Search results for: rehabilitation robots
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1072

Search results for: rehabilitation robots

652 Amyloid Angiopathy and Golf: Two Opposite but Close Worlds

Authors: Andrea Bertocchi, Alessio Barnaba Di Fonzo, Davide Talarico, Simone Rivaroli, Jeff Konin

Abstract:

The patient is a 89 years old male (180cm/85kg) retired notary former golfer with no past medical history. He describes a progressive ideomotor slowdown for 14 months. The disorder is characterized by short-term memory deficits and, for some months, also by unstable walking with a broad base with skidding and risk of falling at directional changes and urinary urgency. There were also episodes of aggression towards his wife and staff. At the time, the patient takes no prescribed medications. He has difficulty eating, dressing, and some problems with personal hygiene. In the initial visit, the patient was alert, cooperating, and performed simple tasks; however, he has a hearing impairment, slowed spontaneous speech, and amnestic deficit to the short story. Ideomotor apraxia is not present. He scored 20 points in the MMSE. From a motor function, he has deficits using Medical Research Council (MRC) 3-/5 in bilateral lower limbs and requires maximum assistance from sit to stand with existing premature fatigue. He’s unable to walk for about 1 month. Tremors and hypertonia are absent. BERG was unable to be administered, and BARTHEL was obtained 45/100. An Amyloid Angiopathy is suspected and then confirmed at the neurological examination. Therehabilitation objectives were the recovery of mobility and reinforcement of the UE/LE, especially legs, for recovery of standing and walking. The cognitive aspect was also an essential factor for the patient's recovery. The literature doesn’t demonstrate any particular studies regarding motor and cognitive rehabilitation on this pathology. Failing to manage his attention on exercise and tending to be disinterested and falling asleep constantly, we used golf-specific gestures to stimulate his mind to work and get results because the patient has memory recall of golf related movement. We worked for 4 months with a frequency of 3 sessions per week. Every session lasted for 45 minutes. After 4 months of work, the patient walked independently with the use of a stick for about 120 meters without stopping. MRC 4/5 AI bilaterally andpostural steps performed independently with supervision. BERG 36/56. BARTHEL 65/100. 6 Minutes Walking Test (6MWT), at the beginning, it wasn’t measurable, now, he performs 151,5m with Numeric Rating Scale 4 at the beginning and 7 at the end. Cognitively, he no longer has episodes of aggression, although the short-term memory and concentration deficit remains. Amyloid Angiopathy is a mix of motor and cognitive disorder. It is worth the thought that cerebral amyloid angiopathy manifests with functional deficits due to strokes and bleedings and, as such, has an important rehabilitation indication, as classical stroke is not associated with amyloidosis. Exploring the motor patterns learned at a young age and remained in the implicit and explicit memory of the patient allowed us to set up effective work and to obtain significant results in the short-middle term. Surely many studies will still be done regarding this pathology and its rehabilitation, but the importance of the cognitive sphere applied to the motor sphere could represent an important starting point.

Keywords: amyloid angiopathy, cognitive rehabilitation, golf, motor disorder

Procedia PDF Downloads 105
651 Film Review of 'Heroic Saviours and Survivors': The Representation of Sex Trafficking in Popular Films in India

Authors: Nisha James, Shubha Ranganathan

Abstract:

One of the most poignant forms of organized crime against women, which has rarely made it to the world of Indian cinema, is that of sex trafficking, i.e. the forcible involvement of women in the sex trade through fraud or coercion (Hughes, 2005). In the space of Indian cinema, much of the spotlight has been on the sensational drug trafficking and gang mafia of Bombay. During our research on sex trafficking, the rehabilitated women interviewed often expressed strong criticism about mass media’s naive portrayal of prostitutes as money-minting, happy and sexually driven women. They argued that this unrealistic portrayal ignored the fact that this was not a reality for the majority of trafficked women. Given the gravity of sex trafficking as a human rights issue, it is, therefore, refreshing to see three recent films on sex trafficking in Indian Languages – Naa Bangaaru Talli (2014, Telugu), Mardaani (2014, Hindi) and Lakshmi (2014, Hindi). This paper reviews these three films to explore the portrayal of the everyday reality of trafficking for women. Film analysis was used to understand the representation of psychological issues in the media. The strength of these movies starts with their inspirations which are of true stories and that they are all aimed at bringing awareness about the issue of sex trafficking, which is a rising social evil in Indian society though none of the three films move to portray the next phase of rehabilitation and reintegration of victims, which is a very complex and important process in the life of a survivor. According to findings, survivors of sex trafficking find the rehabilitation and reintegration into society to be a slow and tough part of their life as they continuously face stigma and social exclusion and have to strive to live against all odds of non-acceptance starting from their family.

Keywords: film review, Indian films, sex trafficking, survivors

Procedia PDF Downloads 419
650 Applying Sliding Autonomy for a Human-Robot Team on USARSim

Authors: Fang Tang, Jacob Longazo

Abstract:

This paper describes a sliding autonomy approach for coordinating a team of robots to assist the human operator to accomplish tasks while adapting to new or unexpected situations by requesting help from the human operator. While sliding autonomy has been well studied in the context of controlling a single robot. Much work needs to be done to apply sliding autonomy to a multi-robot team, especially human-robot team. Our approach aims at a hierarchical sliding control structure, with components that support human-robot collaboration. We validated our approach in the USARSim simulation and demonstrated that the human-robot team's overall performance can be improved under the sliding autonomy control.

Keywords: sliding autonomy, multi-robot team, human-robot collaboration, USARSim

Procedia PDF Downloads 527
649 The Role of Cornulaca aucheri in Stabilization of Degraded Sandy Soil in Kuwait

Authors: Modi M. Ahmed, Noor Al-Dousari, Ali M. Al-Dousari

Abstract:

Cornulaca aucheri is an annual herb consider as disturbance indicator currently visible and widely distributed in disturbed lands in Liyah area. Such area is suffered from severe land degradation due to multiple interacting factors such as, overgrazing, gravel and sand quarrying, military activities and natural process. The restoration program is applied after refilled quarries sites and levelled the surface irregularities in order to rehabilitate the natural vegetation and wildlife to its original shape. During the past 10 years of rehabilitation, noticeable greenery healthy cover of Cornulaca sp. are shown specially around artificial lake and playas. The existence of such species in high density it means that restoration program has succeeded and transit from bare ground state to Cornulaca and annual forb state. This state is lower state of Range State Transition Succession model, but it is better than bare soil. Cornulaca spp is native desert plant grows in arid conditions on sandy, stony ground, near oasis, on sand dunes and in sandy depressions. The sheep and goats are repulsive of it. Despite its spiny leaves, it provides good grazing for camels and is said to increase the milk supply produced by lactating females. It is about 80 cm tall and has stems that branched from the base with new faster greenery growth in the summer. It shows good environmental potential to be managed as natural types used for the restoration of degraded lands in desert areas.

Keywords: land degradation, range state transition succession model, rehabilitation, restoration program

Procedia PDF Downloads 341
648 Nimbus Radiance Gate Project: Media Architecture in Sacred Space

Authors: Jorge Duarte de Sá

Abstract:

The project presented in this investigation is part of the multidisciplinary field of Architecture and explores an experience in media architecture, integrated in Arts, Science and Technology. The objective of this work is to create a visual experience comprehending Architecture, Media and Art. It is intended to specifically explore the sacred spaces that are losing social, cultural or religious dynamics and insert new Media technologies to create a new generate momentum, testing tools, techniques and methods of implementation. Given an architectural project methodology, it seems essential that 'the location' should be the starting point for the development of this technological apparatus: the church of Santa Clara in Santarém, Portugal emerged as an experimental space for apparatus, presenting itself as both temple and museum. We also aim to address the concept of rehabilitation through media technologies, directed at interventions that may have an impact on energizing spaces. The idea is emphasized on the rehabilitation of spaces that, one way or another, may gain new dynamics after a media intervention. Thus, we intend to affect the play with a sensitive and spiritual character which endemically, sacred spaces have, by exploring a sensitive aspect of the subject and drawing up new ideas for meditation and spiritual reflection. The work is designed primarily as a visual experience that encompasses the space, the object and the subject. It is a media project supported by a dual structure with two transparent screens operating in a holographic screen which will be projecting two images that complement the translucent overlay film, thus making the merger of two projections. The digitally created content reacts to the presence of observers through infrared cameras, placed strategically. The object revives the memory of the altarpiece as an architectural surface, promoting the expansion of messages through the media technologies.

Keywords: architecture, media, sacred, technology

Procedia PDF Downloads 262
647 Advancements in Arthroscopic Surgery Techniques for Anterior Cruciate Ligament (ACL) Reconstruction

Authors: Islam Sherif, Ahmed Ashour, Ahmed Hassan, Hatem Osman

Abstract:

Anterior Cruciate Ligament (ACL) injuries are common among athletes and individuals participating in sports with sudden stops, pivots, and changes in direction. Arthroscopic surgery is the gold standard for ACL reconstruction, aiming to restore knee stability and function. Recent years have witnessed significant advancements in arthroscopic surgery techniques, graft materials, and technological innovations, revolutionizing the field of ACL reconstruction. This presentation delves into the latest advancements in arthroscopic surgery techniques for ACL reconstruction and their potential impact on patient outcomes. Traditionally, autografts from the patellar tendon, hamstring tendon, or quadriceps tendon have been commonly used for ACL reconstruction. However, recent studies have explored the use of allografts, synthetic scaffolds, and tissue-engineered grafts as viable alternatives. This abstract evaluates the benefits and potential drawbacks of each graft type, considering factors such as graft incorporation, strength, and risk of graft failure. Moreover, the application of augmented reality (AR) and virtual reality (VR) technologies in surgical planning and intraoperative navigation has gained traction. AR and VR platforms provide surgeons with detailed 3D anatomical reconstructions of the knee joint, enhancing preoperative visualization and aiding in graft tunnel placement during surgery. We discuss the integration of AR and VR in arthroscopic ACL reconstruction procedures, evaluating their accuracy, cost-effectiveness, and overall impact on surgical outcomes. Beyond graft selection and surgical navigation, patient-specific planning has gained attention in recent research. Advanced imaging techniques, such as MRI-based personalized planning, enable surgeons to tailor ACL reconstruction procedures to each patient's unique anatomy. By accounting for individual variations in the femoral and tibial insertion sites, this personalized approach aims to optimize graft placement and potentially improve postoperative knee kinematics and stability. Furthermore, rehabilitation and postoperative care play a crucial role in the success of ACL reconstruction. This abstract explores novel rehabilitation protocols, emphasizing early mobilization, neuromuscular training, and accelerated recovery strategies. Integrating technology, such as wearable sensors and mobile applications, into postoperative care can facilitate remote monitoring and timely intervention, contributing to enhanced rehabilitation outcomes. In conclusion, this presentation provides an overview of the cutting-edge advancements in arthroscopic surgery techniques for ACL reconstruction. By embracing innovative graft materials, augmented reality, patient-specific planning, and technology-driven rehabilitation, orthopedic surgeons and sports medicine specialists can achieve superior outcomes in ACL injury management. These developments hold great promise for improving the functional outcomes and long-term success rates of ACL reconstruction, benefitting athletes and patients alike.

Keywords: arthroscopic surgery, ACL, autograft, allograft, graft materials, ACL reconstruction, synthetic scaffolds, tissue-engineered graft, virtual reality, augmented reality, surgical planning, intra-operative navigation

Procedia PDF Downloads 73
646 Design of a Low-Cost, Portable, Sensor Device for Longitudinal, At-Home Analysis of Gait and Balance

Authors: Claudia Norambuena, Myissa Weiss, Maria Ruiz Maya, Matthew Straley, Elijah Hammond, Benjamin Chesebrough, David Grow

Abstract:

The purpose of this project is to develop a low-cost, portable sensor device that can be used at home for long-term analysis of gait and balance abnormalities. One area of particular concern involves the asymmetries in movement and balance that can accompany certain types of injuries and/or the associated devices used in the repair and rehabilitation process (e.g. the use of splints and casts) which can often increase chances of falls and additional injuries. This device has the capacity to monitor a patient during the rehabilitation process after injury or operation, increasing the patient’s access to healthcare while decreasing the number of visits to the patient’s clinician. The sensor device may thereby improve the quality of the patient’s care, particularly in rural areas where access to the clinician could be limited, while simultaneously decreasing the overall cost associated with the patient’s care. The device consists of nine interconnected accelerometer/ gyroscope/compass chips (9-DOF IMU, Adafruit, New York, NY). The sensors attach to and are used to determine the orientation and acceleration of the patient’s lower abdomen, C7 vertebra (lower neck), L1 vertebra (middle back), anterior side of each thigh and tibia, and dorsal side of each foot. In addition, pressure sensors are embedded in shoe inserts with one sensor (ESS301, Tekscan, Boston, MA) beneath the heel and three sensors (Interlink 402, Interlink Electronics, Westlake Village, CA) beneath the metatarsal bones of each foot. These sensors measure the distribution of the weight applied to each foot as well as stride duration. A small microntroller (Arduino Mega, Arduino, Ivrea, Italy) is used to collect data from these sensors in a CSV file. MATLAB is then used to analyze the data and output the hip, knee, ankle, and trunk angles projected on the sagittal plane. An open-source program Processing is then used to generate an animation of the patient’s gait. The accuracy of the sensors was validated through comparison to goniometric measurements (±2° error). The sensor device was also shown to have sufficient sensitivity to observe various gait abnormalities. Several patients used the sensor device, and the data collected from each represented the patient’s movements. Further, the sensors were found to have the ability to observe gait abnormalities caused by the addition of a small amount of weight (4.5 - 9.1 kg) to one side of the patient. The user-friendly interface and portability of the sensor device will help to construct a bridge between patients and their clinicians with fewer necessary inpatient visits.

Keywords: biomedical sensing, gait analysis, outpatient, rehabilitation

Procedia PDF Downloads 268
645 A Proposed Treatment Protocol for the Management of Pars Interarticularis Pathology in Children and Adolescents

Authors: Paul Licina, Emma M. Johnston, David Lisle, Mark Young, Chris Brady

Abstract:

Background: Lumbar pars pathology is a common cause of pain in the growing spine. It can be seen in young athletes participating in at-risk sports and can affect sporting performance and long-term health due to its resistance to traditional management. There is a current lack of consensus of classification and treatment for pars injuries. Previous systems used CT to stage pars defects but could not assess early stress reactions. A modified classification is proposed that considers findings on MRI, significantly improving early treatment guidance. The treatment protocol is designed for patients aged 5 to 19 years. Method: Clinical screening identifies patients with a low, medium, or high index of suspicion for lumbar pars injury using patient age, sport participation and pain characteristics. MRI of the at-risk cohort enables augmentation of existing CT-based classification while avoiding ionising radiation. Patients are classified into five categories based on MRI findings. A type 0 lesion (stress reaction) is present when CT is normal and MRI shows high signal change (HSC) in the pars/pedicle on T2 images. A type 1 lesion represents the ‘early defect’ CT classification. The group previously referred to as a 'progressive stage' defect on CT can be split into 2A and 2B categories. 2As have HSC on MRI, whereas 2Bs do not. This distinction is important with regard to healing potential. Type 3 lesions are terminal stage defects on CT, characterised by pseudarthrosis. MRI shows no HSC. Results: Stress reactions (type 0) and acute fractures (1 and 2a) can heal and are treated in a custom-made hard brace for 12 weeks. It is initially worn 23 hours per day. At three weeks, patients commence basic core rehabilitation. At six weeks, in the absence of pain, the brace is removed for sleeping. Exercises are progressed to positions of daily living. Patients with continued pain remain braced 23 hours per day without exercise progression until becoming symptom-free. At nine weeks, patients commence supervised exercises out of the brace for 30 minutes each day. This allows them to re-learn muscular control without rigid support of the brace. At 12 weeks, bracing ceases and MRI is repeated. For patients with near or complete resolution of bony oedema and healing of any cortical defect, rehabilitation is focused on strength and conditioning and sport-specific exercise for the full return to activity. The length of this final stage is approximately nine weeks but depends on factors such as development and level of sports participation. If significant HSC remains on MRI, CT scan is considered to definitively assess cortical defect healing. For these patients, return to high-risk sports is delayed for up to three months. Chronic defects (2b and 3) cannot heal and are not braced, and rehabilitation follows traditional protocols. Conclusion: Appropriate clinical screening and imaging with MRI can identify pars pathology early. In those with potential for healing, we propose hard bracing and appropriate rehabilitation as part of a multidisciplinary management protocol. The validity of this protocol will be tested in future studies.

Keywords: adolescents, MRI classification, pars interticularis, treatment protocol

Procedia PDF Downloads 137
644 Reductive Control in the Management of Redundant Actuation

Authors: Mkhinini Maher, Knani Jilani

Abstract:

We present in this work the performances of a mobile omnidirectional robot through evaluating its management of the redundancy of actuation. Thus we come to the predictive control implemented. The distribution of the wringer on the robot actions, through the inverse pseudo of Moore-Penrose, corresponds to a -geometric- distribution of efforts. We will show that the load on vehicle wheels would not be equi-distributed in terms of wheels configuration and of robot movement. Thus, the threshold of sliding is not the same for the three wheels of the vehicle. We suggest exploiting the redundancy of actuation to reduce the risk of wheels sliding and to ameliorate, thereby, its accuracy of displacement. This kind of approach was the subject of study for the legged robots.

Keywords: mobile robot, actuation, redundancy, omnidirectional, inverse pseudo moore-penrose, reductive control

Procedia PDF Downloads 491
643 Two Spherical Three Degrees of Freedom Parallel Robots 3-RCC and 3-RRS Static Analysis

Authors: Alireza Abbasi Moshaii, Shaghayegh Nasiri, Mehdi Tale Masouleh

Abstract:

The main purpose of this study is static analysis of two three-degree of freedom parallel mechanisms: 3-RCC and 3-RRS. Geometry of these mechanisms is expressed and static equilibrium equations are derived for the whole chains. For these mechanisms due to the equal number of equations and unknowns, the solution is as same as 3-RCC mechanism. Mathematical software is used to solve the equations. In order to prove the results obtained from solving the equations of mechanisms, their CAD model has been simulated and their static is analysed in ADAMS software. Due to symmetrical geometry of the mechanisms, the force and external torque acting on the end-effecter have been considered asymmetric to prove the generality of the solution method. Finally, the results of both softwares, for both mechanisms are extracted and compared as graphs. The good achieved comparison between the results indicates the accuracy of the analysis.

Keywords: robotic, static analysis, 3-RCC, 3-RRS

Procedia PDF Downloads 366
642 Design and Construction of a Home-Based, Patient-Led, Therapeutic, Post-Stroke Recovery System Using Iterative Learning Control

Authors: Marco Frieslaar, Bing Chu, Eric Rogers

Abstract:

Stroke is a devastating illness that is the second biggest cause of death in the world (after heart disease). Where it does not kill, it leaves survivors with debilitating sensory and physical impairments that not only seriously harm their quality of life, but also cause a high incidence of severe depression. It is widely accepted that early intervention is essential for recovery, but current rehabilitation techniques largely favor hospital-based therapies which have restricted access, expensive and specialist equipment and tend to side-step the emotional challenges. In addition, there is insufficient funding available to provide the long-term assistance that is required. As a consequence, recovery rates are poor. The relatively unexplored solution is to develop therapies that can be harnessed in the home and are formulated from technologies that already exist in everyday life. This would empower individuals to take control of their own improvement and provide choice in terms of when and where they feel best able to undertake their own healing. This research seeks to identify how effective post-stroke, rehabilitation therapy can be applied to upper limb mobility, within the physical context of a home rather than a hospital. This is being achieved through the design and construction of an automation scheme, based on iterative learning control and the Riener muscle model, that has the ability to adapt to the user and react to their level of fatigue and provide tangible physical recovery. It utilizes a SMART Phone and laptop to construct an iterative learning control (ILC) system, that monitors upper arm movement in three dimensions, as a series of exercises are undertaken. The equipment generates functional electrical stimulation to assist in muscle activation and thus improve directional accuracy. In addition, it monitors speed, accuracy, areas of motion weakness and similar parameters to create a performance index that can be compared over time and extrapolated to establish an independent and objective assessment scheme, plus an approximate estimation of predicted final outcome. To further extend its assessment capabilities, nerve conduction velocity readings are taken by the software, between the shoulder and hand muscles. This is utilized to measure the speed of response of neuron signal transfer along the arm and over time, an online indication of regeneration levels can be obtained. This will prove whether or not sufficient training intensity is being achieved even before perceivable movement dexterity is observed. The device also provides the option to connect to other users, via the internet, so that the patient can avoid feelings of isolation and can undertake movement exercises together with others in a similar position. This should create benefits not only for the encouragement of rehabilitation participation, but also an emotional support network potential. It is intended that this approach will extend the availability of stroke recovery options, enable ease of access at a low cost, reduce susceptibility to depression and through these endeavors, enhance the overall recovery success rate.

Keywords: home-based therapy, iterative learning control, Riener muscle model, SMART phone, stroke rehabilitation

Procedia PDF Downloads 248
641 An Exploratory Study of the Effects of Head Movement on Engagement within a Telepresence Environment

Authors: B. S. Bamoallem, A. J. Wodehouse, G. M. Mair

Abstract:

Communication takes place not only through speech, but also by means of gestures such as facial expressions, gaze, head movements, hand movements and body posture, and though there has been rapid development, communication platforms still lack this type of behavior. We believe communication platforms need to fully achieve this verbal and non-verbal behavior in order to make interactions more engaging and more efficient. In this study we decided to focus our research on the head rather than any other body part as it is a rich source of information for speech-related movement Thus we aim to investigate the value of incorporating head movements into the use of telepresence robots as communication platforms; this will be done by investigating a system that reproduces head movement manually as closely as possible.

Keywords: engagement, nonverbal behaviours, head movements, face-to-face interaction, telepresence robot

Procedia PDF Downloads 442
640 Interoperable Platform for Internet of Things at Home Applications

Authors: Fabiano Amorim Vaz, Camila Gonzaga de Araujo

Abstract:

With the growing number of personal devices such as smartphones, tablets, smart watches, among others, in addition to recent devices designed for IoT, it is observed that residential environment has potential to generate important information about our daily lives. Therefore, this work is focused on showing and evaluating a system that integrates all these technologies considering the context of a smart house. To achieve this, we define an architecture capable of supporting the amount of data generated and consumed at a residence and, mainly, the variety of this data presents. We organize it in a particular cloud containing information about robots, recreational vehicles, weather, in addition to data from the house, such as lighting, energy, security, among others. The proposed architecture can be extrapolated to various scenarios and applications. Through the core of this work, we can define new functionality for residences integrating them with more resources.

Keywords: cloud computing, IoT, robotics, smart house

Procedia PDF Downloads 355
639 Neuron-Based Control Mechanisms for a Robotic Arm and Hand

Authors: Nishant Singh, Christian Huyck, Vaibhav Gandhi, Alexander Jones

Abstract:

A robotic arm and hand controlled by simulated neurons is presented. The robot makes use of a biological neuron simulator using a point neural model. The neurons and synapses are organised to create a finite state automaton including neural inputs from sensors, and outputs to effectors. The robot performs a simple pick-and-place task. This work is a proof of concept study for a longer term approach. It is hoped that further work will lead to more effective and flexible robots. As another benefit, it is hoped that further work will also lead to a better understanding of human and other animal neural processing, particularly for physical motion. This is a multidisciplinary approach combining cognitive neuroscience, robotics, and psychology.

Keywords: cell assembly, force sensitive resistor, robot, spiking neuron

Procedia PDF Downloads 334
638 Comparing the Knee Kinetics and Kinematics during Non-Steady Movements in Recovered Anterior Cruciate Ligament Injured Badminton Players against an Uninjured Cohort: Case-Control Study

Authors: Anuj Pathare, Aleksandra Birn-Jeffery

Abstract:

Background: The Anterior Cruciate Ligament(ACL) helps stabilize the knee joint minimizing tibial anterior translation. Anterior Cruciate Ligament (ACL) injury is common in racquet sports and often occurs due to sudden acceleration, deceleration or changes of direction. This mechanism in badminton most commonly occurs during landing after an overhead stroke. Knee biomechanics during dynamic movements such as walking, running and stair negotiation, do not return to normal for more than a year after an ACL reconstruction. This change in the biomechanics may lead to re-injury whilst performing non-steady movements during sports, where these injuries are most prevalent. Aims: To compare if the knee kinetics and kinematics in ACL injury recovered athletes return to the same level as those from an uninjured cohort during standard movements used for clinical assessment and badminton shots. Objectives: The objectives of the study were to determine: Knee valgus during the single leg squat, vertical drop jump, net shot and drop shot; Degree of internal or external rotation during the single leg squat, vertical drop jump, net shot and drop shot; Maximum knee flexion during the single leg squat, vertical drop jump and net shot. Methods: This case-control study included 14 participants with three ACL injury recovered athletes and 11 uninjured participants. The participants performed various functional tasks including vertical drop jump, single leg squat; the forehand net shot and the forehand drop shot. The data was analysed using the two-way ANOVA test, and the reliability of the data was evaluated using the Intra Class Coefficient. Results: The data showed a significant decrease in the range of knee rotation in ACL injured participants as compared to the uninjured cohort (F₇,₅₅₆=2.37; p=0.021). There was also a decrease in the maximum knee flexion angles and an increase in knee valgus angles in ACL injured participants although they were not statistically significant. Conclusion: There was a significant decrease in the knee rotation angles in the ACL injured participants which could be a potential cause for re-injury in these athletes in the future. Although the results for decrease in maximum knee flexion angles and increase in knee valgus angles were not significant, this may be due to a limited sample of ACL injured participants; there is potential for it to be identified as a variable of interest in the rehabilitation of ACL injuries. These changes in the knee biomechanics could be vital in the rehabilitation of ACL injured athletes in the future, and an inclusion of sports based tasks, e.g., Net shot along with standard protocol movements for ACL assessment would provide a better measure of the rehabilitation of the athlete.

Keywords: ACL, biomechanics, knee injury, racquet sport

Procedia PDF Downloads 158
637 Pixel Façade: An Idea for Programmable Building Skin

Authors: H. Jamili, S. Shakiba

Abstract:

Today, one of the main concerns of human beings is facing the unpleasant changes of the environment. Buildings are responsible for a significant amount of natural resources consumption and carbon emissions production. In such a situation, this thought comes to mind that changing each building into a phenomenon of benefit to the environment. A change in a way that each building functions as an element that supports the environment, and construction, in addition to answering the need of humans, is encouraged, the way planting a tree is, and it is no longer seen as a threat to alive beings and the planet. Prospect: Today, different ideas of developing materials that can smartly function are realizing. For instance, Programmable Materials, which in different conditions, can respond appropriately to the situation and have features of modification in shape, size, physical properties and restoration, and repair quality. Studies are to progress having this purpose to plan for these materials in a way that they are easily available, and to meet this aim, there is no need to use expensive materials and high technologies. In these cases, physical attributes of materials undertake the role of sensors, wires and actuators then materials will become into robots itself. In fact, we experience robotics without robots. In recent decades, AI and technology advances have dramatically improving the performance of materials. These achievements are a combination of software optimizations and physical productions such as multi-materials 3D printing. These capabilities enable us to program materials in order to change shape, appearance, and physical properties to interact with different situations. nIt is expected that further achievements like Memory Materials and Self-learning Materials are also added to the Smart Materials family, which are affordable, available, and of use for a variety of applications and industries. From the architectural standpoint, the building skin is significantly considered in this research, concerning the noticeable surface area the buildings skin have in urban space. The purpose of this research would be finding a way that the programmable materials be used in building skin with the aim of having an effective and positive interaction. A Pixel Façade would be a solution for programming a building skin. The Pixel Facadeincludes components that contain a series of attributes that help buildings for their needs upon their environmental criteria. A PIXEL contains series of smart materials and digital controllers together. It not only benefits its physical properties, such as control the amount of sunlight and heat, but it enhances building performance by providing a list of features, depending on situation criteria. The features will vary depending on locations and have a different function during the daytime and different seasons. The primary role of a PIXEL FAÇADE can be defined as filtering pollutions (for inside and outside of the buildings) and providing clean energy as well as interacting with other PIXEL FACADES to estimate better reactions.

Keywords: building skin, environmental crisis, pixel facade, programmable materials, smart materials

Procedia PDF Downloads 79
636 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar

Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto

Abstract:

Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.

Keywords: block caving, ground penetrating radar, reflectivity, RQD

Procedia PDF Downloads 120
635 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation

Authors: Ali Ashtiani, Hamid Shirazi

Abstract:

This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.

Keywords: airport pavement management, crack density, pavement evaluation, pavement management

Procedia PDF Downloads 175
634 Sociological Analysis on Prisoners; with Special Reference to Prisoners of Death Penalty and Life Imprisonment in Sri Lanka

Authors: Wasantha Subasinghe

Abstract:

Crimes are one of big social problems in Sri Lanka. Crimes can be seen as simply way as an activity that against for the society or public law. There are offences in minor crimes and grave crimes including murder, rape, trafficking, robbery, excise, narcotic, kidnapping and so on. There are various forms of punishment such as bailing, fining, and prisoning to the death penalty. Death penalty contains the killing of an offender for an offense. There are 23 prison institutions in Sri Lanka including 03 closed prisoners and 20 remand prisons. There are 10 work camps, 02 open prison camps, 01 training school for youthful offenders and 02 correctional centers for youthful offenders. Capital punishment is legal in Sri Lanka as many other countries as India, Japan, Bangladesh, Iran and Iraq so on. When compared unconvicted prisoners from 2006-2010 there is an increase. It was 89190 in 2006 and it was 100191 in 2010. There were 28732 of convicted prisoners and it was 32128 in 2010. There were 165 Death sentences in 2006 and it was 96 in 2010. There are 540 individuals had been sentenced to death. The death penalty has not been implemented in Sri Lanka since 1976. Research problem: What are the feelings of prisoners as waiting for death?’ Objectives of the study were identifying prisoners’ point of view on their punishment and root causes for their offence. Case studies were conducted to identify the research problem and data were collected using formal interviews. Research area was Welikada prison. Stratified sampling method in probability samplings was used. Sample size was 20 cases from death penalty and life in prison prisoners and 20 from other convicted prisoners. Findings revealed causes and feelings them as offenders. They need if death penalty or freedom. Some of them need to convert death sentence to life imprisonment. They are physically and mentally damaged after their imprisonment. Lack of hope and as well as lack of welfare and rehabilitation programs they suffered their lives.

Keywords: death penalty, expectations, life imprisonment, rehabilitation

Procedia PDF Downloads 265
633 The Transformation of the Workplace through Robotics, Artificial Intelligence, and Automation

Authors: Javed Mohammed

Abstract:

Robotics is the fastest growing industry in the world, poised to become the largest in the next decade. The use of robots requires design, application and implementation of the appropriate safety controls in order to avoid creating hazards to production personnel, programmers, maintenance specialists and systems engineers. The increasing use of artificial intelligence (AI) and related technologies in the workplace are dramatically changing the employment landscape. The impact of robotics technology on workplace policy is dramatic and complex. The robotics revolution calls for a comprehensive approach to job training, and retraining, to mitigate worker displacement and enable workers to benefit from the new jobs that the technology will generate. It calls for a thoughtful, forward-thinking approach by lawmakers, regulators and employers to prepare for the oncoming transformation of the workplace and workforce.

Keywords: design, artificial intelligence, programmers, system engineers, robotics, transformation

Procedia PDF Downloads 454
632 Trajectory Planning Algorithms for Autonomous Agricultural Vehicles

Authors: Caner Koc, Dilara Gerdan Koc, Mustafa Vatandas

Abstract:

The fundamental components of autonomous agricultural robot design, such as having a working understanding of coordinates, correctly constructing the desired route, and sensing environmental elements, are the most important. A variety of sensors, hardware, and software are employed by agricultural robots to find these systems.These enable the fully automated driving system of an autonomous vehicle to simulate how a human-driven vehicle would respond to changing environmental conditions. To calculate the vehicle's motion trajectory using data from the sensors, this automation system typically consists of a sophisticated software architecture based on object detection and driving decisions. In this study, the software architecture of an autonomous agricultural vehicle is compared to the trajectory planning techniques.

Keywords: agriculture 5.0, computational intelligence, motion planning, trajectory planning

Procedia PDF Downloads 58
631 Agenesis of the Corpus Callosum: The Role of Neuropsychological Assessment with Implications to Psychosocial Rehabilitation

Authors: Ron Dick, P. S. D. V. Prasadarao, Glenn Coltman

Abstract:

Agenesis of the corpus callosum (ACC) is a failure to develop corpus callosum - the large bundle of fibers of the brain that connects the two cerebral hemispheres. It can occur as a partial or complete absence of the corpus callosum. In the general population, its estimated prevalence rate is 1 in 4000 and a wide range of genetic, infectious, vascular, and toxic causes have been attributed to this heterogeneous condition. The diagnosis of ACC is often achieved by neuroimaging procedures. Though persons with ACC can perform normally on intelligence tests they generally present with a range of neuropsychological and social deficits. The deficit profile is characterized by poor coordination of motor movements, slow reaction time, processing speed and, poor memory. Socially, they present with deficits in communication, language processing, the theory of mind, and interpersonal relationships. The present paper illustrates the role of neuropsychological assessment with implications to psychosocial management in a case of agenesis of the corpus callosum. Method: A 27-year old left handed Caucasian male with a history of ACC was self-referred for a neuropsychological assessment to assist him in his employment options. Parents noted significant difficulties with coordination and balance at an early age of 2-3 years and he was diagnosed with dyspraxia at the age of 14 years. History also indicated visual impairment, hypotonia, poor muscle coordination, and delayed development of motor milestones. MRI scan indicated agenesis of the corpus callosum with ventricular morphology, widely spaced parallel lateral ventricles and mild dilatation of the posterior horns; it also showed colpocephaly—a disproportionate enlargement of the occipital horns of the lateral ventricles which might be affecting his motor abilities and visual defects. The MRI scan ruled out other structural abnormalities or neonatal brain injury. At the time of assessment, the subject presented with such problems as poor coordination, slowed processing speed, poor organizational skills and time management, and difficulty with social cues and facial expressions. A comprehensive neuropsychological assessment was planned and conducted to assist in identifying the current neuropsychological profile to facilitate the formulation of a psychosocial and occupational rehabilitation programme. Results: General intellectual functioning was within the average range and his performance on memory-related tasks was adequate. Significant visuospatial and visuoconstructional deficits were evident across tests; constructional difficulties were seen in tasks such as copying a complex figure, building a tower and manipulating blocks. Poor visual scanning ability and visual motor speed were evident. Socially, the subject reported heightened social anxiety, difficulty in responding to cues in the social environment, and difficulty in developing intimate relationships. Conclusion: Persons with ACC are known to present with specific cognitive deficits and problems in social situations. Findings from the current neuropsychological assessment indicated significant visuospatial difficulties, poor visual scanning and problems in social interactions. His general intellectual functioning was within the average range. Based on the findings from the comprehensive neuropsychological assessment, a structured psychosocial rehabilitation programme was developed and recommended.

Keywords: agenesis, callosum, corpus, neuropsychology, psychosocial, rehabilitation

Procedia PDF Downloads 266
630 A Real-time Classification of Lying Bodies for Care Application of Elderly Patients

Authors: E. Vazquez-Santacruz, M. Gamboa-Zuniga

Abstract:

In this paper, we show a methodology for bodies classification in lying state using HOG descriptors and pressures sensors positioned in a matrix form (14 x 32 sensors) on the surface where bodies lie down. it will be done in real time. Our system is embedded in a care robot that can assist the elderly patient and medical staff around to get a better quality of life in and out of hospitals. Due to current technology a limited number of sensors is used, wich results in low-resolution data array, that will be used as image of 14 x 32 pixels. Our work considers the problem of human posture classification with few information (sensors), applying digital process to expand the original data of the sensors and so get more significant data for the classification, however, this is done with low-cost algorithms to ensure the real-time execution.

Keywords: real-time classification, sensors, robots, health care, elderly patients, artificial intelligence

Procedia PDF Downloads 845
629 Application of Japanese Origami Ball for Floating Multirotor Aerial Robot

Authors: P. H. Le, J. Molina, S. Hirai

Abstract:

In this work, we propose the application of Japanese “Origami” art for a floating function of a small aerial vehicle such as a hexarotor. A preliminary experiment was conducted using Origami magic balls mounted under a hexarotor. This magic ball can expand and shrink using an air pump during free flying. Using this interesting and functional concept, it promises to reduce the resistance of wind as well as reduce the energy consumption when the Origami balls are deflated. This approach can be particularly useful in rescue emergency situations. Furthermore, there are many unexpected reasons that may cause the multi-rotor has to land on the surface of water due to problems with the communication between the aircraft and the ground station. In addition, a complementary experiment was designed to prove that the hexarotor can fly maintaining the stability and also, takes off and lands on the surface of water using air balloons.

Keywords: helicopter, Japanese origami ball, floating, aerial robots, rescue

Procedia PDF Downloads 371
628 An Algorithm for Herding Cows by a Swarm of Quadcopters

Authors: Jeryes Danial, Yosi Ben Asher

Abstract:

Algorithms for controlling a swarm of robots is an active research field, out of which cattle herding is one of the most complex problems to solve. In this paper, we derive an independent herding algorithm that is specifically designed for a swarm of quadcopters. The algorithm works by devising flight trajectories that cause the cows to run-away in the desired direction and hence herd cows that are distributed in a given field towards a common gathering point. Unlike previously proposed swarm herding algorithms, this algorithm does not use a flocking model but rather stars each cow separately. The effectiveness of this algorithm is verified experimentally using a simulator. We use a special set of experiments attempting to demonstrate that the herding times of this algorithm correspond to field diameter small constant regardless of the number of cows in the field. This is an optimal result indicating that the algorithm groups the cows into intermediate groups and herd them as one forming ever closing bigger groups.

Keywords: swarm, independent, distributed, algorithm

Procedia PDF Downloads 161
627 Electromyographic Analysis of Biceps Brachii during Golf Swing and Review of Its Impact on Return to Play Following Tendon Surgery

Authors: Amin Masoumiganjgah, Luke Salmon, Julianne Burnton, Fahimeh Bagheri, Gavin Lenton, S. L. Ezekial Tan

Abstract:

Introduction: The incidence of proximal biceps tenodesis and acute distal biceps repair is increasing, and rehabilitation protocols following both are variable. Golf is a popular sport within Australia, and the Gold Coast has become a Mecca for golfers, with more courses per capita than anywhere else in the world. Currently, there are no clear guidelines regarding return to golf play following biceps procedures. The aim of this study was to determine biceps brachii activation during the golf swing through electromyographic analysis, and subsequently, aid in rehabilitation guidelines and return to golf following tenodesis and repair. Methods: Subjects were amateur golfers with no previous upper limb surgery. Surface electromyography (EMG) and high-speed video recording were used to analyse activation of the left and right biceps brachii and the anterior deltoid during the golf swing. Each participant’s maximum voluntary contraction (MVC) was recorded, and they were then required to hit a golf ball aiming for specific distances of 2, 50, 100 and 150 metres at a driving range. Noraxon myoResearch and Matlab were used for data analysis. Mean % MVC was calculated for leading and trailing arms during the full swing and its’ 4 phases: back-swing, acceleration, early follow-through and late follow-through. Results: 12 golfers (2 female and 10 male), participated in the study. Median age was 27 (25 – 38), with all being right handed. Over all distances, the mean activation of the short and long head of biceps brachii was < 10% through the full swing. When breaking down the 50, 100 and 150m swing into phases, mean MVC activation was lowest in backswing (5.1%), followed by acceleration (9.7%), early follow-through (9.2%), and late follow-through (21.4%). There was more variation and slightly higher activation in the right biceps (trailing arm) in backswing, acceleration, and early follow-through; with higher activation in the leading arm in late follow-through (25.4% leading, 17.3% trailing). 2m putts resulted in low MVC values (3.1% ) with little variation across swing phases. There was considerable individual variation in results – one tense subject averaged 11.0% biceps MVC through the 2m putting stroke and others recorded peak mean MVC biceps activations of 68.9% at 50m, 101.3% at 100m, and 111.3% at 150m. Discussion: Previous studies have investigated the role of rotator cuff, spine, and hip muscles during the golf swing however, to our knowledge, this is the first study that investigates the activation of biceps brachii. Many rehabilitation programs following a biceps tenodesis or repair allow active range against gravity and restrict strengthening exercises until 6 weeks, and this does not appear to be associated with any adverse outcome. Previous studies demonstrate a range of < 10% MVC is similar to the unloaded biceps brachii during walking(1), active elbow flexion with the hand positioned either in pronation or supination will produce MVC < 20% throughout range(2) and elbow flexion with a 4kg dumbbell can produce mean MVC’s of around 40%(3). Our study demonstrates that increasing activation is associated with the leading arm, increasing shot distance and the late follow-through phase. Although the cohort mean MVC of the biceps brachii is <10% through the full swing, variability is high and biceps activation reach peak mean MVC’s of over 100% in different swing phases for some individuals. Given these EMG values, caution is advised when advising patients post biceps procedures to return to long distance golf shots, particularly when the leading arm is involved. Even though it would appear that putting would be as safe as having an unloaded hand out of a sling following biceps procedures, the variability of activation patterns across different golfers would lead us to caution against accelerated golf rehabilitation in those who may be particularly tense golfers. The 50m short iron shot was too long to consider as a chip shot and more work can be done in this area to determine the safety of chipping.

Keywords: electromyographic analysis, biceps brachii rupture, golf swing, tendon surgery

Procedia PDF Downloads 65
626 Modeling and Simulation of the Tripod Gait of a Hexapod Robot

Authors: El Hansali Hasnaa, Bennani Mohammed

Abstract:

Hexapod legged robot’s missions, particularly in irregular and dangerous areas, require high stability and high precision. In this paper, we consider the rectangular architecture body of legged robots with six legs distributed symmetrically along two sides, each leg contains three degrees of freedom for greater mobility. The aim of this work is planning tripod gait trajectory, based on the computing of the kinematic model to determine the joint variables in the lifting and the propelling phases. For this, appropriate coordinate frames are attached to the body and legs in order to obtain clear representation and efficient generation of the system equations. A simulation in MATLAB software platform is developed to confirm the kinematic model and various trajectories to the tripod gait adopted by the hexapod robot in its locomotion.

Keywords: hexapod legged robot, inverse kinematic model, simulation in MATLAB, tripod gait

Procedia PDF Downloads 262
625 The Role of Non-Governmental Organizations in Combating Human Trafficking in South India: An Overview

Authors: Kumudini Achchi

Abstract:

India, being known for its rich cultural values has given a special place to women who are also been victims of humiliation, torture, and exploitation. The major share of Human Trafficking goes to sex trafficking which is recognised as world’s second most huge social evil. The original form of sex trafficking in India is prostitution with and without religious sanction. Today the situation of such women reached as an issue of human rights where they rights are denied severely. This situation demanded intervention to protect them from the exploitative situation. NGO are the proactive initiatives which offer support to the exploited women in sex trade. To understand the intervention programs of NGOs in South India, a study was conducted covering four states and a union territory considering 32 NGOs based on their preparedness to participate in the research study. Descriptive and diagnostic research design was adopted along with interview schedule as a tool for collecting data. The study reveals that these NGOs believes in the possibility of mainstreaming commercially sexually exploited women and found adopted seven different programs in the process such as rescue, rehabilitation, reintegration, prevention, developmental, advocacy and research. Each area involves different programs to reach and prepare the exploited women towards mainstreamed society which has been discussed in the paper. Implementation of these programs is not an easy task for the organizations rather they are facing hardships in the areas such as social, legal, financial, political which are hindering the successful operations. Rescue, advocacy, and research are the least adopted areas by the NGOs because of lack of support as well as knowledge in the area. Rehabilitation stands as the most adopted area in implementation. The paper further deals with the challenges in the implementation of the programs as well as the remedial measures in social work point of view having Indian cultural background.

Keywords: NGOs, commercially sexually exploited women, programmes, South India

Procedia PDF Downloads 238
624 Design of Jumping Structure of Spherical Robot Based on Archimedes' Helix

Authors: Zhang Zijian

Abstract:

Nowadays, spherical robots have played an important role in many fields, but the insufficient ability of obstacle surmounting limits their wider application fields. To solve this problem, a jumping system of a spherical robot is designed based on Archimedes helix. The jumping system of the robot utilizes the characteristics of Archimedes helix and isovelocity helix to achieve constant speed and stable contraction, which ensures the stability of the system. Also, the jumping action of the robot is realized by instantaneous release of elastic potential energy. In order to verify the effectiveness of the jumping system, we designed a spherical robot and its jumping system. The experimental results show that the jumping system has the advantages of light weight, small size, high energy conversion efficiency, and can realize the spherical jumping function.

Keywords: hopping mechanism, Archimedes' Helix, hopping robot, spherical robot

Procedia PDF Downloads 121
623 Experimental and Theoretical Study on Flexural Behaviors of Reinforced Concrete Cement (RCC) Beams by Using Carbonfiber Reinforcedpolymer (CFRP) Laminate as Retrofitting and Rehabilitation Method

Authors: Fils Olivier Kamanzi

Abstract:

This research Paper shows that materials CFRP were used to rehabilitate 9 Beams and retrofitting of 9 Beams with size (125x250x2300) mm each for M50 grade of concrete with 20% of Volume of Cement replaced by GGBS as a mineral Admixture. Superplasticizer (ForscoConplast SP430) used to reduce the water-cement ratio and maintaining good workability of fresh concrete (Slump test 57mm). Concrete Mix ratio 1:1.56:2.66 with a water-cement ratio of 0.31(ACI codebooks). A sample of 6cubes sized (150X150X150) mm, 6cylinders sized (150ФX300H) mm and 6Prisms sized (100X100X500) mm were cast, cured, and tested for 7,14&28days by compressive, tensile and flexure test; finally, mix design reaches the compressive strength of 59.84N/mm2. 21 Beams were cast and cured for up to 28 days, 3Beams were tested by a two-point loading machine as Control beams. 9 Beams were distressed in flexure by adopting failure up to final Yielding point under two-point loading conditions by taking 90% off Ultimate load. Three sets, each composed of three distressed beams, were rehabilitated by using CFRP sheets, one, two & three layers, respectively, and after being retested up to failure mode. Another three sets were freshly retrofitted also by using CFRP sheets one, two & three layers, respectively, and being tested by a two-point load method of compression strength testing machine. The aim of this study is to determine the flexural Strength & behaviors of repaired and retrofitted Beams by CFRP sheets for gaining good strength and considering economic aspects. The results show that rehabilitated beams increase its strength 47 %, 78 % & 89 %, respectively, to thickness of CFRP sheets and 41%, 51 %& 68 %, respectively too, for retrofitted Beams. The conclusion is that three layers of CFRP sheets are the best applicable in repairing and retrofitting the bonded beams method.

Keywords: retrofitting, rehabilitation, cfrp, rcc beam, flexural strength and behaviors, ggbs, and epoxy resin

Procedia PDF Downloads 84