Search results for: model predictive controller
17337 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator
Authors: Kaushikk Iyer, Richard M Hall, David Keeling
Abstract:
Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator
Procedia PDF Downloads 16817336 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus
Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati
Abstract:
Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost
Procedia PDF Downloads 8117335 Damping Function and Dynamic Simulation of GUPFC Using IC-HS Algorithm
Authors: Galu Papy Yuma
Abstract:
This paper presents a new dynamic simulation of a power system consisting of four machines equipped with the Generalized Unified Power Flow Controller (GUPFC) to improve power system stability. The dynamic simulation of the GUPFC consists of one shunt converter and two series converters based on voltage source converter, and DC link capacitor installed in the power system. MATLAB/Simulink is used to arrange the dynamic simulation of the GUPFC, where the power system is simulated in order to investigate the impact of the controller on power system oscillation damping and to show the simulation program reliability. The Improved Chaotic- Harmony Search (IC-HS) Algorithm is used to provide the parameter controller in order to lead-lag compensation design. The results obtained by simulation show that the power system with four machines is suitable for stability analysis. The use of GUPFC and IC-HS Algorithm provides the excellent capability in fast damping of power system oscillations and improve greatly the dynamic stability of the power system.Keywords: GUPFC, IC-HS algorithm, Matlab/Simulink, damping oscillation
Procedia PDF Downloads 44617334 6-Degree-Of-Freedom Spacecraft Motion Planning via Model Predictive Control and Dual Quaternions
Authors: Omer Burak Iskender, Keck Voon Ling, Vincent Dubanchet, Luca Simonini
Abstract:
This paper presents Guidance and Control (G&C) strategy to approach and synchronize with potentially rotating targets. The proposed strategy generates and tracks a safe trajectory for space servicing missions, including tasks like approaching, inspecting, and capturing. The main objective of this paper is to validate the G&C laws using a Hardware-In-the-Loop (HIL) setup with realistic rendezvous and docking equipment. Throughout this work, the assumption of full relative state feedback is relaxed by onboard sensors that bring realistic errors and delays and, while the proposed closed loop approach demonstrates the robustness to the above mentioned challenge. Moreover, G&C blocks are unified via the Model Predictive Control (MPC) paradigm, and the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description. In this work, G&C is formulated as a convex optimization problem where constraints such as thruster limits and the output constraints are explicitly handled. Furthermore, the Monte-Carlo method is used to evaluate the robustness of the proposed method to the initial condition errors, the uncertainty of the target's motion and attitude, and actuator errors. A capture scenario is tested with the robotic test bench that has onboard sensors which estimate the position and orientation of a drifting satellite through camera imagery. Finally, the approach is compared with currently used robust H-infinity controllers and guidance profile provided by the industrial partner. The HIL experiments demonstrate that the proposed strategy is a potential candidate for future space servicing missions because 1) the algorithm is real-time implementable as convex programming offers deterministic convergence properties and guarantee finite time solution, 2) critical physical and output constraints are respected, 3) robustness to sensor errors and uncertainties in the system is proven, 4) couples translational motion with rotational motion.Keywords: dual quaternion, model predictive control, real-time experimental test, rendezvous and docking, spacecraft autonomy, space servicing
Procedia PDF Downloads 14517333 The Predictive Significance of Metastasis Associated in Colon Cancer-1 (MACC1) in Primary Breast Cancer
Authors: Jasminka Mujic, Karin Milde-Langosch, Volkmar Mueller, Mirza Suljagic, Tea Becirevic, Jozo Coric, Daria Ler
Abstract:
MACC1 (metastasis associated in colon cancer-1) is a prognostic biomarker for tumor progression, metastasis, and survival of a variety of solid cancers. MACC1 also causes tumor growth in xenograft models and acts as a master regulator of the HGF/MET signaling pathway. In breast cancer, the expression of MACC1 determined by immunohistochemistry was significantly associated with positive lymph node status and advanced clinical stage. The aim of the present study was to further investigate the prognostic or predictive value of MACC1 expression in breast cancer using western blot analysis and immunohistochemistry. The results of our study have shown that high MACC1 expression in breast cancer is associated with shorter disease-free survival, especially in node-negative tumors. The MACC1 might be a suitable biomarker to select patients with a higher probability of recurrence which might benefit from adjuvant chemotherapy. Our results support a biologic role and potentially open the perspective for the use of MACC1 as predictive biomarker for treatment decision in breast cancer patients.Keywords: breast cancer, biomarker, HGF/MET, MACC1
Procedia PDF Downloads 23117332 Robust Fuzzy PID Stabilizer: Modified Shuffled Frog Leaping Algorithm
Authors: Oveis Abedinia, Noradin Ghadimi, Nasser Mikaeilvand, Roza Poursoleiman, Asghar Poorfaraj
Abstract:
In this paper a robust Fuzzy Proportional Integral Differential (PID) controller is applied to multi-machine power system based on Modified Shuffled Frog Leaping (MSFL) algorithm. This newly proposed controller is more efficient because it copes with oscillations and different operating points. In this strategy the gains of the PID controller is optimized using the proposed technique. The nonlinear problem is formulated as an optimization problem for wide ranges of operating conditions using the MSFL algorithm. The simulation results demonstrate the effectiveness, good robustness and validity of the proposed method through some performance indices such as ITAE and FD under wide ranges operating conditions in comparison with TS and GSA techniques. The single-machine infinite bus system and New England 10-unit 39-bus standard power system are employed to illustrate the performance of the proposed method.Keywords: fuzzy PID, MSFL, multi-machine, low frequency oscillation
Procedia PDF Downloads 42817331 Optimal Tuning of RST Controller Using PSO Optimization for Synchronous Generator Based Wind Turbine under Three-Phase Voltage Dips
Authors: K. Tahir, C. Belfedal, T. Allaoui, C. Gerard, M. Doumi
Abstract:
In this paper, we presented an optimized RST controller using Particle Swarm Optimization (PSO) meta-heuristic technique of the active and reactive power regulation of a grid connected wind turbine based on a wound field synchronous generator. This regulation is achieved below the synchronous speed, by means of a maximum power point tracking algorithm. The control of our system is tested under typical wind variations and parameters variation, fault grid condition by simulation. Some results are presented and discussed to prove simplicity and efficiency of the WRSG control for WECS. On the other hand, according to simulation results, variable speed driven WRSG is not significantly impacted in fault conditions.Keywords: wind energy, particle swarm optimization, wound rotor synchronous generator, power control, RST controller, maximum power point tracking
Procedia PDF Downloads 44917330 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 9017329 Molecular Topology and TLC Retention Behaviour of s-Triazines: QSRR Study
Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević
Abstract:
Quantitative structure-retention relationship (QSRR) analysis was used to predict the chromatographic behavior of s-triazine derivatives by using theoretical descriptors computed from the chemical structure. Fundamental basis of the reported investigation is to relate molecular topological descriptors with chromatographic behavior of s-triazine derivatives obtained by reversed-phase (RP) thin layer chromatography (TLC) on silica gel impregnated with paraffin oil and applied ethanol-water (φ = 0.5-0.8; v/v). Retention parameter (RM0) of 14 investigated s-triazine derivatives was used as dependent variable while simple connectivity index different orders were used as independent variables. The best QSRR model for predicting RM0 value was obtained with simple third order connectivity index (3χ) in the second-degree polynomial equation. Numerical values of the correlation coefficient (r=0.915), Fisher's value (F=28.34) and root mean square error (RMSE = 0.36) indicate that model is statistically significant. In order to test the predictive power of the QSRR model leave-one-out cross-validation technique has been applied. The parameters of the internal cross-validation analysis (r2CV=0.79, r2adj=0.81, PRESS=1.89) reflect the high predictive ability of the generated model and it confirms that can be used to predict RM0 value. Multivariate classification technique, hierarchical cluster analysis (HCA), has been applied in order to group molecules according to their molecular connectivity indices. HCA is a descriptive statistical method and it is the most frequently used for important area of data processing such is classification. The HCA performed on simple molecular connectivity indices obtained from the 2D structure of investigated s-triazine compounds resulted in two main clusters in which compounds molecules were grouped according to the number of atoms in the molecule. This is in agreement with the fact that these descriptors were calculated on the basis of the number of atoms in the molecule of the investigated s-triazine derivatives.Keywords: s-triazines, QSRR, chemometrics, chromatography, molecular descriptors
Procedia PDF Downloads 39217328 Linear Semi Active Controller of Magneto-Rheological Damper for Seismic Vibration Attenuation
Authors: Zizouni Khaled, Fali Leyla, Sadek Younes, Bousserhane Ismail Khalil
Abstract:
In structural vibration caused principally by an earthquake excitation, the most vibration’s attenuation system used recently is the semi active control with a Magneto Rheological Damper device. This control was a subject of many researches and works in the last years. The big challenges of searchers in this case is to propose an adequate controller with a robust algorithm of current or tension adjustment. In this present paper, a linear controller is proposed to control the MR damper using to reduce a vibrations of three story structure exposed to El Centro’s 1940 and Boumerdès 2003 earthquakes. In this example, the MR damper is installed in the first floor of the structure. The numerical simulations results of the proposed linear control with a feedback law based on clipped optimal algorithm showed the feasibility of the semi active control to protecting civil structures. The comparison of the controlled structure and uncontrolled structures responses illustrate clearly the performance and the effectiveness of the simple proposed approach.Keywords: MR damper, seismic vibration, semi-active control
Procedia PDF Downloads 28317327 Control of an SIR Model for Basic Reproduction Number Regulation
Authors: Enrique Barbieri
Abstract:
The basic disease-spread model described by three states denoting the susceptible (S), infectious (I), and removed (recovered and deceased) (R) sub-groups of the total population N, or SIR model, has been considered. Heuristic mitigating action profiles of the pharmaceutical and non-pharmaceutical types may be developed in a control design setting for the purpose of reducing the transmission rate or improving the recovery rate parameters in the model. Even though the transmission and recovery rates are not control inputs in the traditional sense, a linear observer and feedback controller can be tuned to generate an asymptotic estimate of the transmission rate for a linearized, discrete-time version of the SIR model. Then, a set of mitigating actions is suggested to steer the basic reproduction number toward unity, in which case the disease does not spread, and the infected population state does not suffer from multiple waves. The special case of piecewise constant transmission rate is described and applied to a seventh-order SEIQRDP model, which segments the population into four additional states. The offline simulations in discrete time may be used to produce heuristic policies implemented by public health and government organizations.Keywords: control of SIR, observer, SEIQRDP, disease spread
Procedia PDF Downloads 10917326 Sensing to Respond & Recover in Emergency
Authors: Alok Kumar, Raviraj Patil
Abstract:
The ability to respond to an incident of a disastrous event in a vulnerable area is very crucial an aspect of emergency management. The ability to constantly predict the likelihood of an event along with its severity in an area and react to those significant events which are likely to have a high impact allows the authorities to respond by allocating resources optimally in a timely manner. It provides for measuring, monitoring, and modeling facilities that integrate underlying systems into one solution to improve operational efficiency, planning, and coordination. We were particularly involved in this innovative incubation work on the current state of research and development in collaboration. technologies & systems for a disaster.Keywords: predictive analytics, advanced analytics, area flood likelihood model, area flood severity model, level of impact model, mortality score, economic loss score, resource allocation, crew allocation
Procedia PDF Downloads 31917325 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System
Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith
Abstract:
This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.Keywords: exoskeleton- upper limb system, model free terminal sliding mode, gravity compensation, robustness analysis
Procedia PDF Downloads 14317324 Intelligent Semi-Active Suspension Control of a Electric Model Vehicle System
Authors: Shiuh-Jer Huang, Yun-Han Yeh
Abstract:
A four-wheel drive electric vehicle was built with hub DC motors and FPGA embedded control structure. A 40 steps manual adjusting motorcycle shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. An intelligent fuzzy logic controller was proposed to real-time search appropriate damping ratio based on vehicle running condition. Then, a robust fuzzy sliding mode controller (FSMC) is employed to regulate the target damping ratio of each wheel axis semi-active suspension system. Finally, different road surface conditions are chosen to evaluate the control performance of this semi-active suspension and compare with that of passive system based on wheel axis acceleration signal.Keywords: acceleration, FPGA, Fuzzy sliding mode control, semi-active suspension
Procedia PDF Downloads 41417323 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 22817322 A Predictive MOC Solver for Water Hammer Waves Distribution in Network
Authors: A. Bayle, F. Plouraboué
Abstract:
Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer
Procedia PDF Downloads 23017321 Quantitative Structure Activity Relationship Model for Predicting the Aromatase Inhibition Activity of 1,2,3-Triazole Derivatives
Authors: M. Ouassaf, S. Belaidi
Abstract:
Aromatase is an estrogen biosynthetic enzyme belonging to the cytochrome P450 family, which catalyzes the limiting step in the conversion of androgens to estrogens. As it is relevant for the promotion of tumor cell growth. A set of thirty 1,2,3-triazole derivatives was used in the quantitative structure activity relationship (QSAR) study using regression multiple linear (MLR), We divided the data into two training and testing groups. The results showed a good predictive ability of the MLR model, the models were statistically robust internally (R² = 0.982) and the predictability of the model was tested by several parameters. including external criteria (R²pred = 0.851, CCC = 0.946). The knowledge gained in this study should provide relevant information that contributes to the origins of aromatase inhibitory activity and, therefore, facilitates our ongoing quest for aromatase inhibitors with robust properties.Keywords: aromatase inhibitors, QSAR, MLR, 1, 2, 3-triazole
Procedia PDF Downloads 11317320 Design Development and Qualification of a Magnetically Levitated Blower for C0₂ Scrubbing in Manned Space Missions
Authors: Larry Hawkins, Scott K. Sakakura, Michael J. Salopek
Abstract:
The Marshall Space Flight Center is designing and building a next-generation CO₂ removal system, the Four Bed Carbon Dioxide Scrubber (4BCO₂), which will use the International Space Station (ISS) as a testbed. The current ISS CO2 removal system has faced many challenges in both performance and reliability. Given that CO2 removal is an integral Environmental Control and Life Support System (ECLSS) subsystem, the 4BCO2 Scrubber has been designed to eliminate the shortfalls identified in the current ISS system. One of the key required upgrades was to improve the performance and reliability of the blower that provides the airflow through the CO₂ sorbent beds. A magnetically levitated blower, capable of higher airflow and pressure than the previous system, was developed to meet this need. The design and qualification testing of this next-generation blower are described here. The new blower features a high-efficiency permanent magnet motor, a five-axis, active magnetic bearing system, and a compact controller containing both a variable speed drive and a magnetic bearing controller. The blower uses a centrifugal impeller to pull air from the inlet port and drive it through an annular space around the motor and magnetic bearing components to the exhaust port. Technical challenges of the blower and controller development include survival of the blower system under launch random vibration loads, operation in microgravity, packaging under strict size and weight requirements, and successful operation during 4BCO₂ operational changeovers. An ANSYS structural dynamic model of the controller was used to predict response to the NASA defined random vibration spectrum and drive minor design changes. The simulation results are compared to measurements from qualification testing the controller on a vibration table. Predicted blower performance is compared to flow loop testing measurements. Dynamic response of the system to valve changeovers is presented and discussed using high bandwidth measurements from dynamic pressure probes, magnetic bearing position sensors, and actuator coil currents. The results presented in the paper show that the blower controller will survive launch vibration levels, the blower flow meets the requirements, and the magnetic bearings have adequate load capacity and control bandwidth to maintain the desired rotor position during the valve changeover transients.Keywords: blower, carbon dioxide removal, environmental control and life support system, magnetic bearing, permanent magnet motor, validation testing, vibration
Procedia PDF Downloads 13317319 Evaluation of Low-Reducible Sinter in Blast Furnace Technology by Mathematical Model Developed at Centre ENET, VSB: Technical University of Ostrava
Authors: S. Jursová, P. Pustějovská, S. Brožová, J. Bilík
Abstract:
The paper deals with possibilities of interpretation of iron ore reducibility tests. It presents a mathematical model developed at Centre ENET, VŠB–Technical University of Ostrava, Czech Republic for an evaluation of metallurgical material of blast furnace feedstock such as iron ore, sinter or pellets. According to the data from the test, the model predicts its usage in blast furnace technology and its effects on production parameters of shaft aggregate. At the beginning, the paper sums up the general concept and experience in mathematical modelling of iron ore reduction. It presents basic equation for the calculation and the main parts of the developed model. In the experimental part, there is an example of usage of the mathematical model. The paper describes the usage of data for some predictive calculation. There are presented material, method of carried test of iron ore reducibility. Then there are graphically interpreted effects of used material on carbon consumption, rate of direct reduction and the whole reduction process.Keywords: blast furnace technology, iron ore reduction, mathematical model, prediction of iron ore reduction
Procedia PDF Downloads 67217318 Design of a Thrust Vectoring System for an Underwater ROV
Authors: Isaac Laryea
Abstract:
Underwater remote-operated vehicles (ROVs) are highly useful in aquatic research and underwater operations. Unfortunately, unsteady and unpredictable conditions underwater make it difficult for underwater vehicles to maintain a steady attitude during motion. Existing underwater vehicles make use of multiple thrusters positioned at specific positions on their frame to maintain a certain pose. This study proposes an alternate way of maintaining a steady attitude during horizontal motion at low speeds by making use of a thrust vector-controlled propulsion system. The study began by carrying out some preliminary calculations to get an idea of a suitable shape and form factor. Flow simulations were carried out to ensure that enough thrust could be generated to move the system. Using the Lagrangian approach, a mathematical system was developed for the ROV, and this model was used to design a control system. A PID controller was selected for the control system. However, after tuning, it was realized that a PD controller satisfied the design specifications. The designed control system produced an overshoot of 6.72%, with a settling time of 0.192s. To achieve the effect of thrust vectoring, an inverse kinematics synthesis was carried out to determine what angle the actuators need to move to. After building the system, intermittent angular displacements of 10°, 15°, and 20° were given during bench testing, and the response of the control system as well as the servo motor angle was plotted. The final design was able to move in water but was not able to handle large angular displacements as a result of the small angle approximation used in the mathematical model.Keywords: PID control, thrust vectoring, parallel manipulators, ROV, underwater, attitude control
Procedia PDF Downloads 6617317 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors
Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira
Abstract:
The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance
Procedia PDF Downloads 34917316 Implicit Force Control of a Position Controlled Robot - A Comparison with Explicit Algorithms
Authors: Alexander Winkler, Jozef Suchý
Abstract:
This paper investigates simple implicit force control algorithms realizable with industrial robots. A lot of approaches already published are difficult to implement in commercial robot controllers, because the access to the robot joint torques is necessary or the complete dynamic model of the manipulator is used. In the past we already deal with explicit force control of a position controlled robot. Well known schemes of implicit force control are stiffness control, damping control and impedance control. Using such algorithms the contact force cannot be set directly. It is further the result of controller impedance, environment impedance and the commanded robot motion/position. The relationships of these properties are worked out in this paper in detail for the chosen implicit approaches. They have been adapted to be implementable on a position controlled robot. The behaviors of stiffness control and damping control are verified by practical experiments. For this purpose a suitable test bed was configured. Using the full mechanical impedance within the controller structure will not be practical in the case when the robot is in physical contact with the environment. This fact will be verified by simulation.Keywords: robot force control, stiffness control, damping control, impedance control, stability
Procedia PDF Downloads 51817315 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability
Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi
Abstract:
The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.Keywords: almost strictly positive real (ASPR), doubly-fed induction generator (DIFG), simple adaptive control (SAC), subsynchronous oscillations, wind turbine
Procedia PDF Downloads 37517314 Soccer Match Result Prediction System (SMRPS) Model
Authors: Ajayi Olusola Olajide, Alonge Olaide Moses
Abstract:
Predicting the outcome of soccer matches poses an interesting challenge for which it is realistically impossible to successfully do so for every match. Despite this, there are lots of resources that are being expended on the correct prediction of soccer matches weekly, and all over the world. Soccer Match Result Prediction System Model (SMRPSM) is a system that is proposed whereby the results of matches between two soccer teams are auto-generated, with the added excitement of giving users a chance to test their predictive abilities. Soccer teams from different league football are loaded by the application, with each team’s corresponding manager and other information like team location, team logo and nickname. The user is also allowed to interact with the system by selecting the match to be predicted and viewing of the results of completed matches after registering/logging in.Keywords: predicting, soccer match, outcome, soccer, matches, result prediction, system, model
Procedia PDF Downloads 48917313 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain a subgroups of time series data with normal distribution from inflow into waste water treatment plant data which Composed of several groups differing by mean value. Two simple algorithms: K-mean and EM were chosen as a clustering method. The rand index was used to measure the similarity. After simple meta-clustering, regression model was performed for each subgroups. The final model was a sum of subgroups models. The quality of obtained model was compared with the regression model made using the same explanatory variables but with no clustering of data. Results were compared by determination coefficient (R2), measure of prediction accuracy mean absolute percentage error (MAPE) and comparison on linear chart. Preliminary results allows to foresee the potential of the presented technique.Keywords: clustering, data analysis, data mining, predictive models
Procedia PDF Downloads 46417312 Grid-Connected Doubly-Fed Induction Generator under Integral Backstepping Control Combined with High Gain Observer
Authors: Oluwaseun Simon Adekanle, M'hammed Guisser, Elhassane Abdelmounim, Mohamed Aboulfatah
Abstract:
In this paper, modeling and control of a grid connected 660KW Doubly-Fed Induction Generator wind turbine is presented. Stator flux orientation is used to realize active-reactive power decoupling to enable independent control of active and reactive power. The recursive Integral Backstepping technique is used to control generator speed to its optimum value and to obtain unity power factor. The controller is combined with High Gain Observer to estimate the mechanical torque of the machine. The most important advantage of this combination of High Gain Observer and the Integral Backstepping controller is the annulation of static error that may occur due to incertitude between the actual value of a parameter and its estimated value by the controller. Simulation results under Matlab/Simulink show the robustness of this control technique in presence of parameter variation.Keywords: doubly-fed induction generator, field orientation control, high gain observer, integral backstepping control
Procedia PDF Downloads 36017311 Application of Global Predictive Real Time Control Strategy to Improve Flooding Prevention Performance of Urban Stormwater Basins
Authors: Shadab Shishegar, Sophie Duchesne, Genevieve Pelletier
Abstract:
Sustainability as one of the key elements of Smart cities, can be realized by employing Real Time Control Strategies for city’s infrastructures. Nowadays Stormwater management systems play an important role in mitigating the impacts of urbanization on natural hydrological cycle. These systems can be managed in such a way that they meet the smart cities standards. In fact, there is a huge potential for sustainable management of urban stormwater and also its adaptability to global challenges like climate change. Hence, a dynamically managed system that can adapt itself to instability of the environmental conditions is desirable. A Global Predictive Real Time Control approach is proposed in this paper to optimize the performance of stormwater management basins in terms of flooding prevention. To do so, a mathematical optimization model is developed then solved using Genetic Algorithm (GA). Results show an improved performance at system-level for the stormwater basins in comparison to static strategy.Keywords: environmental sustainability, optimization, real time control, storm water management
Procedia PDF Downloads 17517310 Tracking Maximum Power Point Utilizing Artificial Immunity System
Authors: Marwa Ahmed Abd El Hamied
Abstract:
In this paper In this paper, a new technique based on Artificial Immunity System (AIS) technique has been developed to track Maximum Power Point (MPP). AIS system is implemented in a photovoltaic system that is subjected to variable temperature and insulation condition. The proposed novel is simulated using Mat Lab program. The results of simulation have been compared to those who are generated from Observation Controller. The proposed model shows promising results as it provide better accuracy comparing to classical model.Keywords: component, artificial immunity technique, solar energy, perturbation and observation, power based methods
Procedia PDF Downloads 42617309 Current Drainage Attack Correction via Adjusting the Attacking Saw-Function Asymmetry
Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap
Abstract:
Current drainage attack suggested previously is further studied in regular settings of closed-loop controlled Brushless DC (BLDC) motor with Kalman filter in the feedback loop. Modeling and simulation experiments are conducted in a Matlab environment, implementing the closed-loop control model of BLDC motor operation in position sensorless mode under Kalman filter drive. The current increase in the motor windings is caused by the controller (p-controller in our case) affected by false data injection of substitution of the angular velocity estimates with distorted values. Operation of multiplication to distortion coefficient, values of which are taken from the distortion function synchronized in its periodicity with the rotor’s position change. A saw function with a triangular tooth shape is studied herewith for the purpose of carrying out the bias injection with current drainage consequences. The specific focus here is on how the asymmetry of the tooth in the saw function affects the flow of current drainage. The purpose is two-fold: (i) to produce and collect the signature of an asymmetric saw in the attack for further pattern recognition process, and (ii) to determine conditions of improving stealthiness of such attack via regulating asymmetry in saw function used. It is found that modification of the symmetry in the saw tooth affects the periodicity of current drainage modulation. Specifically, the modulation frequency of the drained current for a fully asymmetric tooth shape coincides with the saw function modulation frequency itself. Increasing the symmetry parameter for the triangle tooth shape leads to an increase in the modulation frequency for the drained current. Moreover, such frequency reaches the switching frequency of the motor windings for fully symmetric triangular shapes, thus becoming undetectable and improving the stealthiness of the attack. Therefore, the collected signatures of the attack can serve for attack parameter identification via the pattern recognition route.Keywords: bias injection attack, Kalman filter, BLDC motor, control system, closed loop, P-controller, PID-controller, current drainage, saw-function, asymmetry
Procedia PDF Downloads 7817308 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method
Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain
Abstract:
The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR
Procedia PDF Downloads 315