Search results for: time efficient learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27102

Search results for: time efficient learning

26682 A Comparative Study of Twin Delayed Deep Deterministic Policy Gradient and Soft Actor-Critic Algorithms for Robot Exploration and Navigation in Unseen Environments

Authors: Romisaa Ali

Abstract:

This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environmental complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.

Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, custom environment

Procedia PDF Downloads 105
26681 Developing Interactive Media for Piston Engine Lectures to Improve Cadets Learning Outcomes: Literature Study

Authors: Jamaludin Jamaludin, Suparji Suparji, Lilik Anifah, I. Gusti Putu Asto Buditjahjanto, Eppy Yundra

Abstract:

Learning media is an important and main component in the learning process. By using currently available media, cadets still have difficulty understanding how the piston engine works, so they are not able to apply these concepts appropriately. This study aims to examine the development of interactive media for piston engine courses in order to improve student learning outcomes. The research method used is a literature study of several articles, journals and proceedings of interactive media development results from 2010-2020. The results showed that the development of interactive media is needed to support the learning process and influence the cognitive abilities of students. With this interactive media, learning outcomes can be improved and the learning process can be effective.

Keywords: interactive media, learning outcomes, learning process, literature study

Procedia PDF Downloads 154
26680 A Call for Transformative Learning Experiences to Facilitate Student Workforce Diversity Learning in the United States

Authors: Jeanetta D. Sims, Chaunda L. Scott, Hung-Lin Lai, Sarah Neese, Atoya Sims, Angelia Barrera-Medina

Abstract:

Given the call for increased transformative learning experiences and the demand for academia to prepare students to enter workforce diversity careers, this study explores the landscape of workforce diversity learning in the United States. Using a multi-disciplinary syllabi browsing process and a content analysis method, the most prevalent instructional activities being used in workforce-diversity related courses in the United States are identified. In addition, the instructional activities are evaluated based on transformative learning tenants.

Keywords: workforce diversity, workforce diversity learning, transformative learning, diversity education, U. S. workforce diversity, workforce diversity assignments

Procedia PDF Downloads 505
26679 Learning Performance of Sports Education Model Based on Self-Regulated Learning Approach

Authors: Yi-Hsiang Pan, Ching-Hsiang Chen, Wei-Ting Hsu

Abstract:

The purpose of this study was to compare the learning effects of the sports education model (SEM) to those of the traditional teaching model (TTM) in physical education classes in terms of students learning motivation, action control, learning strategies, and learning performance. A quasi-experimental design was utilized in this study, and participants included two physical educators and four classes with a total of 94 students in grades 5 and 6 of elementary schools. Two classes implemented the SEM (n=47, male=24, female=23; age=11.89, SD=0.78) and two classes implemented the TTM (n=47, male=25, female=22, age=11.77; SD=0.66). Data were collected from these participants using a self-report questionnaire (including a learning motivation scale, action control scale, and learning strategy scale) and a game performance assessment instrument, and multivariate analysis of covariance was used to conduct statistical analysis. The findings of the study revealed that the SEM was significantly better than the TTM in promoting students learning motivation, action control, learning strategies, and game performance. It was concluded that the SEM could promote the mechanics of students self-regulated learning process, and thereby improve students movement performance.

Keywords: self-regulated learning theory, learning process, curriculum model, physical education

Procedia PDF Downloads 343
26678 The Impact of Usefulness and Ease of Using Mobile Learning Technology on Faculty Acceptance

Authors: Leena Ahmad Khaleel Alfarani, Maggie McPherson, Neil Morris

Abstract:

Over the last decade, m-learning has been widely accepted and utilized by many western universities. However, Saudi universities face many challenges in utilizing such technology, a central one being to encourage teachers to use such technology. Although there are several factors that affect faculty members’ participation in the adoption of m-learning, this paper focuses merely on two factors, the usefulness and ease of using m-learning. A sample of 279 faculty members in one Saudi university has responded to the online survey. The results of the study have revealed that there is a statistically significant relationship (at the 0.05 level) between both usefulness and ease of using m-learning factors and the intention of teachers to use m-learning currently and in the future.

Keywords: mobile learning, diffusion of innovation theory, technology acceptance, faculty adoption

Procedia PDF Downloads 547
26677 Design of the Ubiquitous Cloud Learning Management System

Authors: Panita Wannapiroon, Noppadon Phumeechanya, Sitthichai Laisema

Abstract:

This study is the research and development which is intended to: 1) design the ubiquitous cloud learning management system and: 2) assess the suitability of the design of the ubiquitous cloud learning management system. Its methods are divided into 2 phases. Phase 1 is the design of the ubiquitous cloud learning management system, phase 2 is the assessment of the suitability of the design the samples used in this study are work done by 25 professionals in the field of Ubiquitous cloud learning management systems and information and communication technology in education selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. The results showed that the ubiquitous cloud learning management system consists of 2 main components which are: 1) the ubiquitous cloud learning management system server (u-Cloud LMS Server) including: cloud repository, cloud information resources, social cloud network, cloud context awareness, cloud communication, cloud collaborative tools, and: 2) the mobile client. The result of the system suitability assessment from the professionals is in the highest range.

Keywords: learning management system, cloud computing, ubiquitous learning, ubiquitous learning management system

Procedia PDF Downloads 523
26676 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 91
26675 Overview on Effectiveness of Learning Contract in Architecture Design Studios

Authors: Badiossadat Hassanpour, Reza Sirjani, Nangkuala Utaberta

Abstract:

The avant-garde educational systems are striving to find a life long learning methods. Different fields and majors have test variety of proposed models, and found their difficulties and strengths. Architecture as a critical stage of education due to its characteristics which are learning by doing and critique based education and evaluation is out of this study procedure. Learning contracts is a new alternative form of evaluation of students’ achievements, while it acts as agreement about learning goals. Obtained results from studies in different fields which confirm its positive impact on students' learning in those fields and positively affected students' motivation and confidence in meeting their own learning needs, prompted us to implement this model in architecture design studio. In this implemented contract to the studio, students were asked to use the existing possibility of contract to have self assessment and examine their professional development to identify whether they are deficient or they would like to develop more expertise. The evidences of this research as well indicate that students feel positive about the learning contract and see it accommodating their individual learning needs.

Keywords: contract (LC), architecture design studio, education, student-centered learning

Procedia PDF Downloads 440
26674 Edmodo and the Three Powerful Strategies to Maximize Students Learning

Authors: Aziz Soubai

Abstract:

The primary issue is that English as foreign language learners don’t use English outside the classroom. The only little exposure is inside the classroom, and that’s not enough to make them good language learners! Edmodo, like the other Learning Management Systems, can be used to encourage students to collaborate with each other and with global classrooms on projects where English is used- Some examples of collaboration with different schools will be mentioned and how the Substitution Augmentation Modification Redefinition (SAMR) model and its stages can be applied in the activities, especially for teachers who are hesitant to introduce technology or don’t have a lot of technical knowledge. There will also be some focus on Edmodo groups and on how flipped and blended learning can be used as an extension for classroom time and to help the teacher address language problems and improve students’ language skills, especially writing, reading and communication. It is also equally important to use Edmodo badges and certificates for motivating and engaging learners and gamifying the lesson.

Keywords: EFL learners, language classroom-learning management system, edmodo, SAMR, language skills

Procedia PDF Downloads 63
26673 Competences for Learning beyond the Academic Context

Authors: Cristina Galván-Fernández

Abstract:

Students differentiate the different contexts of their lives as well as employment, hobbies or studies. In higher education is needed to transfer the experiential knowledge to theory and viceversa. However, is difficult to achieve than students use their personal experiences and social readings for get the learning evidences. In an experience with 178 education students from Chile and Spain we have used an e-portfolio system and a methodology for 4 years with the aims of help them to: 1) self-regulate their learning process and 2) use social networks and professional experiences for make the learning evidences. These two objectives have been controlled by interviews to the same students in different moments and two questionnaires. The results of this study show that students recognize the ownership of their learning and progress in planning and reflection of their own learning.

Keywords: competences, e-portfolio, higher education, self-regulation

Procedia PDF Downloads 301
26672 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: data estimation, link data, machine learning, road network

Procedia PDF Downloads 510
26671 20 Definitions in 20 Years: Exploring the Evolution of Blended Learning Definitions from 2003-2022

Authors: Damian Gordon, Paul Doyle, Anna Becevel, Tina Baloh

Abstract:

The goal of this research is to explore the evolution of the concept of “blended learning” over a twenty-year period, to see whether or not the conceptualization has remained consistent or if it has become either more specific or more general. To achieve this goal, the term “blended learning” (and variations) was searched for in various bibliographical repositories for each year 2003-2022 to locate a highly cited paper that is not behind a paywall, to locate unique definitions that would be freely available to all academics each year. Each of the twenty unique definitions is explored to identify how they categorize both the Classroom Component and the Computer Component of blended learning, as well as identify which discipline each definition originates from and which country it comes from to see if there are any significant geographical variations. Based on this analysis, trends that appear in the definitions are noted, as well as an overall interpretation of the notion of “Blended Learning.”

Keywords: blended learning, definitions of blended learning, e-learning, thematic searches

Procedia PDF Downloads 130
26670 The Impact of E-Learning on Medication Administration of Nursing Students

Authors: Z. Karakus, Z. Ozer

Abstract:

Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement, or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery, and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.

Keywords: e-learning, medication administration, nursing, nursing students

Procedia PDF Downloads 255
26669 The Potentials of Online Learning and the Challenges towards Its Adoption in Nigeria's Higher Institutions of Learning

Authors: Kuliya Muhammed

Abstract:

This paper examines the potentials of online learning and the challenges to its adoption in Nigeria’s higher institutions of learning. The research would assist in tackling the challenges of online learning adoption and enlighten institutions on the numerous benefits of online learning in Nigeria. The researcher used survey method for the study and questionnaires were used to obtain the needed data from 230 respondents cut across 20 higher institutions in the country. The findings revealed that online learning has the prospect to boost access to learning tools, assist students’ to learn from the comfort of their offices or homes, reduce the cost of learning, and enable individuals to gain self-knowledge. The major challenges in the adoption of e-learning are poor Information and Communication Technology infrastructures, poor internet connectivity where available, lack of Information and Communication Technology background, problem of power supply, lack of commitment by institutions, poor maintenance of Information and Communication Technology tools, inadequate facilities, lack of government funding and fraud. Recommendations were also made at the end of the research work.

Keywords: electronic, ICT, institution, internet, learning, technology

Procedia PDF Downloads 388
26668 An Evaluation of the Trends in Land Values around Institutions of Higher Learning in North Central Nigeria

Authors: Ben Nwokenkwo, Michael M. Eze, Felix Ike

Abstract:

The need to study trends in land values around institutions of higher learning cannot be overemphasized. Numerous studies in Nigeria have investigated the economic, and social influence of the sitting of institutions of higher learning at the micro, meso and macro levels. However, very few studies have evaluated the temporal extent at which such institution influences local land values. Since institutions greatly influence both the physical and environmental aspects of their immediate vicinity, attention must be taken to understand the influence of such changes on land values. This study examines the trend in land values using the Mann-Kendall analysis in order to determine if, between its beginning and end, a monotonic increase, decrease or stability exist in the land values across six institutions of higher learning for the period between 2004 and 2014. Specifically, The analysis was applied to the time series of the price(or value) of the land .The results of this study revealed that land values has either been increasing or remained stabled across all the institution sampled. The study finally recommends measures that can be put in place as counter magnets for land values estimation across institutions of higher learning.

Keywords: influence, land, trend, value

Procedia PDF Downloads 367
26667 LORA: A Learning Outcome Modelling Approach for Higher Education

Authors: Aqeel Zeid, Hasna Anees, Mohamed Adheeb, Mohamed Rifan, Kalpani Manathunga

Abstract:

To achieve constructive alignment in a higher education program, a clear set of learning outcomes must be defined. Traditional learning outcome definition techniques such as Bloom’s taxonomy are not written to be utilized by the student. This might be disadvantageous for students in student-centric learning settings where the students are expected to formulate their own learning strategies. To solve the problem, we propose the learning outcome relation and aggregation (LORA) model. To achieve alignment, we developed learning outcome, assessment, and resource authoring tools which help teachers to tag learning outcomes during creation. A pilot study was conducted with an expert panel consisting of experienced professionals in the education domain to evaluate whether the LORA model and tools present an improvement over the traditional methods. The panel unanimously agreed that the model and tools are beneficial and effective. Moreover, it helped them model learning outcomes in a more student centric and descriptive way.

Keywords: learning design, constructive alignment, Bloom’s taxonomy, learning outcome modelling

Procedia PDF Downloads 188
26666 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 262
26665 Using Educational Gaming as a Blended Learning Tool in South African Education

Authors: Maroonisha Maharajh

Abstract:

Based on the Black Swan and Disruptive Innovation Theories, this study proposes an educational game based learning model within the context of the traditional classroom learning environment. In the proposed model, the perceived e-learning component is decomposed into accessibility, perceived quality and perceived usability within the traditional rural classroom environment. A sample of 92 respondents took part in this study. The results suggest that users’ continuance intention is determined by both economic and grassroots internet accessibility, which in turn is jointly determined by perceived usefulness, information quality, service quality, system quality, perceived ease of use and cognitive absorption of learning.

Keywords: blended learning, flipped classroom, e-learning, gaming

Procedia PDF Downloads 255
26664 Future Education: Changing Paradigms

Authors: Girish Choudhary

Abstract:

Education is in a state of flux. Not only one need to acquire skills in order to cope with a fast changing global world, an explosive growth in technology, on the other hand is providing a new wave of teaching tools - computer aided video instruction, hypermedia, multimedia, CD-ROMs, Internet connections, and collaborative software environments. The emerging technology incorporates the group qualities of interactive, classroom-based learning while providing individual students the flexibility to participate in an educational programme at their own time and place. The technology facilitating self learning also seems to provide a cost effective solution to the dilemma of delivering education to masses. Online education is a unique learning domain that provides for many to many communications as well. The computer conferencing software defines the boundaries of the virtual classroom. The changing paradigm provides access of instruction to a large proportion of society, promises a qualitative change in the quality of learning and echoes a new way of thinking in educational theory that promotes active learning and open new learning approaches. Putting it to practice is challenging and may fundamentally alter the nature of educational institutions. The subsequent part of paper addresses such questions viz. 'Do we need to radically re-engineer the curriculum and foster an alternate set of skills in students?' in the onward journey.

Keywords: on-line education, self learning, energy and power engineering, future education

Procedia PDF Downloads 331
26663 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 392
26662 Experiential Learning for Upholding Entrepreneurship Education: A Case Study from Egypt

Authors: Randa El Bedawy

Abstract:

Exchanging best practices in the scope of entrepreneurship education and the use of experiential learning approaches are growing lately at a very fast pace. Educators should be challenged to promote such a learning approach to bridge the gap between entrepreneurship students and the actual business work environment. The study aims to share best practices, experiences, and knowledge to support entrepreneurship education. The study is exploratory qualitative research based on a case study approach to demonstrate how experiential learning can be used for supporting learning effectiveness in entrepreneurship education through demonstrating a set of fourteen tasks that were used to engage practically the students who were studying a course of entrepreneurship at the American University in Cairo. The study sheds the light on the rational process of using experiential learning to endorse entrepreneurship education through the illustration of each task along with its learning outcomes. The study explores the benefits and obstacles that educators may face when implementing such an experiential approach. The results of the study confirm that developing an experiential learning approach based on constructing a set of well designed practical tasks that complement the overall intended learning outcomes has proven very effective for promoting the students’ learning of entrepreneurship education. However, good preparation for both educators and students is needed primarily to ensure the effective implementation of such an experiential learning approach.

Keywords: business education, entrepreneurship, entrepreneurship education, experiential learning

Procedia PDF Downloads 163
26661 An Innovative Approach to Improve Skills of Students in Qatar University Spending in Virtual Class though LMS

Authors: Mohammad Shahid Jamil

Abstract:

In this study we have investigated students’ learning and satisfaction in one of the course offered in the Foundation Program at Qatar University. We implied innovative teaching methodology that emphasizes on enhancing students’ thinking skills, decision making, and problem solving skills. Some interesting results were found which can be used to further improve the teaching methodology. To make sure the full use of technology in Foundation Program at Qatar University has started implementing new ways of teaching Math course by using Blackboard as an innovative interactive tool to support standard teaching such as Discussion board, Virtual class, and Study plan in My Math Lab “MML”. In MML Study Plan is designed in such a way that the student can improve their skills wherever they face difficulties with in their Homework, Quiz or Test. Discussion board and Virtual Class are collaborative learning tools encourages students to engage outside of class time. These tools are useful to share students’ knowledge and learning experiences, promote independent and active learning and they helps students to improve their critical thinking skills through the learning process.

Keywords: blackboard, discussion board, critical thinking, active learning, independent learning, problem solving

Procedia PDF Downloads 428
26660 The Affordances and Challenges of Online Learning and Teaching for Secondary School Students

Authors: Hahido Samaras

Abstract:

In many cases, especially with the pandemic playing a major role in fast-tracking the growth of the digital industry, online learning has become a necessity or even a standard educational model nowadays, reliably overcoming barriers such as location, time and cost and frequently combined with a face-to-face format (e.g., in blended learning). This being the case, it is evident that students in many parts of the world, as well as their parents, will increasingly need to become aware of the pros and cons of online versus traditional courses. This fast-growing mode of learning, accelerated during the years of the pandemic, presents an abundance of exciting options especially matched for a large number of secondary school students in remote places of the world where access to stimulating educational settings and opportunities for a variety of learning alternatives are scarce, adding advantages such as flexibility, affordability, engagement, flow and personalization of the learning experience. However, online learning can also present several challenges, such as a lack of student motivation and social interactions in natural settings, digital literacy, and technical issues, to name a few. Therefore, educational researchers will need to conduct further studies focusing on the benefits and weaknesses of online learning vs. traditional learning, while instructional designers propose ways of enhancing student motivation and engagement in virtual environments. Similarly, teachers will be required to become more and more technology-capable, at the same time developing their knowledge about their students’ particular characteristics and needs so as to match them with the affordances the technology offers. And, of course, schools, education programs, and policymakers will have to invest in powerful tools and advanced courses for online instruction. By developing digital courses that incorporate intentional opportunities for community-building and interaction in the learning environment, as well as taking care to include built-in design principles and strategies that align learning outcomes with learning assignments, activities, and assessment practices, rewarding academic experiences can derive for all students. This paper raises various issues regarding the effectiveness of online learning on students by reviewing a large number of research studies related to the usefulness and impact of online learning following the COVID-19-induced digital education shift. It also discusses what students, teachers, decision-makers, and parents have reported about this mode of learning to date. Best practices are proposed for parties involved in the development of online learning materials, particularly for secondary school students, as there is a need for educators and developers to be increasingly concerned about the impact of virtual learning environments on student learning and wellbeing.

Keywords: blended learning, online learning, secondary schools, virtual environments

Procedia PDF Downloads 100
26659 Computerized Cognitive Training and Psychological Resiliency among Adolescents with Learning Disabilities

Authors: Verd Shomrom, Gilat Trabelsi

Abstract:

The goal of the study was to examine the effects of Computerized Cognitive Training (CCT) with and without cognitive mediation on Executive Function (EF) (planning and self- regulation) and on psychological resiliency among adolescents with Attention Deficits Hyperactive Disorder (ADHD) with or without Learning Disabilities (LD). Adolescents diagnosed with Attention Deficit Disorder and / or Learning Disabilities have multidimensional impairments that result from neurological damage. This work explored the possibility of influencing cognitive aspects in the field of Executive Functions (specifically: patterns of planning and self-regulation) among adolescents with a diagnosis of Attention Deficit Disorder and / or Learning Disabilities who study for a 10-12 grades. 46 adolescents with ADHD and/or with LD were randomly applied to experimental and control groups. All the participants were tested (BRC- research version, Resiliency quaternaries) before and after the intervention: mediated/ non-mediated Computerized Cognitive Training (MINDRI). The results indicated significant effects of cognitive modification in the experimental group, between pre and post Phases, in comparison to control group, especially in self- regulation (BRC- research version, Resiliency quaternaries), and on process analysis of Computerized Cognitive Training (MINDRI). The main conclusion was that even short- term mediation synchronized with CCT could greatly enhance the performance of executive functions demands. Theoretical implications for the positive effects of MLE in combination with CCT indicate the ability for cognitive change. The practical implication is the awareness and understanding of efficient intervention processes to enhance EF, learning awareness, resiliency and self-esteem of adolescents in their academic and daily routine.

Keywords: attention deficits hyperactive disorder, computerized cognitive training, executive function, mediated learning experience, learning disabilities

Procedia PDF Downloads 154
26658 Integrating Wound Location Data with Deep Learning for Improved Wound Classification

Authors: Mouli Banga, Chaya Ravindra

Abstract:

Wound classification is a crucial step in wound diagnosis. An effective classifier can aid wound specialists in identifying wound types with reduced financial and time investments, facilitating the determination of optimal treatment procedures. This study presents a deep neural network-based classifier that leverages wound images and their corresponding locations to categorize wounds into various classes, such as diabetic, pressure, surgical, and venous ulcers. By incorporating a developed body map, the process of tagging wound locations is significantly enhanced, providing healthcare specialists with a more efficient tool for wound analysis. We conducted a comparative analysis between two prominent convolutional neural network models, ResNet50 and MobileNetV2, utilizing a dataset of 730 images. Our findings reveal that the RestNet50 outperforms MovileNetV2, achieving an accuracy of approximately 90%, compared to MobileNetV2’s 83%. This disparity highlights the superior capability of ResNet50 in the context of this dataset. The results underscore the potential of integrating deep learning with spatial data to improve the precision and efficiency of wound diagnosis, ultimately contributing to better patient outcomes and reducing healthcare costs.

Keywords: wound classification, MobileNetV2, ResNet50, multimodel

Procedia PDF Downloads 35
26657 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model

Authors: Yolina A. Petrova, Georgi I. Petkov

Abstract:

The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.

Keywords: analogy-making, categorization, category learning, cognitive modeling, role-governed categories

Procedia PDF Downloads 143
26656 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals

Authors: Linghui Meng, James Atlas, Deborah Munro

Abstract:

There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.

Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers

Procedia PDF Downloads 38
26655 A Serious Game to Upgrade the Learning of Organizational Skills in Nursing Schools

Authors: Benoit Landi, Hervé Pingaud, Jean-Benoit Culie, Michel Galaup

Abstract:

Serious games have been widely disseminated in the field of digital learning. They have proved their utility in improving skills through virtual environments that simulate the field where new competencies have to be improved and assessed. This paper describes how we created CLONE, a serious game whose purpose is to help nurses create an efficient work plan in a hospital care unit. In CLONE, the number of patients to take care of is similar to the reality of their job, going far beyond what is currently practiced in nurse school classrooms. This similarity with the operational field increases proportionally the number of activities to be scheduled. Moreover, very often, the team of nurses is composed of regular nurses and nurse assistants that must share the work with respect to the regulatory obligations. Therefore, on the one hand, building a short-term planning is a complex task with a large amount of data to deal with, and on the other, good clinical practices have to be systematically applied. We present how reference planning has been defined by addressing an optimization problem formulation using the expertise of teachers. This formulation ensures the gameplay feasibility for the scenario that has been produced and enhanced throughout the game design process. It was also crucial to steer a player toward a specific gaming strategy. As one of our most important learning outcomes is a clear understanding of the workload concept, its factual calculation for each caregiver along time and its inclusion in the nurse reasoning during planning elaboration are focal points. We will demonstrate how to modify the game scenario to create a digital environment in which these somewhat abstract principles can be understood and applied. Finally, we give input on an experience we had on a pilot of a thousand undergraduate nursing students.

Keywords: care planning, workload, game design, hospital nurse, organizational skills, digital learning, serious game

Procedia PDF Downloads 191
26654 A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process

Authors: Kai Chen, Shuguang Cui, Feng Yin

Abstract:

Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP.

Keywords: Gaussian process, spectral mixture, non-stationary, convolution

Procedia PDF Downloads 196
26653 Perceptions of Higher Education Online Learning Faculty in Lebanon

Authors: Noha Hamie Haidar

Abstract:

The purpose of this case study was to explore faculty attitudes toward online learning in a Lebanese Higher Education Institution (HEI). The research problem addressed the disinterest among faculty at the Arts, Sciences, and Technology University of Lebanon (AUL) in enhancing learning using online technology. The research questions for the study examined the attitudes of the faculty toward applying online learning and the extent of the faculty readiness to adopt this technological change. A qualitative case study design was used that employed multiple sources of information including semi-structured interviews and existing literature. The target population was AUL faculty including full-time instructors and administration (n=25). Data analysis was guided by the lens of Kanter’s theoretical approach, which focused on faculty’s awareness, desire, knowledge, ability, and reinforcement model (ADKAR) for adopting change. Key findings indicated negative impressions concerning online learning such as authority (ministry of education, culture, and rules); and change (increased enrollment and different teaching styles). Yet, within AUL’s academic environment, the opportunity for the adoption of online learning was identified; faculty showed positive elements, such as the competitive advantage to first enter the Lebanese Market, and higher student enrollment. These results may encourage AUL’s faculty to adopt online learning and to achieve a positive social change by expanding the ability of students in HEIs to compete globally.

Keywords: faculty, higher education, technology, online learning

Procedia PDF Downloads 408