Search results for: unconventional energy source
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11911

Search results for: unconventional energy source

11491 Energy Consumption Forecast Procedure for an Industrial Facility

Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova

Abstract:

We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.

Keywords: energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting

Procedia PDF Downloads 418
11490 Numerical Study for Examination of Flow Characteristics in Fractured Gas Reservoirs

Authors: M. K. Kim, C. H. Shin, W. G. Park

Abstract:

Recently, natural gas resources are issued due to alternative and eco-friendly energy policies, and development of even unconventional gas resources including tight gas, coal bed methane and shale gas is being rapidly expanded from North America all over the world. For developing these gas reservoirs, it is necessary to investigate reservoir characteristics by using reservoir simulation. In reservoir simulation, calculation of permeability of fractured zone is very important to predict the gas production. However, it is difficult to accurately calculate the permeability by using conventional methods which use analytic solution for laminar flow. The flow in gas reservoirs exhibits complex flow behavior such as slip around the wall roughness effect and turbulence because the size of the apertures of fractures is ranged over various scales from nano-scale to centi-scale. Therefore, it is required to apply new reservoir flow analysis methods which can accurately consider complex gas flow owing to the geometric characteristics and distributions of various pores and flow paths within gas reservoirs. Hence, in this study, the flow characteristics and the relation between each characteristic variable was investigated and multi-effect was quantified when the fractures are compounded for devising a new calculation model of permeability of fractured zone in gas reservoirs by using CFD.

Keywords: fractured zone, gas reservoir, permeability, CFD

Procedia PDF Downloads 231
11489 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source

Authors: Zdeněk Veselý, Milan Honner, Jiří Mach

Abstract:

The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.

Keywords: computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source

Procedia PDF Downloads 370
11488 Implementation of an Open Source ERP for SMEs in the Automotive Sector in Peru: A Case Study

Authors: Gerson E. Cornejo, Luis A. Gamarra, David S. Mauricio

Abstract:

The Enterprise Resource Planning Systems (ERP) allows the integration of all the business processes of the functional areas of the companies, in order to automate and standardize the processes, obtain accurate information and improve decision making in time real. In Peru, 79% of medium and small companies (SMEs) do not use any management software, this is because it is believed that ERPs are expensive, complex and difficult to implement. However, for more than 20 years there have been Open Source ERPs, which are more accessible and have the same benefit as proprietary ERPs, but there is little information on the implementation process. In this work is made a case of study, in order to show the implementation process of an Open Source ERP, Odoo, based on the ASAP methodology (Accelerated SAP) and applied to a company of corrective and preventive maintenance services of vehicles. The ERP allowed the SME to standardize its business processes, increase its productivity, reducing up to 40% certain processes. The study of this case shows that it is feasible and profitable to implement an Open Source ERP in SMEs in the Automotive Sector of Peru. In addition, it is shown that the ASAP methodology is adequate to carry out Open Source ERPs implementation projects.

Keywords: ASAP, automotive sector, ERP implementation, open source

Procedia PDF Downloads 309
11487 Meeting India's Energy Demand: U.S.-India Energy Cooperation under Trump

Authors: Merieleen Engtipi

Abstract:

India's total share of global population is nearly 18%; however, its per capita energy consumption is only one-third of global average. The demand and supply of electricity are uneven in the country; around 240 million of the population have no access to electricity. However, with India's trajectory for modernisation and economic growth, the demand for energy is only expected to increase. India is at a crossroad, on the one hand facing the increasing demand for energy and on the other hand meeting the Paris climate policy commitments, and further the struggle to provide efficient energy. This paper analyses the policies to meet India’s need for energy, as the per capita energy consumption is likely to be double in 6-7 years period. Simultaneously, India's Paris commitment requires curbing of carbon emission from fossil fuels. There is an increasing need for renewables to be cheaply and efficiently available in the market and for clean technology to extract fossil fuels to meet climate policy goals. Fossil fuels are the most significant generator of energy in India; with the Paris agreement, the demand for clean energy technology is increasing. Finally, the U.S. decided to withdraw from the Paris Agreement; however, the two countries plan to continue engaging bilaterally on energy issues. The U.S. energy cooperation under Trump administration is significantly vital for greater energy security, transfer of technology and efficiency in energy supply and demand.

Keywords: energy demand, energy cooperation, fossil fuels, technology transfer

Procedia PDF Downloads 231
11486 Influence of Vacuum Pressure on the Thermal Bonding Energy of Water in Wood

Authors: Aleksandar Dedic, Dusko Salemovic, Milorad Danilovic, Radomir Kuzmanovic

Abstract:

This paper takes into consideration the influence of bonding energy of water on energy demand of vacuum wood drying using the specific method of obtaining sorption isotherms. The experiment was carried out on oak wood at vacuum pressures of: 0.7 bar, 0.5bar and 0.3bar. The experimental work was done to determine a mathematical equation between the moisture content and energy of water-bonding. This equation helps in finding the average amount of energy of water-bonding necessary in calculation of energy consumption by use of the equation of heat balance in real drying chambers. It is concluded that the energy of water-bonding is large enough to be included into consideration. This energy increases at lower values of moisture content, when drying process approaches to the end, and its average values are lower on lower pressure.

Keywords: bonding energy, drying, isosters, oak, vacuum

Procedia PDF Downloads 254
11485 Association Between Renewable Energy and Community Forest User Group of Siranchowk Rural Municipality, Nepal

Authors: Prem Bahadur Giri, Mathinee Yucharoen

Abstract:

Community Forest User Groups (CFUGs) have been the core stone of forest management efforts in Nepal. Due to the lack of a smooth transition into the local governance structure in 2017, policy instruments have not been effectively cascaded to the local level, creating ambiguity and inconsistency in forest governance. Descriptive mixed-method research was performed with community users and stakeholders of Tarpakha community forest, Siranchowk Rural Municipality, to understand the role of the political economy in CFUG management. A household survey was conducted among 100 households (who also are existing members of the Tarpakha CFUG) to understand and document their energy consumption preferences and practices. Likewise, ten key informant interviews and five focus group discussions with the municipality and forest management officials were also conducted to have a wider overview of the factors and political, socio-economic, and religious contexts behind the utilization of renewable energy for sustainable development. Findings from our study suggest only 3% of households use biogas as the main source of energy. The rest of the households mention liquid petroleum gas (LPG), electricity and firewood as major sources of energy for domestic purposes. Community members highlighted the difficulty in accessing firewood due to strict regulations from the CFUG, lack of cattle and manpower to rear cattle to produce cow dung (for biogas), lack of technical expertise at the community level for the operation and maintenance of solar energy, among others as challenges of resource. Likewise, key informants have mentioned policy loopholes at both the federal and local levels, especially with regard to the promotion of alternative or renewable energy, as there are no clear mandates and provisions to regulate the renewable energy industry. The study recommends doing an in-depth study on the feasibility of renewable energy sources, especially in the context of CFUGs, where biodiversity conservation aspects need to be equally taken into consideration while thinking of the promotion and expansion of renewable energy sources.

Keywords: community forest, renewable energy, sustainable development, Nepal

Procedia PDF Downloads 57
11484 A Multi Agent Based Protection Scheme for Smart Distribution Network in Presence of Distributed Energy Resources

Authors: M. R. Ebrahimi, B. Mahdaviani

Abstract:

Conventional electric distribution systems are radial in nature, supplied at one end through a main source. These networks generally have a simple protection system usually implemented using fuses, re-closers, and over-current relays. Recently, great attention has been paid to applying Distributed energy resources (DERs) throughout electric distribution systems. Presence of such generation in a network leads to losing coordination of protection devices. Therefore, it is desired to develop an algorithm which is capable of protecting distribution systems that include DER. On the other hand smart grid brings opportunities to the power system. Fast advancement in communication and measurement techniques accelerates the development of multi agent system (MAS). So in this paper, a new approach for the protection of distribution networks in the presence of DERs is presented base on MAS. The proposed scheme has been implemented on a sample 27-bus distribution network.

Keywords: distributed energy resource, distribution network, protection, smart grid, multi agent system

Procedia PDF Downloads 580
11483 Numerical Study of Natural Convection in Isothermal Open Cavities

Authors: Gaurav Prabhudesai, Gaetan Brill

Abstract:

The sun's energy source comes from a hydrogen-to-helium thermonuclear reaction, generating a temperature of about 5760 K on its outer layer. On account of this high temperature, energy is radiated by the sun, a part of which reaches the earth. This sunlight, even after losing part of its energy en-route to scattering and absorption, provides a time and space averaged solar flux of 174.7 W/m^2 striking the earth’s surface. According to one study, the solar energy striking earth’s surface in one and a half hour is more than the energy consumption that was recorded in the year 2001 from all sources combined. Thus, technology for extraction of solar energy holds much promise for solving energy crisis. Of the many technologies developed in this regard, Concentrating Solar Power (CSP) plants with central solar tower and receiver system are very impressive because of their capability to provide a renewable energy that can be stored in the form of heat. One design of central receiver towers is an open cavity where sunlight is concentrated into by using mirrors (also called heliostats). This concentrated solar flux produces high temperature inside the cavity which can be utilized in an energy conversion process. The amount of energy captured is reduced by losses occurring at the cavity through all three modes viz., radiation to the atmosphere, conduction to the adjoining structure and convection. This study investigates the natural convection losses to the environment from the receiver. Computational fluid dynamics were used to simulate the fluid flow and heat transfer of the receiver; since no analytical solution can be obtained and no empirical correlations exist for the given geometry. The results provide guide lines for predicting natural convection losses for hexagonal and circular shaped open cavities. Additionally, correlations are given for various inclination angles and aspect ratios. These results provide methods to minimize natural convection through careful design of receiver geometry and modification of the inclination angle, and aspect ratio of the cavity.

Keywords: concentrated solar power (CSP), central receivers, natural convection, CFD, open cavities

Procedia PDF Downloads 264
11482 Energy Efficiency Retrofitting of Residential Buildings Case Study: Multi-Family Apartment Building in Tripoli, Lebanon

Authors: Yathreb Sabsaby

Abstract:

Energy efficiency retrofitting of existing buildings was long ignored by public authorities who favored energy efficiency policies in new buildings, which are easier to implement. Indeed, retrofitting is more complex and difficult to organize because of the extreme diversity in existing buildings, administrative situations and occupation. Energy efficiency retrofitting of existing buildings has now become indispensable in all economies—even emerging countries—given the constraints imposed by energy security and climate change, and because it represents considerable potential energy savings. Addressing energy efficiency in the existing building stock has been acknowledged as one of the most critical yet challenging aspects of reducing our environmental footprint on the ecosystem. Tripoli, Lebanon chosen as case study area is a typical Mediterranean metropolis in the North Lebanon, where multifamily residential buildings are all around the city. This generally implies that the density of energy demand is extremely high, even the renewable energy facilities are involved, they can just play as a minor energy provider at the current technology level in the single family house. It seems only the low energy design for buildings can be made possible, not the zero energy certainly in developing country. This study reviews the latest research and experience and provides recommendations for deep energy retrofits that aim to save more than 50% of the energy used in a typical Tripoli apartment building.

Keywords: energy-efficiency, existing building, multifamily residential building, retrofit

Procedia PDF Downloads 433
11481 Towards Renewable Energy: A Qualitative Study of Biofuel Development Policy in Indonesia

Authors: Arie Yanwar Kapriadi

Abstract:

This research is aiming to develop deeper understanding of the scale of power that shaped the biofuel policy. This research is important for the following reasons. Firstly, this research will enrich the body of literature within the field of political ecology, scale and environmental governance. Secondly, by focussing on energy transition policies, this research offers a critical perspective on how government policy, aimed at delivering low carbon sustainable energy systems, being scaled and implemented through multi variate stakeholders. Finally, the research could help the government of Indonesia as a policy evaluation on delivering low carbon sustainable energy systems at the macro level that (possibility) being unable to be delivered at different scale and instead being perceived differently by different stakeholders. Qualitative method is applied particularly an in depth interview with government officials as well as policy stakeholders outside of government and people in positions of responsibility with regards to policy delivery. There are 4 field study location where interview took place as well as sites visit to some biofuel refining facilities. There are some major companies which involve on the production and distribution of biofuel and its relation with biofuel feedstock industry as the source of data. The research investigates how the government biofuel policies correlated with other policy issues such as land reclassification and carbon emission reduction which also influenced plantations expansion as well as its impact on the local people. The preliminary result shows tension of power between governing authorities caused the Indonesian biofuel policy being unfocused which led to failing to meet its mandatory blending target despite the abundance of its feedstock.

Keywords: biofuel, energy transition, renewable energy, political ecology

Procedia PDF Downloads 176
11480 Methodology of Choosing Technology and Sizing of the Hybrid Energy Storage Based on Cost-benefit Analysis

Authors: Krzysztof Rafał, Weronika Radziszewska, Hubert Biedka, Oskar Grabowski, Krzysztof Mik

Abstract:

We present a method to choose energy storage technologies and their parameters for the economic operation of a microgrid. A grid-connected system with local loads and PV generation is assumed, where an energy storage system (ESS) is attached to minimize energy cost by providing energy balancing and arbitrage functionalities. The ESS operates in a hybrid configuration and consists of two unique technologies operated in a coordinated way. Based on given energy profiles and economical data a model calculates financial flow for ESS investment, including energy cost and ESS depreciation resulting from degradation. The optimization strategy proposes a hybrid set of two technologies with their respective power and energy ratings to minimize overall system cost in a given timeframe. Results are validated through microgrid simulations using real-life input profiles.

Keywords: energy storage, hybrid energy storage, cost-benefit analysis, microgrid, battery sizing

Procedia PDF Downloads 193
11479 A Review of Magnesium Air Battery Systems: From Design Aspects to Performance Characteristics

Authors: R. Sharma, J. K. Bhatnagar, Poonam, R. C. Sharma

Abstract:

Metal–air batteries have been designed and developed as an essential source of electric power to propel automobiles, make electronic equipment functional, and use them as the source of power in remote areas and space. High energy and power density, lightweight, easy recharge capabilities, and low cost are essential features of these batteries. Both primary and rechargeable magnesium air batteries are highly promising. Our focus will be on the basics of electrode reaction kinetics of Mg–air cell in this paper. Design and development of Mg or Mg alloys as anode materials, design and composition of air cathode, and promising electrolytes for Mg–air batteries have been reviewed. A brief note on the possible and proposed improvements in design and functionality is also incorporated. This article may serve as the primary and premier document in the critical research area of Mg-air battery systems.

Keywords: air cathode, battery design, magnesium air battery, magnesium anode, rechargeable magnesium air battery

Procedia PDF Downloads 207
11478 Julia-Based Computational Tool for Composite System Reliability Assessment

Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris

Abstract:

The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.

Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow

Procedia PDF Downloads 50
11477 Research on Energy-Related Occupant Behavior of Residential Air Conditioning Based on Zigbee Intelligent Electronic Equipment

Authors: Dawei Xia, Benyan Jiang, Yong Li

Abstract:

Split-type air conditioners is widely used for indoor temperature regulation in urban residential buildings in summer in China. The energy-related occupant behavior has a great impact on building energy consumption. Obtaining the energy-related occupant behavior data of air conditioners is the research basis for the energy consumption prediction and simulation. Relying on the development of sensing and control technology, this paper selects Zigbee intelligent electronic equipment to monitor the energy-related occupant behavior of 20 households for 3 months in summer. Through analysis of data, it is found that people of different ages in the region have significant difference in the time, duration, frequency, and energy consumption of air conditioners, and form a data model of three basic energy-related occupant behavior patterns to provide an accurate simulation of energy.

Keywords: occupant behavior, Zigbee, split air conditioner, energy simulation

Procedia PDF Downloads 172
11476 Optimization of Energy Consumption with Various Design Parameters on Office Buildings in Chinese Severe Cold Zone

Authors: Yuang Guo, Dewancker Bart

Abstract:

The primary energy consumption of buildings throughout China was approximately 814 million tons of coal equivalents in 2014, which accounts for 19.12% of China's total primary energy consumption. Also, the energy consumption of public buildings takes a bigger share than urban residential buildings and rural residential buildings among the total energy consumption. To improve the level of energy demand, various design parameters were chosen. Meanwhile, a series of simulations by Energy Plus (EP-Launch) is performed using a base case model established in Open Studio. Through the results, 16%-23% of total energy demand reductions can be found in the severe cold zone of China, and it can also provide a reference for the architectural design of other similar climate zones.

Keywords: energy consumption, design parameters, indoor thermal comfort, simulation study, severe cold climate zone

Procedia PDF Downloads 134
11475 Fracture Energy Corresponding to the Puncture/Cutting of Nitrile Rubber by Pointed Blades

Authors: Ennouri Triki, Toan Vu-Khanh

Abstract:

Resistance to combined puncture/cutting by pointed blades is an important property of gloves materials. The purpose of this study is to propose an approach derived from the fracture mechanics theory to calculate the fracture energy associated to the puncture/cutting of nitrile rubber. The proposed approach is also based on the application of a sample pre-strained during the puncture/cutting test in order to remove the contribution of friction. It was validated with two different pointed blade angles of 22.5° and 35°. Results show that the applied total fracture energy corresponding to puncture/cutting is controlled by three energies, one is the fracture energy or the intrinsic strength of the material, the other reflects the friction energy between a pointed blade and the material. For an applied pre-strain energy (or tearing energy) of high value, the friction energy is completely removed. Without friction, the total fracture energy is constant. In that case, the fracture contribution of the tearing energy is marginal. Growth of the crack is thus completely caused by the puncture/cutting by a pointed blade. Finally, results suggest that the value of the fracture energy corresponding to puncture/cutting by pointed blades is obtained at a frictional contribution of zero.

Keywords: elastomer, energy, fracture, friction, pointed blades

Procedia PDF Downloads 281
11474 An Analysis of Energy Use and Input Level for Tomato Production in Turkey

Authors: Hasan Vural

Abstract:

The purpose of this study was to determine energy equivalents of inputs and output in tomato production in Bursa province. The data in this study were collected from tomato farms in Bursa province, Karacabey and Mustafakemalpasa district. Questionnaires were administered through face-to-face interview in 2011-2012. The results of the study show that diesel have the highest rate of energy equivalency of all the inputs used in tomato production at 60,07%. The energy equivalent rate of electricity is 4,26% and the energy equivalent rate of water is 0,87%. The energy equivalent rates for human power, machinery, chemicals and water for irrigation were determined to be low in tomato production. According to the output/input ratio calculated, the energy ratio is 1,50 in tomato production in the research area. This ratio implies that the inputs used in tomato production have not been used effectively. Ineffective use of these resources also causes environmental problems.

Keywords: Tomato production, energy ratio, energy input, Turkey

Procedia PDF Downloads 209
11473 Performance Variation of the TEES According to the Changes in Cold-Side Storage Temperature

Authors: Young-Jin Baik, Minsung Kim, Junhyun Cho, Ho-Sang Ra, Young-Soo Lee, Ki-Chang Chang

Abstract:

Surplus electricity can be converted into potential energy via pumped hydroelectric storage for future usage. Similarly, thermo-electric energy storage (TEES) uses heat pumps equipped with thermal storage to convert electrical energy into thermal energy; the stored energy is then converted back into electrical energy when necessary using a heat engine. The greatest advantage of this method is that, unlike pumped hydroelectric storage and compressed air energy storage, TEES is not restricted by geographical constraints. In this study, performance variation of the TEES according to the changes in cold-side storage temperature was investigated by simulation method.

Keywords: energy storage system, heat pump, fluid mechanics, thermodynamics

Procedia PDF Downloads 455
11472 Public Perception of Energy Security in Lithuania: Between Material Interest and Energy Independence

Authors: Dainius Genys, Vylius Leonavicius, Ricardas Krikstolaitis

Abstract:

Energy security problems in Lithuania are analyzed on a regular basis; however, there is no comprehensive research on the very issue of the concept of public energy security. There is a lack of attention not only to social determinants of perception of energy security, but also a lack of a deeper analysis of the public opinion. This article aims to research the Lithuanian public perception of energy security. Complex tasks were set during the sociological study. Survey questionnaire consisted of different sets of questions: view of energy security (risk perception, political orientation, and energy security; comprehensiveness and energy security); view of energy risks and threats (perception of energy safety factors; individual dependence and burden; disobedience and risk); view of the activity of responsible institutions (energy policy assessment; confidence in institutions and energy security), demographic issues. In this article, we will focus on two aspects: a) We will analyze public opinion on the most important aspects of energy security and social factors influencing them; The hypothesis is made that public perception of energy security is related to value orientations: b) We will analyze how public opinion on energy policy executed by the government and confidence in the government are intertwined with the concept of energy security. Data of the survey, conducted on May 10-19 and June 7-17, 2013, when Seimas and the government consisted of the coalition dominated by Social Democrats with Labor, Order and Justice Parties and the Electoral Action of Poles, were used in this article. It is important to note that the survey was conducted prior to Russia’s occupation of the Crimea.

Keywords: energy security, public opinion, risk, energy threat, energy security policy

Procedia PDF Downloads 486
11471 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach

Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam

Abstract:

Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.

Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment

Procedia PDF Downloads 66
11470 Energy Policy of India: An Assessment of Its Impacts and Way Forward

Authors: Mrinal Saurabh Bhaskar, Rahul E Ravindranathan, Priyangana Borah

Abstract:

Energy plays a key role and as a driving force for economic and social growth for any country. To manage the energy sources and its efficient utilization in different economic sectors, energy policy of a country is critical. The energy performance of a country is measured in Energy Intensity and India’s Energy Intensity due to several policies interventions has reduced from 0.53 toe/1000USD (2010) in the year 2000 to 0.38 toe/1000USD (2010) in the year 2014, which is about 28 per cent reduction. The Government of India has taken several initiates to manage their increasing energy demand and meet the climate change goals defined by them. The major policy milestones in India related to energy are (i) Enactment of Energy Conservation (EC) Act 2001 (ii) Establishment of Bureau of Energy Efficiency 2001 (iii) National Action Plan on Climate Change (iv) Launch of Demand Side Management schemes (v) Amendment of EC Act 2010 (vi) Launch of Perform Achieve and Trade scheme 2012. Through a critical review, this paper highlights the key energy policy interventions by India, its benefits and impact, challenges faced and efforts of the Government to overcome such challenges. Such take away would be helpful for other countries who are proposing to prepare or amend their energy policy for their different economic sectors.

Keywords: energy, efficiency, climate, policy

Procedia PDF Downloads 316
11469 Technological and Economic Investigation of Concentrated Photovoltaic and Thermal Systems: A Case Study of Iran

Authors: Moloud Torkandam

Abstract:

Any cities must be designed and built in a way that minimizes their need for fossil fuel. Undoubtedly, the necessity of accepting this principle in the previous eras is undeniable with respect to the mode of constructions. Perhaps only due to the great diversity of materials and new technologies in the contemporary era, such a principle in buildings has been forgotten. The question of optimizing energy consumption in buildings has attracted a great deal of attention in many countries and, in this way, they have been able to cut down the consumption of energy up to 30 percent. The energy consumption is remarkably higher than global standards in our country, and the most important reason is the undesirable state of buildings from the standpoint of energy consumption. In addition to providing the means to protect the natural and fuel resources for the future generations, reducing the use of fossil energies may also bring about desirable outcomes such as the decrease in greenhouse gases (whose emissions cause global warming, the melting of polar ice, the rise in sea level and the climatic changes of the planet earth), the decrease in the destructive effects of contamination in residential complexes and especially urban environments and preparation for national self-sufficiency and the country’s independence and preserving national capitals. This research realize that in this modern day and age, living sustainably is a pre-requisite for ensuring a bright future and high quality of life. In acquiring this living standard, we will maintain the functions and ability of our environment to serve and sustain our livelihoods. Electricity is now an integral part of modern life, a basic necessity. In the provision of electricity, we are committed to respecting the environment by reducing the use of fossil fuels through the use of proven technologies that use local renewable and natural resources as its energy source. As far as this research concerned it is completely necessary to work on different type of energy producing such as solar and CPVT system.

Keywords: energy, photovoltaic, termal system, solar energy, CPVT

Procedia PDF Downloads 63
11468 Exploring Unexplored Horizons: Innovative Applications of Applied Fluid Mechanics in Sustainable Energy

Authors: Elvira S. Castillo, Surupa Shaw

Abstract:

This paper delves into the uncharted territories of innovative applications of applied fluid mechanics in sustainable energy. By exploring the intersection of fluid mechanics principles with renewable energy technologies, the study uncovers untapped potential and novel solutions. Through theoretical analyses, the research investigates how fluid dynamics can be strategically leveraged to enhance the efficiency and sustainability of renewable energy systems. The findings contribute to expanding the discourse on sustainable energy by presenting innovative perspectives and practical insights. This paper serves as a guide for future research endeavors and offers valuable insights for implementing advanced methodologies and technologies to address global energy challenges.

Keywords: fluid mechanics, sustainable energy, sustainble practices, renewable energy

Procedia PDF Downloads 29
11467 Settlement Network Supplying Energy

Authors: Balázs Kulcsár

Abstract:

Few people now doubt the future of the global energy transition. The only question is whether the pace of renewables' penetration will be sufficient to compete with the rate of warming. Dynamic changes are also taking place in the Hungarian electricity system. In addition to nuclear power, which provides the basic electricity supply, the most dynamic is solar power, which is largely small-scale and residential. The emergence of solar power is outlining the emergence of energy production and supply fabric of municipalities. This creates the potential for over-producing municipalities to supply the electricity needs of neighboring settlements with lower production beyond renewables. By taking advantage of this energy sharing, electricity supply based on pure renewables can be achieved more quickly.

Keywords: renewable energy, energy geography, self-sufficiency, energy transition

Procedia PDF Downloads 158
11466 Zero Net Energy Communities and the Impacts to the Grid

Authors: Heidi von Korff

Abstract:

The electricity grid is changing in terms of flexibility. Distributed generation (DG) policy is being discussed worldwide and implemented. Developers and utilities are seeking a pathway towards Zero Net Energy (ZNE) communities and the interconnection to the distribution grid. Using the VISDOM platform for establishing a method for managing and monitoring energy consumption loads of ZNE communities as a capacity resource for the grid. Reductions in greenhouse gas emissions and energy security are primary policy drivers for incorporating high-performance energy standards and sustainability practices in residential households, such as a market transformation of ZNE and nearly ZNE (nZNE) communities. This research investigates how load data impacts ZNE, to see if there is a correlation to the daily load variations in a single ZNE home. Case studies will include a ZNE community in California and a nearly ZNE community (All – Electric) in the Netherlands, which both are in measurement and verification (M&V) phases and connected to the grid for simulations of methods.

Keywords: zero net energy, distributed generation, renewable energy, zero net energy community

Procedia PDF Downloads 287
11465 Energy Analysis of Seasonal Air Conditioning Demand of All Income Classes Using Bottom up Model in Pakistan

Authors: Saba Arif, Anam Nadeem, Roman Kalvin, Tanzeel Rashid, Burhan Ali, Juntakan Taweekun

Abstract:

Currently, the energy crisis is taking serious attention. Globally, industries and building are major share takers of energy. 72% of total global energy is consumed by residential houses, markets, and commercial building. Additionally, in appliances air conditioners are major consumer of electricity; about 60% energy is used for cooling purpose in houses due to HVAC units. Energy demand will aid in determining what changes will be needed whether it is the estimation of the required energy for households or instituting conservation measures. Bottom-up model is one of the most famous methods for forecasting. In current research bottom-up model of air conditioners' energy consumption in all income classes in comparison with seasonal variation and hourly consumption is calculated. By comparison of energy consumption of all income classes by usage of air conditioners, total consumption of actual demand and current availability can be seen.

Keywords: air conditioning, bottom up model, income classes, energy demand

Procedia PDF Downloads 223
11464 Characterization of an Extrapolation Chamber for Dosimetry of Low Energy X-Ray Beams

Authors: Fernanda M. Bastos, Teógenes A. da Silva

Abstract:

Extrapolation chambers were designed to be used as primary standard dosimeter for measuring absorbed dose in a medium in beta radiation and low energy x-rays. The International Organization for Standardization established series of reference x-radiation for calibrating and determining the energy dependence of dosimeters that are to be reproduced in metrology laboratories. Standardization of the low energy x-ray beams with tube potential lower than 30 kV may be affected by the instrument used for dosimetry. In this work, parameters of a 23392 model PTW extrapolation chamber were determined aiming its use in low energy x-ray beams as a reference instrument.

Keywords: extrapolation chamber, low energy x-rays, x-ray dosimetry, X-ray metrology

Procedia PDF Downloads 374
11463 Evaluation of Functional Properties of Protein Hydrolysate from the Fresh Water Mussel Lamellidens marginalis for Nutraceutical Therapy

Authors: Jana Chakrabarti, Madhushrita Das, Ankhi Haldar, Roshni Chatterjee, Tanmoy Dey, Pubali Dhar

Abstract:

High incidences of Protein Energy Malnutrition as a consequence of low protein intake are quite prevalent among the children in developing countries. Thus prevention of under-nutrition has emerged as a critical challenge to India’s developmental Planners in recent times. Increase in population over the last decade has led to greater pressure on the existing animal protein sources. But these resources are currently declining due to persistent drought, diseases, natural disasters, high-cost of feed, and low productivity of local breeds and this decline in productivity is most evident in some developing countries. So the need of the hour is to search for efficient utilization of unconventional low-cost animal protein resources. Molluscs, as a group is regarded as under-exploited source of health-benefit molecules. Bivalve is the second largest class of phylum Mollusca. Annual harvests of bivalves for human consumption represent about 5% by weight of the total world harvest of aquatic resources. The freshwater mussel Lamellidens marginalis is widely distributed in ponds and large bodies of perennial waters in the Indian sub-continent and well accepted as food all over India. Moreover, ethno-medicinal uses of the flesh of Lamellidens among the rural people to treat hypertension have been documented. Present investigation thus attempts to evaluate the potential of Lamellidens marginalis as functional food. Mussels were collected from freshwater ponds and brought to the laboratory two days before experimentation for acclimatization in laboratory conditions. Shells were removed and fleshes were preserved at- 20oC until analysis. Tissue homogenate was prepared for proximate studies. Fatty acids and amino acids composition were analyzed. Vitamins, Minerals and Heavy metal contents were also studied. Mussel Protein hydrolysate was prepared using Alcalase 2.4 L and degree of hydrolysis was evaluated to analyze its Functional properties. Ferric Reducing Antioxidant Power (FRAP) and DPPH Antioxidant assays were performed. Anti-hypertensive property was evaluated by measuring Angiotensin Converting Enzyme (ACE) inhibition assay. Proximate analysis indicates that mussel meat contains moderate amount of protein (8.30±0.67%), carbohydrate (8.01±0.38%) and reducing sugar (4.75±0.07%), but less amount of fat (1.02±0.20%). Moisture content is quite high but ash content is very low. Phospholipid content is significantly high (19.43 %). Lipid constitutes, substantial amount of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which have proven prophylactic values. Trace elements are found present in substantial amount. Comparative study of proximate nutrients between Labeo rohita, Lamellidens and cow’s milk indicates that mussel meat can be used as complementary food source. Functionality analyses of protein hydrolysate show increase in Fat absorption, Emulsification, Foaming capacity and Protein solubility. Progressive anti-oxidant and anti-hypertensive properties have also been documented. Lamellidens marginalis can thus be regarded as a functional food source as this may combine effectively with other food components for providing essential elements to the body. Moreover, mussel protein hydrolysate provides opportunities for utilizing it in various food formulations and pharmaceuticals. The observations presented herein should be viewed as a prelude to what future holds.

Keywords: functional food, functional properties, Lamellidens marginalis, protein hydrolysate

Procedia PDF Downloads 404
11462 GaAs Based Solar Cells: Growth, Fabrication, and Characterization

Authors: Hülya Kuru Mutlu, Mustafa Kulakcı, Uğur Serincan

Abstract:

The sun is one of the latest developments in renewable energy sources, which has a variety of application. Solar energy is the most preferred renewable energy sources because it can be used directly, it protects the environment and it is economic. In this work, we investigated that important parameter of GaAs-based solar cells with respect to the growth temperature. The samples were grown on (100) oriented p-GaAs substrates by solid source Veeco GEN20MC MBE system equipped with Ga, In, Al, Si, Be effusion cells and an Arsenic cracker cell. The structures of the grown samples are presented. After initial oxide desorption, Sample 1 and Sample 2 were grown at about 585°C and 535°C, respectively. From the grown structures, devices were fabricated by using the standard photolithography procedure. Current-voltage measurements were performed at room temperature (RT). It is observed that Sample 1 which was grown at 585°C has higher efficiency and fill factor compared to Sample 2. Hence, it is concluded that the growth temperature of 585°C is more suitable to grow GaAs-based solar cells considering our samples used in this study.

Keywords: molecular beam epitaxy, solar cell, current-voltage measurement, Sun

Procedia PDF Downloads 456