 102
2998 The Effect of Sowing Time on Phytopathogenic Characteristics and Yield of Sunflower Hybrids

Authors: Adrienn Novák

Abstract:

The field research was carried out at the Látókép AGTC KIT research area of the University of Debrecen in Eastern-Hungary, on the area of the aeolain loess of the Hajdúság. We examined the effects of the sowing time on the phytopathogenic characteristics and yield production by applying various fertilizer treatments on two different sunflower genotypes (NK Ferti, PR64H42) in 2012 and 2013. We applied three different sowing times (early, optimal, late) and two different treatment levels of fungicides (control = no fungicides applied, double fungicide protection). During our investigations, the studied cropyears were of different sowing time optimum in terms of yield amount (2012: early, 2013: average). By Pearson’s correlation analysis, we have found that delaying the sowing time pronouncedly decreased the extent of infection in both crop years (Diaporthe: r=0.663**, r=0.681**, Sclerotinia: r=0.465**, r=0.622**). The fungicide treatment not only decreased the extent of infection, but had yield increasing effect too (2012: r=0.498**, 2013: r=0.603**). In 2012, delaying of the sowing time increased (r=0.600**), but in 2013, it decreased (r= 0.356*) the yield amount.

Keywords: fungicide treatment, genotypes, sowing time, yield, sunflower

Procedia PDF Downloads 185
2997 Effect of Chemical, Organic and Biological Nitrogen on Yield and Yield Components of Soybean Cultivars

Authors: Hamid Hatami

Abstract:

This experiment was included two cultivars i.e. Habbit and L17 (Main factor) with six fertilizer treatments i.e. control, seed inoculated with rhyzobium, base nitrogen + top-dress urea at R2 stage, base nitrogen + seed inoculated with rhyzobium + top-dress nitrogen at R2 stage, seed treated with humax + top-dress humax at R2 stage, base nitrogen + seed treated with humax + top-dress humax at R2 stage (sub factors ), as split-plot on the basis of RCBD with 3 replications at 2014. Treatment fertilizer of base nitrogen + seed treated with humax + top- dress humax at R2 stage and base nitrogen + top-dress urea in R2 stage had a significant superiority than the other fertilizer treatment in biological yield. L17 and Habbit with base nitrogen + seed treated with humax + top-dress humax in R2 stage and yield economical 5600 and 5767 kg/ha respectively, showed the most economical yield and Habbit cultivar with control and economical yield 3085 kg/ha showed the least economical yield among all the treatments. Results showed that fertilizer treatment of base nitrogen + seed treated with humax + top-dress humax in R2 stage and Habbit variety were suitable in this study.

Keywords: soybean, humax, rhyzobium, habbit

Procedia PDF Downloads 423
2996 Studies of Lactose Utilization in Microalgal Isolate for Further Use in Dairy By-Product Bioconversion

Authors: Sergejs Kolesovs, Armands Vigants

Abstract:

The use of dairy industry by-products and wastewater as a cheap substrate for microalgal growth is gaining recognition. However, the mechanisms of lactose utilization remain understudied, limiting the potential of successful microalgal biomass production using various dairy by-products, such as whey and permeate. The necessity for microalgae to produce a specific enzyme, β-galactosidase, requires the selection of suitable strains. This study focuses on a freshwater microalgal isolate's ability to grow on a semi-synthetic medium supplemented with lactose. After 10 days of agitated cultivation, an axenic microalgal isolate achieved significantly higher biomass production under mixotrophic growth conditions (0.86 ± 0.07 g/L, dry weight) than heterotrophic growth (0.46 ± 0.04 g/L). Moreover, mixotrophic cultivation had significantly higher biomass production compared to photoautotrophic growth (0.67 ± 0.05 g/L). The activity of β-galactosidase was detected in both supernatant and microalgal biomass under mixotrophic and heterotrophic growth conditions, showing the potential of extracellular and intracellular mechanisms of enzyme production. However, the main limiting factor in this study was the increase of pH values during the cultivation, significantly reducing the activity of the β-galactosidase enzyme after 3rd day of cultivation. It highlights the need for stricter control of growth parameters to ensure the enzyme's activity. Further research will assess the isolate's suitability for dairy by-product bioconversion and biomass composition.

Keywords: microalgae, lactose, whey, permeate, beta-galactosidase, mixotrophy, heterotrophy

Procedia PDF Downloads 24
2995 The Effect of Nitrogen Fertilizer Use Efficiency in Corn Yield and Yield Components in Cultivars KSC 704

Authors: Elham Bagherzadeh, Mohammad Fadaee, Rouhollah Keykhosravi

Abstract:

In order to survey the nitrogen use efficiency in corn, the experimental plot in a randomized complete block design 2014 agricultural farm was Islamic Azad University of Karaj. The main factor was four levels of nitrogen fertilizer (respectively control, 150, 200 and 250 kg nitrogen fertilizer) and subplots consisted two levels of superabsorbent polymer Stockosorb (use, do not use). Analysis of variance is showed that different nitrogen levels and different superabsorbent of levels statistically significant. Comparisons average also showed there is a significant difference between use and non-use of superabsorbent. The results showed the interactions nitrogen and SAP by one percent level has a significant and effect on Fresh weight per plant, plant dry weight, biological yield, harvest index, cob diameter, cob dry weight, leaf width, leaf area were at the level of five percent statistical significant effect on Ear weight and grain yield.

Keywords: corn, nitrogen, comparison, biological yield

Procedia PDF Downloads 327
2994 Demonstration Operation of Distributed Power Generation System Based on Carbonized Biomass Gasification

Authors: Kunio Yoshikawa, Ding Lu

Abstract:

Small-scale, distributed and low-cost biomass power generation technologies are highly required in the modern society. There are big needs for these technologies in the disaster areas of developed countries and un-electrified rural areas of developing countries. This work aims to present a technical feasibility of the portable ultra-small power generation system based on the gasification of carbonized wood pellets/briquettes. Our project is designed for enabling independent energy production from various kinds of biomass resources in the open-field. The whole process mainly consists of two processes: biomass and waste pretreatment; gasification and power generation. The first process includes carbonization, densification (briquetting or pelletization), and the second includes updraft fixed bed gasification of carbonized pellets/briquettes, syngas purification, and power generation employing an internal combustion gas engine. A combined pretreatment processes including carbonization without external energy and densification were adopted to deal with various biomass. Carbonized pellets showed a better gasification performance than carbonized briquettes and their mixture. The 100-hour continuous operation results indicated that pelletization/briquetting of carbonized fuel realized the stable operation of an updraft gasifier if there were no blocking issues caused by the accumulation of tar. The cold gas efficiency and the carbon conversion during carbonized wood pellets gasification was about 49.2% and 70.5% with the air equivalence ratio value of around 0.32, and the corresponding overall efficiency of the gas engine was 20.3% during the stable stage. Moreover, the maximum output power was 21 kW at the air flow rate of 40 Nm³·h⁻¹. Therefore, the comprehensive system covering biomass carbonization, densification, gasification, syngas purification, and engine system is feasible for portable, ultra-small power generation. This work has been supported by Innovative Science and Technology Initiative for Security (Ministry of Defence, Japan).

Keywords: biomass carbonization, densification, distributed power generation, gasification

Procedia PDF Downloads 126
2993 Perspectives and Challenges a Functional Bread With Yeast Extract to Improve Human Diet

Authors: Jelena Filipović, Milenko Košutić, Vladimir Filipović

Abstract:

In the last decades urban population is characterized by sedentary lifestyles, low physical activity and "fast food". These changes in diet and physical non activity have been associated with the increase of chronic non diseases. Bread is one of the most popularly wheat products consumed worldwide. Spelt wheat has shown potential in various food applications, including bread, pasta, breakfast cereal and other products of altered nutritional characteristics compared to conventional wheat products. It has very high protein content and even 30 to 60% higher concentration of mineral elements Fe, Zn, Cu, Mg and P compared to Triticum Aestivum. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and it is an old cultivar. So it can be used for organic and health safe food. Changes in the formulation of bread with the aim to improve their nutritional and functional properties usually lead to changes in the dough properties which is related reflected to the quality of the finished product. The aim of this paper is researching the impact of adding yeast extract to bread on sensory characteristics and consumer acceptance of a new product as a key factor for successful marketing of a new product. The sensory analysis of bread with 5% yeast extract is as follows: the technological quality is very good (3.8) and the color of the product is excellent (4.85). Based on data consumers survey declared that they liked the taste of bread with 5% yeast extract (74%), consumers marked the product as likeable (70%), and 75% of the total number of respondents would buy this new product. This paper is promoting a new type of bread with 5% yeast extract (Z score 0.80) to improve diet and novel functional product which intended for consumers conscious about their health and diet.

Keywords: bread, yeast extract, sensory analysis, consumer survey, score analysis Z

Procedia PDF Downloads 33
2992 Increasing the Efficiency of the Biomass Gasification Technology with Using the Organic Rankin Cycle

Authors: Jaroslav Frantík, Jan Najser

Abstract:

This article deals with increasing the energy efficiency of a plant in terms of optimizing the process. The European Union is striving to achieve the climate-energy package in the area increasing of energy efficiency. The goal of energy efficiency is to reduce primary energy consumption by 20% within the EU until 2020. The objective of saving energy consumption in the Czech Republic was set at 47.84 PJ (13.29 TWh). For reducing electricity consumption, it is possible to choose: a) mandatory increasing of energy efficiency, b) alternative scheme, c) combination of both actions. The Czech Republic has chosen for reducing electricity consumption using-alternative scheme. The presentation is focused on the proposal of a technological unit dealing with the gasification process of processing of biomass with an increase of power in the output. The synthesis gas after gasification of biomass is used as fuel in a cogeneration process of reciprocating internal combustion engine with the classic production of heat and electricity. Subsequently, there is an explanation of the ORC system dealing with the conversion of waste heat to electricity with the using closed cycle of the steam process with organic medium. The arising electricity is distributed to the power grid as a further energy source, or it is used for needs of the partial coverage of the technological unit. Furthermore, there is a presented schematic description of the technology with the identification of energy flows starting from the biomass treatment by drying, through its conversion to gaseous fuel, producing of electricity and utilize of thermal energy with minimizing losses. It has been found that using of ORC system increased the efficiency of the produced electricity by 7.5%.

Keywords: biomass, efficiency, gasification, ORC system

Procedia PDF Downloads 196
2991 Salicornia bigelovii, a Promising Halophyte for Biosaline Agriculture: Lessons Learned from a 4-Year Field Study in United Arab Emirates

Authors: Dionyssia Lyra, Shoaib Ismail

Abstract:

Salinization of natural resources constitutes a significant component of the degradation force that leads to depletion of productive lands and fresh water reserves. The global extent of salt-affected soils is approximately 7% of the earth’s land surface and is expanding. The problems of excessive salt accumulation are most widespread in coastal, arid and semi-arid regions, where agricultural production is substantially hindered. The use of crops that can withstand high saline conditions is extremely interesting in such a context. Salt-loving plants or else ‘halophytes’ thrive when grown in hostile saline conditions, where traditional crops cannot survive. Salicornia bigelovii, a halophytic crop with multiple uses (vegetable, forage, biofuel), has demonstrated remarkable adaptability to harsh climatic conditions prevailing in dry areas with great potential for its expansion. Since 2011, the International Center for Biosaline Agriculture (ICBA) with Masdar Institute (MI) and King Abdul Aziz University of Science & Technology (KAUST) to look into the potential for growing S. bigelovii under hot and dry conditions. Through the projects undertaken, 50 different S. bigelovii genotypes were assessed under high saline conditions. The overall goal was to select the best performing S. bigelovii populations in terms of seed and biomass production for future breeding. Specific objectives included: 1) evaluation of selected S. bigelovii genotypes for various agronomic and growth parameters under field conditions, 2) seed multiplication of S. bigelovii using saline groundwater and 3) acquisition of inbred lines for further breeding. Field trials were conducted for four consecutive years at ICBA headquarters. During the first year, one Salicornia population was evaluated for seed and biomass production at different salinity levels, fertilizer treatments and planting methods. All growth parameters and biomass productivity for the salicornia population showed better performance with optimal biomass production in terms of both salinity level and fertilizer application. During the second year, 46 Salicornia populations (obtained from KAUST and Masdar Institute) were evaluated for 24 growth parameters and treated with groundwater through drip irrigation. The plant material originated from wild collections. Six populations were also assessed for their growth performance under full-strength seawater. Salicornia populations were highly variable for all characteristics under study for both irrigation treatments, indicating that there is a large pool of genetic information available for breeding. Irrigation with the highest level of salinity had a negative impact on the agronomic performance. The maximum seed yield obtained was 2 t/ha at 20 dS/m (groundwater treatment) at 25 cm x 25 cm planting distance. The best performing Salicornia populations for fresh biomass and seed yield were selected for the following season. After continuous selection, the best performing salicornia will be adopted for scaling-up options. Taking into account the results of the production field trials, salicornia expansion will be targeted in coastal areas of the Arabian Peninsula. As a crop with high biofuel and forage potential, its cultivation can improve the livelihood of local farmers.

Keywords: biosaline agriculture, genotypes selection, halophytes, Salicornia bigelovii

Procedia PDF Downloads 385
2990 Seagrass Biomass Distribution in Mangrove Fringed Creeks of Gazi Bay, Kenya

Authors: Gabriel A. Juma, Adiel M. Magana, Githaiga N. Michael, James G. Kairo

Abstract:

Seagrass meadows are important carbon sinks, thus understanding this role and their conservation provides opportunities for their applications in climate change mitigation and adaptation. This study aimed at understanding seagrass contribution to ecosystem carbon at Gazi Bay; by comparing carbon stocks in seagrass beds of two mangroves fringed creeks of the bay. Specifically, the objectives included assessing the distribution and abundance of seagrass in the fringed creeks, and estimating above and below-ground biomass. Results obtained would be added to the mangrove and open bay carbon in estimating total ecosystem carbon of Gazi bay. The stratified random sampling strategy was applied in this study. Transects were laid perpendicular to the waterline at intervals of 50 meters from the upper region near the mangroves to the deeper end of the creek across seagrass meadows. Along these transects, 0.25m2 square quadrats were laid at 10 m to assess distribution and composition of seagrasses in the creeks. A total of 80 plots were sampled. Above-ground biomass was sampled by harvesting all the seagrass materials within the quadrat while four sediment cores were obtained from each quarter of the quadrat and then sorted into necromass, rhizomes and roots to determine below ground biomass. Samples were cleaned and dried in the oven for 72 hours at 60˚C in the laboratory. Total biomass was determined by multiplying biomass with carbon conversion factor of 0.34. In all the statistical tests, a significant level was set at α = 0.05. Eight species of seagrass were encountered in Western creek (WC) while seven in the Eastern creek (EC). Based on importance value, the dominant species in WC were Cymodocea rotundata and Halodule uninervis while Thalassodendron ciliatum and Enhalus acoroides dominated the eastern creek. The cover of seagrass in EC was 67.97% compared to 56.45% in WC. There was a significance difference in abundance of seagrass species between the two creeks (t = 1.97, D.F = 35, p < 0.05). Similarly, there was significance differences between total seagrass biomass (t= -8.44, D.F. = 53, p < 0.05) and species composition (F(7,79) = 14.6, p < 0.05) in the two creeks. Mean seagrass in the creeks was 7.25 ± 4.2 Mg C ha-1, (range: 4.1 - 12.9 Mg C ha-1). The findings of the current study reveal variations in biomass stocks of the two creeks of Gazi bay that have varying biophysical features. It is established that habitat heterogeneity between the creeks contributes to the variation in seagrass abundance and biomass stocking. This enhances understanding of these ecosystems hence the establishment of carbon offset project in seagrass for livelihood improvement and increased conservation.

Keywords: seagrass, above-ground, below-ground, creeks, Gazi bay

Procedia PDF Downloads 111
2989 Gasification of Groundnut Shell in an Air Bubbling Fluidized Bed Gasifier

Authors: Dharminer Singh, Sanjeev Yadav, Pravakar Mohanty

Abstract:

In this work, gasification of groundnut shell was carried out in an air bubbling fluidized bed gasifier. Atmospheric air used as gasification agent in the gasifier. The groundnut shell used for gasification was in powder form and the locally available river sand was used as bed material. Conventional charcoal was used for heating sand bed. Two cyclones were used for proper segregation of char particles and for proper cleaning and cooling the product gas. Experiments were performed on different equivalence ratio (ER) 0.3 - 0.33 by varying feeding rate 36 - 32.8 kg/h of biomass and by keeping the air flow rate constant at bed temperature between 700 °C – 800 °C. Performance of gasifier was evaluated on the basis of different parameters such as cold gas efficiency, carbon conversion efficiency (CCE), Tar and Suspended particles matter (SPM) generation, gas yield, and Higher heating value (HHV) of gas. The optimal ER value for gasification of groundnut shell (GNS) powder in an air bubbling fluidized bed gasifier was found to be 0.31. Cold gas efficiency and CCE value at optimal ER was found to be 63.7 %, and 91 %, respectively. Concentration of Tar and SPM, HHV of gas, and gas yield at optimal ER was found to be 11.88 g/Nm3, 2.38 MJ/Nm3, and 2.01m3/kg, respectively. In the product gas, concentrations of CO, CO2, CH4 and H2 were found to be 12.94%, 13.5%, 5.74% and 13.77%, respectively. At ER 0.31, it was observed that bed temperature of gasifier was in steady state for long time at 714 °C with 5 – 10 °C fluctuation.

Keywords: air bubbling fluidized bed gasifier, groundnut shell powder, equivalence ratio (ER), cold gas efficiency, carbon conversion efficiency (CCE), high heating value (HHV)

Procedia PDF Downloads 257
2988 A Diurnal Light Based CO₂ Elevation Strategy for Up-Scaling Chlorella sp. Production by Minimizing Oxygen Accumulation

Authors: Venkateswara R. Naira, Debasish Das, Soumen K. Maiti

Abstract:

Achieving high cell densities of microalgae under obligatory light-limiting and high light conditions of diurnal (low-high-low variations of daylight intensity) sunlight are further limited by CO₂ supply and dissolved oxygen (DO) accumulation in large-scale photobioreactors. High DO levels cause low growth due to photoinhibition and/or photorespiration. Hence, scalable elevated CO₂ levels (% in air) and their effect on DO accumulation in a 10 L cylindrical membrane photobioreactor (a vertical tubular type) are studied in the present study. The CO₂ elevation strategies; biomass-based, pH control based (types II & I) and diurnal light based, were explored to study the growth of Chlorella sp. FC2 IITG under single-sided LED lighting in the laboratory, mimicking diurnal sunlight. All the experiments were conducted in fed-batch mode by maintaining N and P sources at least 50% of initial concentrations of the optimized BG-11 medium. It was observed that biomass-based (2% - 1st day, 2.5% - 2nd day and 3% - thereafter) and well-known pH control based, type-I (5.8 pH throughout) strategies were found lethal for FC2 growth. In both strategies, the highest peak DO accumulation of 150% air saturation was resulted due to high photosynthetic activity caused by higher CO₂ levels. In the pH control based type-I strategy, automatically resulted CO₂ levels for pH control were recorded so high (beyond the inhibition range, 5%). However, pH control based type-II strategy (5.8 – 2 days, 6.3 – 3 days, 6.7 – thereafter) showed final biomass titer up to 4.45 ± 0.05 g L⁻¹ with peak DO of 122% air saturation; high CO₂ levels beyond 5% (in air) were recorded thereafter. Thus, it became sustainable for obtaining high biomass. Finally, a diurnal light based (2% - low light, 2.5 % - medium light and 3% - high light) strategy was applied on the basis of increasing/decreasing photosynthesis due to increase/decrease in diurnal light intensity. It has resulted in maximum final biomass titer of 5.33 ± 0.12 g L⁻¹, with total biomass productivity of 0.59 ± 0.01 g L⁻¹ day⁻¹. The values are remarkably higher than constant 2% CO₂ level (final biomass titer: 4.26 ± 0.09 g L⁻¹; biomass productivity: 0.27 ± 0.005 g L⁻¹ day⁻¹). However, 135% air saturation of peak DO was observed. Thus, the diurnal light based elevation should be further improved by using CO₂ enriched N₂ instead of air. To the best of knowledge, the light-based CO₂ elevation strategy is not reported elsewhere.

Keywords: Chlorella sp., CO₂ elevation strategy, dissolved oxygen accumulation, diurnal light based CO₂ elevation, high cell density, microalgae, scale-up

Procedia PDF Downloads 104
2987 Quality of Donut Supplemented with Hom Nin Rice Flour

Authors: Supatchalee Sirichokworrakit, Pannin Intasen, Chansuda Angkawut

Abstract:

Hom Nin rice (Oryza Sativa L.) was processed into flour and used to substitute wheat flour in donuts. The donuts were prepared with 0, 20, 40, 60, and 80% Hom Nin rice flour (HNF). The donuts were subjected to proximate, texture, color and sensory evaluations. The results of the study revealed that the ash, moisture, crude fiber contents increased while crude fat and protein contents decreased as the level of HNF increased. The hardness and chewiness of donut increased as the HNF increased but the cohesiveness, springiness, and specific volume decreased. Color of donut (L*, a*, and b* values) decreased with the addition of HNF. Overall acceptability for the 20-40% HNF additions did not differ significantly from the score of the 100% wheat flour.

Keywords: Hom Nin rice, donut, texture evaluation, sensory evaluation

Procedia PDF Downloads 273
2986 Interference among Lambsquarters and Oil Rapeseed Cultivars

Authors: Reza Siyami, Bahram Mirshekari

Abstract:

Seed and oil yield of rapeseed is considerably affected by weeds interference including mustard (Sinapis arvensis L.), lambsquarters (Chenopodium album L.) and redroot pigweed (Amaranthus retroflexus L.) throughout the East Azerbaijan province in Iran. To formulate the relationship between four independent growth variables measured in our experiment with a dependent variable, multiple regression analysis was carried out for the weed leaves number per plant (X1), green cover percentage (X2), LAI (X3) and leaf area per plant (X4) as independent variables and rapeseed oil yield as a dependent variable. The multiple regression equation is shown as follows: Seed essential oil yield (kg/ha) = 0.156 + 0.0325 (X1) + 0.0489 (X2) + 0.0415 (X3) + 0.133 (X4). Furthermore, the stepwise regression analysis was also carried out for the data obtained to test the significance of the independent variables affecting the oil yield as a dependent variable. The resulted stepwise regression equation is shown as follows: Oil yield = 4.42 + 0.0841 (X2) + 0.0801 (X3); R2 = 81.5. The stepwise regression analysis verified that the green cover percentage and LAI of weed had a marked increasing effect on the oil yield of rapeseed.

Keywords: green cover percentage, independent variable, interference, regression

Procedia PDF Downloads 391
2985 EZOB Technology, Biomass Gasification, and Microcogeneration Unit

Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála

Abstract:

This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot air turbo set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.

Keywords: biomass, combustion, gasification, microcogeneration

Procedia PDF Downloads 307
2984 Biomass Gasification and Microcogeneration Unit–EZOB Technology

Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála

Abstract:

This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot-air turbo-set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.

Keywords: biomass, combustion, gasification, microcogeneration

Procedia PDF Downloads 463
2983 "Gurza Incinerator" : Biomass Incinerator Powered by Empty Bunch of Palm Oil Fruits as Electrical Biomass Base Development

Authors: Andi Ismanto

Abstract:

Indonesia is the largest palm oil producer in the world. The increasing number of palm oil extensification in Indonesia started on 2000-2011. Based on preliminary figures from the Directorate General of Plantation, palm oil area in Indonesia until 2011 is about 8.91 million hectares.On 2011 production of palm oil CPO reaches 22.51 million tons. In the other hands, the increasing palm oil production has impact to environment. The Empty Bunch of Palm Oil (EBPO)waste was increased to 20 million tons in 2009. Utilization of waste EBPO currently only used as an organic fertilizer for plants. But, it was not a good solution, because TKKS that used as organic compost has high content of carbon and hydrogen compound. The EBPO waste has potential used as fuel by gasification because it has short time of decomposition. So, the process will be more efficient in time. Utilization of urban wastehas been created using an incinerator used as a source of electrical energy for household.Usually, waste burning process by incinerator is using diesel fuel and kerosene. It is certainly less effective and not environment friendly, considering the waste incineration process using Incinerator tools are continuously. Considering biomass is a renewable source of energy and the world's energy system must be switch from an energy based on fossil resources into the energy based on renewable resources, the "Gurza Incinerator": Design Build Powerful Biomass Incinerator Empty Bunch of Palm Oil (EBPO) as Elecrical Biomass Base Development, a renewable future technology. The tools is using EBPO waste as source of burning to burn garbage inside the Incinerator hopper. EBPO waste will be processed by means of gasification. Gasification isa process to produce gases that can be used as fuel for electrical power. Hopefully, this technology could be a renewable future energy and also as starting point of electrical biomass base development.

Keywords: incinerator, biomass, empty bunch palm oil, electrical energy

Procedia PDF Downloads 444
2982 Production Potential and Economic Returns of Bed Planted Chickpea (Cicer arietinum L.) As Influenced by Different Intercropping Systems

Authors: Priya M. V., Thakar Singh

Abstract:

A field experiment was carried out during the rabi season of 2017 and 2018 to evaluate the productivity and economic viability of bed-planted chickpea-based intercropping systems. The experiment was laid out in a randomized block design consisting of four replications with thirteen treatments. Results showed that sole chickpea recorded the highest seed yield, and it was statistically at par with seed yield obtained under chickpea + oats fodder (2:1), chickpea + oats fodder (4:1), and chickpea + linseed (4:1) intercropping systems. However, oilseed rape and barley as intercrops showed an adverse effect on yield and yield attributes of chickpea. Chickpea + oats fodder in 2:1 row ratio recorded the highest chickpea equivalent yield of 24.07 and 24.77 q/ha during 2017 and 2018, respectively. Higher net returns (Rs. 63098 and 70924/ha) and benefit-cost ratio (1.47 and 1.63) were also recorded in chickpea + oats fodder (2:1) intercropping system over sole chickpea (Rs. 44862 and 53769/ha and 1.21 and 1.41) during both the years. Chickpea + oats fodder (4:1), chickpea + linseed (2:1), and chickpea + linseed (4:1) also recorded significantly higher chickpea equivalent yield, net returns, and benefit-cost ratio as compared to sole chickpea.

Keywords: bed planted chickpea, chickpea equivalent yield, economic returns, intercropping system, productivity

Procedia PDF Downloads 174
2981 Kluyveromyces marxianus ABB S8 as Yeast-Based Technology to Manufacture Low FODMAP Baking Good

Authors: Jordi Cuñé, Carlos de Lecea, Laia Marti

Abstract:

Small molecules known as fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) are quickly fermented in the large intestine after being poorly absorbed in the small intestine. There is proof that individuals suffering from functional gastrointestinal disorders, like irritable bowel syndrome (IBS), observe an improvement while following a diet low in FODMAPs. Because wheat has a relatively high fructan content, it is a key source of FODMAPs in our diet. A yeast-based method was created in this study to lower the amounts of FODMAP in (whole wheat) bread. In contrast to fermentation by regular baker yeast, the combination of Kluyveromyces marxianus ABB S7 with Saccharomyces cerevisiae allowed a reduction of fructan content by 60% without implying the appearance of other substrates categorized as FODMAP (excess fructose or polyols). The final FODMAP content in the developed whole wheat bread would allow its classification as a safe product for sensitive people, according to international consensus. Cocultures of S. cerevisiae and K. marxianus were established in order to ensure sufficient CO₂ generation; larger quantities of gas were produced due to the strains' synergistic relationship. Thus, this method works well for lowering the levels of FODMAPs in bread.

Keywords: Kluyveromyces marxianus, bakery, bread, FODMAP, IBS, functional gastro intestinal disorders

Procedia PDF Downloads 28
2980 Ecosystem Carbon Stocks Vary in Reference to the Models Used, Socioecological Factors and Agroforestry Practices in Central Ethiopia

Authors: Gadisa Demie, Mesele Negash, Zerihun Asrat, Lojka Bohdan

Abstract:

Deforestation and forest degradation in the tropics have led to significant carbon (C) emissions. Agroforestry (AF) is a suitable land-use option for tackling such declines in ecosystem services, including climate change mitigation. However, it is unclear how biomass models, AF practices, and socio-ecological factors determine these roles, which hinders the implementation of climate change mitigation initiatives. This study aimed to estimate the ecosystem C stocks of the studied AF practices in relation to socio-ecological variables in central Ethiopia. Out of 243 AF farms inventoried, 108 were chosen at random from three AF practices to estimate their biomass and soil organic carbon. A total of 432 soil samples were collected from 0–30 and 30–60 cm soil depths; 216 samples were taken for each soil organic carbon fraction (%C) and bulk density computation. The study found that the currently developed allometric equations were the most accurate to estimate biomass C for trees growing in the landscape when compared to previous models. The study found higher overall biomass C in woodlots (165.62 Mg ha-¹) than in homegardens (134.07 Mg ha-¹) and parklands (19.98 Mg ha-¹). Conversely, overall, SOC was higher for homegardens (143.88 Mg ha-¹), but lower for parklands (53.42 Mg ha-¹). The ecosystem C stock was comparable between homegardens (277.95 Mg ha-¹) and woodlots (275.44 Mg ha-¹). The study found that elevation, wealthy levels, AF farm age, and size have a positive and significant (P < 0.05) effect on overall biomass and ecosystem C stocks but non-significant with slope (P > 0.05). Similarly, SOC increased with increasing elevation, AF farm age, and wealthy status but decreased with slope and non-significant with AF farm size. The study also showed that species diversity had a positive (P <0.05) effect on overall biomass C stocks in homegardens. The overall study highlights that AF practices have a great potential to lock up more carbon in biomass and soils; however, these potentials were determined by socioecological variables. Thus, these factors should be considered in management strategies that preserve trees in agricultural landscapes in order to mitigate climate change and support the livelihoods of farmers.

Keywords: agricultural landscape, biomass, climate change, soil organic carbon

Procedia PDF Downloads 23
2979 Investigation of Growth Yield and Antioxidant Activity of Monascus purpureus Extract Isolated from Stirred Tank Bioreactor

Authors: M. Pourshirazi, M. Esmaelifar, A. Aliahmadi, F. Yazdian, A. S. Hatamian Zarami, S. J. Ashrafi

Abstract:

Monascus purpureus is an antioxidant-producing fungus whose secondary metabolites can be used in drug industries. The growth yield and antioxidant activity of extract were investigated in 3-L liquid fermentation media in a 5-L stirred tank bioreactor (STD) at 30°C, pH 5.93 and darkness for 4 days with 150 rpm agitation and 40% dissolved oxygen. Results were compared to extract isolated from Erlenmeyer flask with the same condition. The growth yield was 0.21 and 0.17 in STD condition and Erlenmeyer flask, respectively. Furthermore, the IC50 of DPPH scavenging activity was 256.32 µg/ml and 150.43 µg/ml for STD extract and flask extract, respectively. Our data demonstrated that transferring the growth condition into the STD caused an increase in growth yield but not in antioxidant activity. Accordingly, there is no relationship between growth rate and secondary metabolites formation. More studies are needed to determine the mass transfer coefficient and also evaluating the hydrodynamic condition have to be done in the future studies.

Keywords: Monascus purpureus, bioreactor, antioxidant, growth yield

Procedia PDF Downloads 378
2978 Estimation of the Antioxidant Potential of Microalgae With ABTS and CUPRAC Assays

Authors: Juliana Ianova, Lyudmila Kabaivanova, Tanya Toshkova- Yotova

Abstract:

Background: Microalgae are widely known for their nutritional and therapeutic applications due to the richness in nutrients and bioactive elements. The aim of this research was to investigate the growth and production of bioactive compounds with antioxidant properties by different microalgal strains: Scenedesmus acutus M Tomaselli 8, Scenedesmus obliquus BGP, Porphyridium aerugineum and Porphyridium cruentum (Chlorophyta and Rhodophyta). Most of them are freshwater species, with only one marine microalga P. cruentum. Methods: Monoalgal, non-axenic cultures of the investigated strains were grown autotrophically in 200 ml flasks, CO2 - 2% at 132 μmol m-2 s-1 photon flux density and T 25°C. Algal biomass concentration was measured daily by the dry weight. The ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid, C18H18N4O6S4) scavenging assay and CUPRAC assay (cupric ion reducing antioxidant capacity) were used to establish the antioxidant activity of the four algae at the end of the cultivation process, when stationary phase of growth was reached. Results: The highest biomass yield was achieved by Scenedesmus obliquus BGP- (6.6 g/L) after 144 hours of cultivation. Scenedesmus obliquus showed much higher levels of antioxidant properties from the assessed strains. The red microalga Porphyridium aerugineum also exhibits promising reducing antioxidant power. Conclusion: This study confirmed the view that microalgae are promising producers of food supplements and pharmaceuticals.

Keywords: microalgae, dry weight, antioxidant activity, CUPRAC, ABTS

Procedia PDF Downloads 84
2977 Effect of Irrigation Interval on Jojoba Plants under Circumstance of Sinai

Authors: E. Khattab, S. Halla

Abstract:

Jojoba plants are characterized by a tolerance of water stress, but due to the conditions of the Sinai in which the water is less, an irrigation interval study was carried out the jojoba plant from water stress without affecting the yield of oil. The field experiment was carried out at Maghara Research Station at North Sinai, Desert Research Center, Ministry of Agriculture, Egypt, to study the effect of irrigation interval on five clones of jojoba plants S-L, S-610, S- 700, S-B and S-G on growth and yield characters. Results showed that the clone S-700 has increase of all growth and yield characters under all interval irrigation compare with other clones. All variable of studied confirmed that clones of jojoba had significant effect with irrigation interval at one week but decrease value with three weeks. Jojoba plants tolerance to water stress but irrigation interval every week increased seed yield.

Keywords: interval irrigation, growth and yield characters, oil, jojoba, Sinai

Procedia PDF Downloads 169
2976 The Mechanism Study of Degradative Solvent Extraction of Biomass by Liquid Membrane-Fourier Transform Infrared Spectroscopy

Authors: W. Ketren, J. Wannapeera, Z. Heishun, A. Ryuichi, K. Toshiteru, M. Kouichi, O. Hideaki

Abstract:

Degradative solvent extraction is the method developed for biomass upgrading by dewatering and fractionation of biomass under the mild condition. However, the conversion mechanism of the degradative solvent extraction method has not been fully understood so far. The rice straw was treated in 1-methylnaphthalene (1-MN) at a different solvent-treatment temperature varied from 250 to 350 oC with the residence time for 60 min. The liquid membrane-Fourier Transform Infrared Spectroscopy (FTIR) technique is applied to study the processing mechanism in-depth without separation of the solvent. It has been found that the strength of the oxygen-hydrogen stretching  (3600-3100 cm-1) decreased slightly with increasing temperature in the range of 300-350 oC. The decrease of the hydroxyl group in the solvent soluble suggested dehydration reaction taking place between 300 and 350 oC. FTIR spectra in the carbonyl stretching region (1800-1600 cm-1) revealed the presence of esters groups, carboxylic acid and ketonic groups in the solvent-soluble of biomass. The carboxylic acid increased in the range of 200 to 250 oC and then decreased. The prevailing of aromatic groups showed that the aromatization took place during extraction at above 250 oC. From 300 to 350 oC, the carbonyl functional groups in the solvent-soluble noticeably decreased. The removal of the carboxylic acid and the decrease of esters into the form of carbon dioxide indicated that the decarboxylation reaction occurred during the extraction process.

Keywords: biomass waste, degradative solvent extraction, mechanism, upgrading

Procedia PDF Downloads 259
2975 Genetic Variability and Principal Component Analysis in Eggplant (Solanum melongena)

Authors: M. R. Naroui Rad, A. Ghalandarzehi, J. A. Koohpayegani

Abstract:

Nine advanced cultivars and lines were planted in transplant trays on March, 2013. In mid-April 2014, nine cultivars and lines were taken from the seedling trays and were evaluated and compared in an experiment in form of a completely randomized block design with three replications at the Agricultural Research Station, Zahak. The results of the analysis of variance showed that there was a significant difference between the studied cultivars in terms of average fruit weight, fruit length, fruit diameter, ratio of fruit length to its diameter, the relative number of seeds per fruit, and each plant yield. The total yield of Sohrab and Y6 line with and an average of 41.9 and 36.7 t/ ha allocated the highest yield respectively to themselves. The results of simple correlation between the analyzed traits showed the final yield was affected by the average fruit weight due to direct and indirect effects of fruit weight and plant yield on the final yield. The genotypic and heritability values were high for fruit weight, fruit length and number of seed per fruit. The first two principal components accounted for 81.6% of the total variation among the characters describing genotypes.

Keywords: eggplant, principal component, variation, path analysis

Procedia PDF Downloads 206