Search results for: variant selection
2209 Early Indications of the Success of Rehabilitating Degraded Lands through the Green Legacy Project Implemented in Ethiopia
Authors: Tamirat Solomon, Aberash Yohannis, Efrem Gulfo
Abstract:
The plantation of trees, which harmonizes the agroecology of the environment, has been implemented in Ethiopia with great concern for a noticeably degraded environment. This study was designed to evaluate the effectiveness of green legacy, species selection and, the rate of survival, and the management status in the study areas. A systematic sampling method was employed to collect the required data from 144 quadrants measuring a 15m radius with an interval of 40m apart. Additionally, 244 sample households were selected for the socioeconomic study in addition to secondary data collected from office recordings. The data collected was analyzed using multivariate analysis, considering exposure and outcome variables. The findings of this study indicated that four exotic tree species, namely; A. salgina, C. fistula, A. indica, and G. robusta, were commonly selected tree species for degraded land restoration in the study areas. Among the seedlings planted at the four study sites, a total of 79.9% survived, and A. salgina was the dominant and best performed species, A. indica was the least survived species in the entire study area. The age of the seedling before planting significantly (p = 0.05) affected the survival potential of most seedlings of species, and the majority (82%) of local communities expressed their positive attitudes and willingness to manage the restoration works in the study areas. It was recommended to consider the inclusion of native species in the restoration effort and evaluate the co-existence of native flora with exotic and its competition for nutrients, water, and light in addition to the invading potentials in the ecosystem. In general, before embarking on degraded land restoration, species selection, adequate preparation of seedlings, and species diversity composition that exactly fit the socioeconomic and ecological demands of the areas must get the attention for the success of the restoration.Keywords: plantation forest, degraded land, forest restoration, plantation survival, species selection
Procedia PDF Downloads 772208 Optimum Turbomachine Preliminary Selection for Power Regeneration in Vapor Compression Cool Production Plants
Authors: Sayyed Benyamin Alavi, Giovanni Cerri, Leila Chennaoui, Ambra Giovannelli, Stefano Mazzoni
Abstract:
Primary energy consumption and emissions of pollutants (including CO2) sustainability call to search methodologies to lower power absorption for unit of a given product. Cool production plants based on vapour compression are widely used for many applications: air conditioning, food conservation, domestic refrigerators and freezers, special industrial processes, etc. In the field of cool production, the amount of Yearly Consumed Primary Energy is enormous, thus, saving some percentage of it, leads to big worldwide impact in the energy consumption and related energy sustainability. Among various techniques to reduce power required by a Vapour Compression Cool Production Plant (VCCPP), the technique based on Power Regeneration by means of Internal Direct Cycle (IDC) will be considered in this paper. Power produced by IDC reduces power need for unit of produced Cool Power by the VCCPP. The paper contains basic concepts that lead to develop IDCs and the proposed options to use the IDC Power. Among various selections for using turbo machines, Best Economically Available Technologies (BEATs) have been explored. Based on vehicle engine turbochargers, they have been taken into consideration for this application. According to BEAT Database and similarity rules, the best turbo machine selection leads to the minimum nominal power required by VCCPP Main Compressor. Results obtained installing the prototype in “ad hoc” designed test bench will be discussed and compared with the expected performance. Forecasts for the upgrading VCCPP, various applications will be given and discussed. 4-6% saving is expected for air conditioning cooling plants and 15-22% is expected for cryogenic plants.Keywords: Refrigeration Plant, Vapour Pressure Amplifier, Compressor, Expander, Turbine, Turbomachinery Selection, Power Saving
Procedia PDF Downloads 4262207 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques
Authors: Imed Feki, Faouzi Msahli
Abstract:
Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique
Procedia PDF Downloads 6052206 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium
Authors: Piotr Ciuman, Barbara Lipska
Abstract:
The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.Keywords: experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations CFD, thermal and humidity conditions, ventilation
Procedia PDF Downloads 4112205 An Efficient Stud Krill Herd Framework for Solving Non-Convex Economic Dispatch Problem
Authors: Bachir Bentouati, Lakhdar Chaib, Saliha Chettih, Gai-Ge Wang
Abstract:
The problem of economic dispatch (ED) is the basic problem of power framework, its main goal is to find the most favorable generation dispatch to generate each unit, reduce the whole power generation cost, and meet all system limitations. A heuristic algorithm, recently developed called Stud Krill Herd (SKH), has been employed in this paper to treat non-convex ED problems. The proposed KH has been modified using Stud selection and crossover (SSC) operator, to enhance the solution quality and avoid local optima. We are demonstrated SKH effects in two case study systems composed of 13-unit and 40-unit test systems to verify its performance and applicability in solving the ED problems. In the above systems, SKH can successfully obtain the best fuel generator and distribute the load requirements for the online generators. The results showed that the use of the proposed SKH method could reduce the total cost of generation and optimize the fulfillment of the load requirements.Keywords: stud krill herd, economic dispatch, crossover, stud selection, valve-point effect
Procedia PDF Downloads 1982204 Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities
Authors: M. Mourad, K. Mahmoud
Abstract:
Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO2 emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle.Keywords: electrification strategy, hybrid electric vehicle, driving cycle, CO2 emission
Procedia PDF Downloads 4422203 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer
Procedia PDF Downloads 2622202 The Use of Ontology Framework for Automation Digital Forensics Investigation
Authors: Ahmad Luthfi
Abstract:
One of the main goals of a computer forensic analyst is to determine the cause and effect of the acquisition of a digital evidence in order to obtain relevant information on the case is being handled. In order to get fast and accurate results, this paper will discuss the approach known as ontology framework. This model uses a structured hierarchy of layers that create connectivity between the variant and searching investigation of activity that a computer forensic analysis activities can be carried out automatically. There are two main layers are used, namely analysis tools and operating system. By using the concept of ontology, the second layer is automatically designed to help investigator to perform the acquisition of digital evidence. The methodology of automation approach of this research is by utilizing forward chaining where the system will perform a search against investigative steps and atomically structured in accordance with the rules of the ontology.Keywords: ontology, framework, automation, forensics
Procedia PDF Downloads 3422201 An Index to Measure Transportation Sustainable Performance in Construction Projects
Authors: Sareh Rajabi, Taha Anjamrooz, Salwa Bheiry
Abstract:
The continuous increase in the world population, resource shortage and the warning of climate change cause various environmental and social issues to the world. Thus, sustainability concept is much needed nowadays. Organizations are progressively falling under strong worldwide pressure to integrate sustainability practices into their project decision-making development. Construction projects in the industry are amongst the most significant, since it is one of the biggest divisions and of main significance for the national economy and hence has a massive effect on the environment and society. So, it is important to discover approaches to incorporate sustainability into the management of those projects. This study presents a combined sustainability index of projects with sustainable transportation which has been formed as per a comprehensive literature review and survey study. Transportation systems enable the movement of goods and services worldwide, and it is leading to economic growth and creating jobs while creating negative impacts on the environment and society. This research is study to quantify the sustainability indicators, through 1) identifying the importance of sustainable transportation indicators that are based on the sustainable practices used for the construction projects and 2) measure the effectiveness of practices through these indicators on the three sustainable pillars. A total 26 sustainability indicators have been selected and grouped under each related sustainability pillars. A survey was used to collect the opinion about the sustainability indicators by a scoring system. A combined sustainability index considering three sustainable pillars can be helpful in evaluating the transportation sustainable practices of a project and making decisions regarding project selection. In addition to focus on the issue of financial resource allocation in a project selection, the decision-maker could take into account the sustainability as an important key in addition to the project’s return and risk. The purpose of this study is to measure the performance of transportation sustainability which allow companies to assess multiple projects selection. This is useful to decision makers to rank and focus more on future sustainable projects.Keywords: sustainable transportation, transportation performances, sustainable indicators, sustainable construction practice, sustainability
Procedia PDF Downloads 1422200 Ionic Liquid Membranes for CO2 Separation
Authors: Zuzana Sedláková, Magda Kárászová, Jiří Vejražka, Lenka Morávková, Pavel Izák
Abstract:
Membrane separations are mentioned frequently as a possibility for CO2 capture. Selectivity of ionic liquid membranes is strongly determined by different solubility of separated gases in ionic liquids. The solubility of separated gases usually varies over an order of magnitude, differently from diffusivity of gases in ionic liquids, which is usually of the same order of magnitude for different gases. The present work evaluates the selection of an appropriate ionic liquid for the selective membrane preparation based on the gas solubility in an ionic liquid. The current state of the art of CO2 capture patents and technologies based on the membrane separations was considered. An overview is given of the discussed transport mechanisms. Ionic liquids seem to be promising candidates thanks to their tunable properties, wide liquid range, reasonable thermal stability, and negligible vapor pressure. However, the uses of supported liquid membranes are limited by their relatively short lifetime from the industrial point of view. On the other hand, ionic liquids could overcome these problems due to their negligible vapor pressure and their tunable properties by adequate selection of the cation and anion.Keywords: biogas upgrading, carbon dioxide separation, ionic liquid membrane, transport properties
Procedia PDF Downloads 4312199 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection
Procedia PDF Downloads 1452198 Deployment of Electronic Healthcare Records and Development of Big Data Analytics Capabilities in the Healthcare Industry: A Systematic Literature Review
Authors: Tigabu Dagne Akal
Abstract:
Electronic health records (EHRs) can help to store, maintain, and make the appropriate handling of patient histories for proper treatment and decision. Merging the EHRs with big data analytics (BDA) capabilities enable healthcare stakeholders to provide effective and efficient treatments for chronic diseases. Though there are huge opportunities and efforts that exist in the deployment of EMRs and the development of BDA, there are challenges in addressing resources and organizational capabilities that are required to achieve the competitive advantage and sustainability of EHRs and BDA. The resource-based view (RBV), information system (IS), and non- IS theories should be extended to examine organizational capabilities and resources which are required for successful data analytics in the healthcare industries. The main purpose of this study is to develop a conceptual framework for the development of healthcare BDA capabilities based on past works so that researchers can extend. The research question was formulated for the search strategy as a research methodology. The study selection was made at the end. Based on the study selection, the conceptual framework for the development of BDA capabilities in the healthcare settings was formulated.Keywords: EHR, EMR, Big data, Big data analytics, resource-based view
Procedia PDF Downloads 1312197 Foundation of the Information Model for Connected-Cars
Authors: Hae-Won Seo, Yong-Gu Lee
Abstract:
Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.Keywords: connected-car, data modeling, route planning, navigation system
Procedia PDF Downloads 3742196 Methods of Improving Production Processes Based on Deming Cycle
Authors: Daniel Tochwin
Abstract:
Continuous improvement is an essential part of effective process performance management. In order to achieve continuous quality improvement, each organization must use the appropriate selection of tools and techniques. The basic condition for success is a proper understanding of the business need faced by the company and the selection of appropriate methods to improve a given production process. The main aim of this article is to analyze the methods of conduct which are popular in practice when implementing process improvements and then to determine whether the tested methods include repetitive systematics of the approach, i.e., a similar sequence of the same or similar actions. Based on an extensive literature review, 4 methods of continuous improvement of production processes were selected: A3 report, Gemba Kaizen, PDCA cycle, and Deming cycle. The research shows that all frequently used improvement methods are generally based on the PDCA cycle, and the differences are due to "(re)interpretation" and the need to adapt the continuous improvement approach to the specific business process. The research shows that all the frequently used improvement methods are generally based on the PDCA cycle, and the differences are due to "(re) interpretation" and the need to adapt the continuous improvement approach to the specific business process.Keywords: continuous improvement, lean methods, process improvement, PDCA
Procedia PDF Downloads 802195 Use of Analytic Hierarchy Process for Plant Site Selection
Authors: Muzaffar Shaikh, Shoaib Shaikh, Mark Moyou, Gaby Hawat
Abstract:
This paper presents the use of Analytic Hierarchy Process (AHP) in evaluating the site selection of a new plant by a corporation. Due to intense competition at a global level, multinational corporations are continuously striving to minimize production and shipping costs of their products. One key factor that plays significant role in cost minimization is where the production plant is located. In the U.S. for example, labor and land costs continue to be very high while they are much cheaper in countries such as India, China, Indonesia, etc. This is why many multinational U.S. corporations (e.g. General Electric, Caterpillar Inc., Ford, General Motors, etc.), have shifted their manufacturing plants outside. The continued expansion of the Internet and its availability along with technological advances in computer hardware and software all around the globe have facilitated U.S. corporations to expand abroad as they seek to reduce production cost. In particular, management of multinational corporations is constantly engaged in concentrating on countries at a broad level, or cities within specific countries where certain or all parts of their end products or the end products themselves can be manufactured cheaper than in the U.S. AHP is based on preference ratings of a specific decision maker who can be the Chief Operating Officer of a company or his/her designated data analytics engineer. It serves as a tool to first evaluate the plant site selection criteria and second, alternate plant sites themselves against these criteria in a systematic manner. Examples of site selection criteria are: Transportation Modes, Taxes, Energy Modes, Labor Force Availability, Labor Rates, Raw Material Availability, Political Stability, Land Costs, etc. As a necessary first step under AHP, evaluation criteria and alternate plant site countries are identified. Depending upon the fidelity of analysis, specific cities within a country can also be chosen as alternative facility locations. AHP experience in this type of analysis indicates that the initial analysis can be performed at the Country-level. Once a specific country is chosen via AHP, secondary analyses can be performed by selecting specific cities or counties within a country. AHP analysis is usually based on preferred ratings of a decision-maker (e.g., 1 to 5, 1 to 7, or 1 to 9, etc., where 1 means least preferred and a 5 means most preferred). The decision-maker assigns preferred ratings first, criterion vs. criterion and creates a Criteria Matrix. Next, he/she assigns preference ratings by alternative vs. alternative against each criterion. Once this data is collected, AHP is applied to first get the rank-ordering of criteria. Next, rank-ordering of alternatives is done against each criterion resulting in an Alternative Matrix. Finally, overall rank ordering of alternative facility locations is obtained by matrix multiplication of Alternative Matrix and Criteria Matrix. The most practical aspect of AHP is the ‘what if’ analysis that the decision-maker can conduct after the initial results to provide valuable sensitivity information of specific criteria to other criteria and alternatives.Keywords: analytic hierarchy process, multinational corporations, plant site selection, preference ratings
Procedia PDF Downloads 2882194 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production: A Cost-Minimization Approach
Authors: Yoftahe Nigussie Worku
Abstract:
This report unveils a meticulous project focused on the design intricacies of a Fire Tube Boiler tailored for the efficient generation of saturated steam. The overarching objective is to produce 2000kg/h of saturated steam at 12-bar design pressure, achieved through the development of an advanced fire tube boiler. This design is meticulously crafted to harmonize cost-effectiveness and parameter refinement, with a keen emphasis on material selection for component parts, construction materials, and production methods throughout the analytical phases. The analytical process involves iterative calculations, utilizing pertinent formulas to optimize design parameters, including the selection of tube diameters and overall heat transfer coefficients. The boiler configuration incorporates two passes, a strategic choice influenced by tube and shell size considerations. The utilization of heavy oil fuel no. 6, with a higher heating value of 44000kJ/kg and a lower heating value of 41300kJ/kg, results in a fuel consumption of 140.37kg/hr. The boiler achieves an impressive heat output of 1610kW with an efficiency rating of 85.25%. The fluid flow pattern within the boiler adopts a cross-flow arrangement strategically chosen for inherent advantages. Internally, the welding of the tube sheet to the shell, secured by gaskets and welds, ensures structural integrity. The shell design adheres to European Standard code sections for pressure vessels, encompassing considerations for weight, supplementary accessories (lifting lugs, openings, ends, manhole), and detailed assembly drawings. This research represents a significant stride in optimizing fire tube boiler technology, balancing efficiency and safety considerations in the pursuit of enhanced saturated steam production.Keywords: fire tube, saturated steam, material selection, efficiency
Procedia PDF Downloads 812193 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images
Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann
Abstract:
FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design
Procedia PDF Downloads 2782192 Classification Rule Discovery by Using Parallel Ant Colony Optimization
Authors: Waseem Shahzad, Ayesha Tahir Khan, Hamid Hussain Awan
Abstract:
Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced.Keywords: ant colony optimization, parallel Ant-MinerPB, vertical partitioning, classification rule discovery
Procedia PDF Downloads 2952191 A New Approach for Improving Accuracy of Multi Label Stream Data
Authors: Kunal Shah, Swati Patel
Abstract:
Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. Classification is used to predict class of unseen instance as accurate as possible. Multi label classification is a variant of single label classification where set of labels associated with single instance. Multi label classification is used by modern applications, such as text classification, functional genomics, image classification, music categorization etc. This paper introduces the task of multi-label classification, methods for multi-label classification and evolution measure for multi-label classification. Also, comparative analysis of multi label classification methods on the basis of theoretical study, and then on the basis of simulation was done on various data sets.Keywords: binary relevance, concept drift, data stream mining, MLSC, multiple window with buffer
Procedia PDF Downloads 5842190 Genetic Evaluation of Locally Flock Sheep in Gabaraka Village
Authors: Salim Omar Raoof
Abstract:
This study was conducted in a private local sheep herd at Gabaraka village-Kirkuk-Iraq. Analysis of 77 ewes recorded and 7 Rams of local sheep presented in Gabaraka village farm plain, the age of ewes ranged between (2-4) years. The aim of this study is to investigate the genetic and non-genetic factors (type of birth, sex, and age of dam) affecting daily milk yield (DMY), birth weight (BW), weaning weight (WW) and Gain characteristics of local sheep raised under Iraq conditions, and it also aims at estimating heritability’s, BLUP. The overall mean of daily milk yield, (BW), (WW), and gain. Was 444.15gm,4.92kg,43.08kg, and 38.16kg, respectively. The results showed there was a significant effect of the type of birth and sex on (BW) and (WW). Also, the age of the dam had a significant effect on daily milk yield (BW), (WW), and gain. Generally, the estimate of heritability of DMP, BWT, WWT, and Gain tend to be 0.22, 0.17, 0.27, and 0.22, respectively. The breeding value (BLUP) for rams ranged between (-0.1684 to 0.188), (-0.205 to 0.310), and ( -0.0171 to 0.029) according to growth traits of Lambs BW, WW, and Gain, respectively. It concluded that the selection of ewes and rams at the population level in planned selection schemes is based on BLUP value and heritability.Keywords: locally sheep, milk yield, Genetic parameters, BLUP value
Procedia PDF Downloads 772189 Evaluation of Reliability Flood Control System Based on Uncertainty of Flood Discharge, Case Study Wulan River, Central Java, Indonesia
Authors: Anik Sarminingsih, Krishna V. Pradana
Abstract:
The failure of flood control system can be caused by various factors, such as not considering the uncertainty of designed flood causing the capacity of the flood control system is exceeded. The presence of the uncertainty factor is recognized as a serious issue in hydrological studies. Uncertainty in hydrological analysis is influenced by many factors, starting from reading water elevation data, rainfall data, selection of method of analysis, etc. In hydrological modeling selection of models and parameters corresponding to the watershed conditions should be evaluated by the hydraulic model in the river as a drainage channel. River cross-section capacity is the first defense in knowing the reliability of the flood control system. Reliability of river capacity describes the potential magnitude of flood risk. Case study in this research is Wulan River in Central Java. This river occurring flood almost every year despite some efforts to control floods such as levee, floodway and diversion. The flood-affected areas include several sub-districts, mainly in Kabupaten Kudus and Kabupaten Demak. First step is analyze the frequency of discharge observation from Klambu weir which have time series data from 1951-2013. Frequency analysis is performed using several distribution frequency models such as Gumbel distribution, Normal, Normal Log, Pearson Type III and Log Pearson. The result of the model based on standard deviation overlaps, so the maximum flood discharge from the lower return periods may be worth more than the average discharge for larger return periods. The next step is to perform a hydraulic analysis to evaluate the reliability of river capacity based on the flood discharge resulted from several methods. The selection of the design flood discharge of flood control system is the result of the method closest to bankfull capacity of the river.Keywords: design flood, hydrological model, reliability, uncertainty, Wulan river
Procedia PDF Downloads 2942188 Probiotics’ Antibacterial Activity on Beef and Camel Minced Meat at Altered Ranges of Temperature
Authors: Rania Samir Zaki
Abstract:
Because of their inhibitory effects, selected probiotic Lactobacilli may be used as antimicrobial against some hazardous microorganisms responsible for spoilage of fresh minced beef (cattle) minced meat and camel minced meat. Lactic acid bacteria were isolated from camel meat. These included 10 isolates; 1 Lactobacillus fermenti, 4 Lactobacillus plantarum, 4 Lactobacillus pulgaricus, 3 Lactobacillus acidophilus and 1 Lactobacillus brevis. The most efficient inhibitory organism was Lactobacillus plantarum which can be used as a propiotic with antibacterial activity. All microbiological analyses were made at the time 0, first day and the second day at altered ranges of temperature [4±2 ⁰C (chilling temperature), 25±2 ⁰C, and 38±2 ⁰C]. Results showed a significant decrease of pH 6.2 to 5.1 within variant types of meat, in addition to reduction of Total Bacterial Count, Enterococci, Bacillus cereus and Escherichia coli together with the stability of Coliforms and absence of Staphylococcus aureus.Keywords: antibacterial, camel meat, inhibition, probiotics
Procedia PDF Downloads 2992187 Studies on Mechanical Behavior of Kevlar/Kenaf/Graphene Reinforced Polymer Based Hybrid Composites
Authors: H. K. Shivanand, Ranjith R. Hombal, Paraveej Shirahatti, Gujjalla Anil Babu, S. ShivaPrakash
Abstract:
When it comes to the selection of materials the knowledge of materials science plays a vital role in selection and enhancements of materials properties. In the world of material science a composite material has the significant role based on its application. The composite materials are those in which two or more components having different physical and chemical properties are combined to create a new enhanced property substance. In this study three different materials (Kenaf, Kevlar and Graphene) been chosen based on their properties and a composite material is developed with help of vacuum bagging process. The fibers (Kenaf and Kevlar) and Resin(vinyl ester) ratio was maintained at 70:30 during the process and 0.5% 1% and 1.5% of Graphene was added during fabrication process. The material was machined to thedimension ofASTM standards(300×300mm and thickness 3mm)with help of water jet cutting machine. The composite materials were tested for Mechanical properties such as Interlaminar shear strength(ILSS) and Flexural strength. It is found that there is significant increase in material properties in the developed composite material.Keywords: Kevlar, Kenaf, graphene, vacuum bagging process, Interlaminar shear strength test, flexural test
Procedia PDF Downloads 932186 Naturally Occurring Chemicals in Biopesticides' Resistance Control through Molecular Topology
Authors: Riccardo Zanni, Maria Galvez-Llompart, Ramon Garcia-Domenech, Jorge Galvez
Abstract:
Biopesticides, such as naturally occurring chemicals, pheromones, fungi, bacteria and insect predators are often a winning choice in crop protection because of their environmental friendly profile. They are considered to have lower toxicity than traditional pesticides. After almost a century of pesticides use, resistances to traditional insecticides are wide spread, while those to bioinsecticides have raised less attention, and resistance management is frequently neglected. This seems to be a crucial mistake since resistances have already occurred for many marketed biopesticides. With an eye to the future, we present here a selection of new natural occurring chemicals as potential bioinsecticides. The molecules were selected using a consolidated mathematical paradigm called molecular topology. Several QSAR equations were depicted and subsequently applied for the virtual screening of hundred thousands molecules of natural origin, which resulted in the selection of new potential bioinsecticides. The most innovative aspect of this work does not only reside in the importance of the identification of new molecules overcoming biopesticides’ resistances, but on the possibility to promote shared knowledge in the field of green chemistry through this unique in silico discipline named molecular topology.Keywords: green chemistry, QSAR, molecular topology, biopesticide
Procedia PDF Downloads 3142185 Decision Making, Reward Processing and Response Selection
Authors: Benmansour Nassima, Benmansour Souheyla
Abstract:
The appropriate integration of reward processing and decision making provided by the environment is vital for behavioural success and individuals’ well being in everyday life. Functional neurological investigation has already provided an inclusive image on affective and emotional (motivational) processing in the healthy human brain and has recently focused its interest also on the assessment of brain function in anxious and depressed individuals. This article offers an overview on the theoretical approaches that relate emotion and decision-making, and spotlights investigation with anxious or depressed individuals to reveal how emotions can interfere with decision-making. This research aims at incorporating the emotional structure based on response and stimulation with a Bayesian approach to decision-making in terms of probability and value processing. It seeks to show how studies of individuals with emotional dysfunctions bear out that alterations of decision-making can be considered in terms of altered probability and value subtraction. The utmost objective is to critically determine if the probabilistic representation of belief affords could be a critical approach to scrutinize alterations in probability and value representation in subjective with anxiety and depression, and draw round the general implications of this approach.Keywords: decision-making, motivation, alteration, reward processing, response selection
Procedia PDF Downloads 4772184 Structural Optimization of Shell and Arched Structures
Authors: Mitchell Gohnert, Ryan Bradley
Abstract:
This paper reviews some fundamental concepts of structural optimization, which are based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.Keywords: arches, economy of stresses, material strength, optimization, shells
Procedia PDF Downloads 1162183 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator
Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong
Abstract:
Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce
Procedia PDF Downloads 332182 Incorporating Spatial Selection Criteria with Decision-Maker Preferences of A Precast Manufacturing Plant
Authors: M. N. A. Azman, M. S. S. Ahamad
Abstract:
The Construction Industry Development Board of Malaysia has been actively promoting the use of precast manufacturing in the local construction industry over the last decade. In an era of rapid technological changes, precast manufacturing significantly contributes to improving construction activities and ensuring sustainable economic growth. Current studies on the location decision of precast manufacturing plants aimed to enhanced local economic development are scarce. To address this gap, the present research establishes a new set of spatial criteria, such as attribute maps and preference weights, derived from a survey of local industry decision makers. These data represent the input parameters for the MCE-GIS site selection model, for which the weighted linear combination method is used. Verification tests on the model were conducted to determine the potential precast manufacturing sites in the state of Penang, Malaysia. The tests yield a predicted area of 12.87 acres located within a designated industrial zone. Although, the model is developed specifically for precast manufacturing plant but nevertheless it can be employed to other types of industries by following the methodology and guidelines proposed in the present research.Keywords: geographical information system, multi criteria evaluation, industrialised building system, civil engineering
Procedia PDF Downloads 2872181 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 1752180 Investigating the Effective Parameters in Determining the Type of Traffic Congestion Pricing Schemes in Urban Streets
Authors: Saeed Sayyad Hagh Shomar
Abstract:
Traffic congestion pricing – as a strategy in travel demand management in urban areas to reduce traffic congestion, air pollution and noise pollution – has drawn many attentions towards itself. Unlike the satisfying findings in this method, there are still problems in determining the best functional congestion pricing scheme with regard to the situation. The so-called problems in this process will result in further complications and even the scheme failure. That is why having proper knowledge of the significance of congestion pricing schemes and the effective factors in choosing them can lead to the success of this strategy. In this study, first, a variety of traffic congestion pricing schemes and their components are introduced; then, their functional usage is discussed. Next, by analyzing and comparing the barriers, limitations and advantages, the selection criteria of pricing schemes are described. The results, accordingly, show that the selection of the best scheme depends on various parameters. Finally, based on examining the effective parameters, it is concluded that the implementation of area-based schemes (cordon and zonal) has been more successful in non-diversion of traffic. That is considering the topology of the cities and the fact that traffic congestion is often created in the city centers, area-based schemes would be notably functional and appropriate.Keywords: congestion pricing, demand management, flat toll, variable toll
Procedia PDF Downloads 390