Search results for: micro-electrical discharge machining (µEDM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1138

Search results for: micro-electrical discharge machining (µEDM)

718 A Retrospective Study of Pain Management Strategies for Pediatric Hypospadias Surgery in a Tertiary Care Hospital in Western Rajasthan

Authors: Darshana Rathod, Kirtikumar Rathod, Kamlesh Kumari, Abhilasha Motghare

Abstract:

Background and Aims: Hypospadias is one of the common congenital anomalies in males. Various modalities are used for pain management, including caudal, penile, pudendal, ring blocks, and systemic analgesics. There has yet to be a consensus regarding the most effective and safe analgesic method for controlling pain in these children. We planned this study to determine our institute's pain management practices for hypospadias surgeries. Material and Methods: This retrospective cohort study reviewed 150 children with hypospadias undergoing surgery from January 2020 to December 2023. Data regarding the mode of pain management, postoperative opioid requirement, PACU discharge, and complications was collected from the records. Results: For postoperative pain, 33 (22%) children received caudal block, 60 (40%) penile block, and 57 (38%) were managed by intravenous analgesics. A significant difference was found in the three groups, with the IV analgesic group requiring significantly higher opioid boluses in PACU [43 (75.4%) required two boluses (p < 0.05)]. The difference in PACU discharge time among the three groups was statistically significant (p< 0.05), with IV analgesics groups having the highest (55 mins [47, 60]), the Caudal group at 35mins (30, 40), and the dorsal penile block group at 35mins (25, 40). There was no significant difference in complications like edema, meatal stenosis, urethra-cutaneous fistula, or wound dehiscence among all three groups. Conclusion: Intravenous analgesics and regional blocks like caudal and penile blocks are the common pain management modalities in our institute. The regional blocks are effective in managing pain in the postoperative period and are not significantly associated with complications.

Keywords: caudal block, hypospadias, pain management, penile block

Procedia PDF Downloads 45
717 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman

Abstract:

Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.

Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma

Procedia PDF Downloads 337
716 Study on the Electrochemical Performance of Graphene Effect on Cadmium Oxide in Lithium Battery

Authors: Atef Y. Shenouda, Anton A. Momchilov

Abstract:

Graphene and CdO with different stoichiometric ratios of Cd(CH₃COO)₂ and graphene samples were prepared by hydrothermal reaction. The crystalline phases of pure CdO and 3CdO:1graphene were identified by X-ray diffraction (XRD). The particle morphology was studied with SEM. Furthermore, impedance measurements were applied. Galvanostatic measurements for the cells were carried out using potential limits between 0.01 and 3 V vs. Li/Li⁺. The current cycling intensity was 10⁻⁴ A. The specific discharge capacity of 3CdO-1G cell was about 450 Ah.Kg⁻¹ up to more than 100 cycles.

Keywords: CdO, graphene, negative electrode, lithium battery

Procedia PDF Downloads 161
715 Modelling and Optimization of a Combined Sorption Enhanced Biomass Gasification with Hydrothermal Carbonization, Hot Gas Cleaning and Dielectric Barrier Discharge Plasma Reactor to Produce Pure H₂ and Methanol Synthesis

Authors: Vera Marcantonio, Marcello De Falco, Mauro Capocelli, Álvaro Amado-Fierro, Teresa A. Centeno, Enrico Bocci

Abstract:

Concerns about energy security, energy prices, and climate change led scientific research towards sustainable solutions to fossil fuel as renewable energy sources coupled with hydrogen as an energy vector and carbon capture and conversion technologies. Among the technologies investigated in the last decades, biomass gasification acquired great interest owing to the possibility of obtaining low-cost and CO₂ negative emission hydrogen production from a large variety of everywhere available organic wastes. Upstream and downstream treatment were then studied in order to maximize hydrogen yield, reduce the content of organic and inorganic contaminants under the admissible levels for the technologies which are coupled with, capture, and convert carbon dioxide. However, studies which analyse a whole process made of all those technologies are still missing. In order to fill this lack, the present paper investigated the coexistence of hydrothermal carbonization (HTC), sorption enhance gasification (SEG), hot gas cleaning (HGC), and CO₂ conversion by dielectric barrier discharge (DBD) plasma reactor for H₂ production from biomass waste by means of Aspen Plus software. The proposed model aimed to identify and optimise the performance of the plant by varying operating parameters (such as temperature, CaO/biomass ratio, separation efficiency, etc.). The carbon footprint of the global plant is 2.3 kg CO₂/kg H₂, lower than the latest limit value imposed by the European Commission to consider hydrogen as “clean”, that was set to 3 kg CO₂/kg H₂. The hydrogen yield referred to the whole plant is 250 gH₂/kgBIOMASS.

Keywords: biomass gasification, hydrogen, aspen plus, sorption enhance gasification

Procedia PDF Downloads 78
714 Intraoperative Inter Pectoral and Sub Serratus Nerve Blocks Reduce Post Operative Opiate Requirements in Breast Augmentation Surgery

Authors: Conor Mccartney, Mark Lee

Abstract:

Background: An essential component in ambulatory breast augmentation surgery is good analgesia. The demographic undergoing this operation is usually fit, low risk with few comorbidities. These patients do not require long-term hospitalization and do not want to spend excessive time in the hospital for financial reasons. Opiate analgesia can have significant side effects such as nausea, vomiting and sedation. Reducing volumes of postoperative opiates allows faster ambulation and discharge from day surgery. We have developed two targeted nerve blocks that can be applied by the operating surgeon in a matter of seconds under direct vision, not requiring imaging. Anecdotally we found that these targeted nerve blocks reduced opiate requirements and allowed accelerated discharge and faster return to normal activities. This was then tested in a prospective randomized, double-blind trial. Methods: 20 patients were randomized into saline (n = 10) or Ropivicaine adrenaline solution (n = 10). The operating surgeon and anesthetist were blinded to the solution. All patients were closely followed up and morphine equivalents were accurately recorded. Follow-up pain scores were recorded using the Overall Benefit of Analgesia pain questionnaire. Findings: The Ropivicaine nerve blocks significantly reduced opiate requirements postoperatively (p<0.05). Pain scores were significantly decreased in the study group (p<0.05). There were no side effects attributable to the nerve blocks. Conclusions: Intraoperative targeted nerve blocks significantly reduce postoperative opiate requirements in breast augmentation surgery. This results in faster recovery and higher patient satisfaction.

Keywords: breast augmentation, nerve block, postoperative recovery, opiate analgesia, inter pectoral block, sub serratus block

Procedia PDF Downloads 131
713 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method

Authors: A. Ghribi, M. Bagane

Abstract:

The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.

Keywords: adsorption, breakthrough curve, clay, fixed bed column, rhodamine b, regeneration

Procedia PDF Downloads 275
712 Public Administrators, Code of Conduct and the Nigerian Society

Authors: Mahmud Adam, Inuwa Abdu Ibrahim

Abstract:

The issue of ethics and values of public office holders in Nigerian has been and still is a matter of great mystery. Their behaviours in the discharge of their official responsibility remain unsatisfactory. The paper looks at the code of conduct and the societal values with which the Nigerian Administrators function today. Secondary sources of data were used. In conclusion, a change in attitude, reorientation, harsh and enforceable laws is required to reverse the trend.

Keywords: society, administrators, code of conduct, Nigeria

Procedia PDF Downloads 339
711 Evaluation of Drilling-Induced Delamination of Flax/Epoxy Composites by Non-Destructive Testing Methods

Authors: Hadi Rezghimaleki, Masatoshi Kubouchi, Yoshihiko Arao

Abstract:

The use of natural fiber composites (NFCs) is growing at a fast rate regarding industrial applications and principle researches due to their eco-friendly, renewable nature, and low density/costs. Drilling is one of the most important machining operations that are carried out on natural fiber composites. Delamination is a major concern in the drilling process of NFCs that affects the structural integrity and long-term reliability of the machined components. Flax fiber reinforced epoxy composite laminates were prepared by hot press technique. In this research, we evaluated drilling-induced delamination of flax/epoxy composites by X-ray computed tomography (CT), ultrasonic testing (UT), and optical methods and compared the results.

Keywords: natural fiber composites, flax/epoxy, X-ray CT, ultrasonic testing

Procedia PDF Downloads 298
710 Productivity and Structural Design of Manufacturing Systems

Authors: Ryspek Usubamatov, Tan San Chin, Sarken Kapaeva

Abstract:

Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems.

Keywords: productivity, structure, manufacturing systems, structural design

Procedia PDF Downloads 583
709 Chatter Suppression in Boring Process Using Passive Damper

Authors: V. Prasannavenkadesan, A. Elango, S. Chockalingam

Abstract:

During machining process, chatter is an unavoidable phenomenon. Boring bars possess the cantilever shape and due to this, it is subjected to chatter. The adverse effect of chatter includes the increase in temperature which will leads to excess tool wear. To overcome these problems, in this investigation, Cartridge brass (Cu – 70% and Zn – 30%) is passively fixed on the boring bar and also clearance is provided in order to reduce the displacement, tool wear and cutting temperature. A conventional all geared lathe is attached with vibrometer and pyrometer is used to measure the displacement and temperature. The influence of input parameters such as cutting speed, depth of cut and clearance on temperature, tool wear and displacement are investigated for various cutting conditions. From the result, the optimum conditions to obtain better damping in boring process for chatter reduction is identified.

Keywords: boring, chatter, mass damping, passive damping

Procedia PDF Downloads 350
708 Analysis of Sustainability of Groundwater Resources in Rote Island, Indonesia under HADCM3 Global Model Climate Scenarios: Groundwater Flow Simulation and Proposed Adaptive Strategies

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Developing tailored management strategies to ensure the sustainability of groundwater resource under climate and demographic changes is critical for tropical karst island, where relatively small watershed and highly porous soil nature make this natural resource highly susceptible and thus very sensitive to those changes. In this study, long-term impacts of climate variability on groundwater recharge and discharge at the Oemau spring, Rote Island, Indonesia were investigated. Following calibration and validation of groundwater model using MODFLOW code, groundwater flow was simulated for period of 2020-2090 under HadCM3 global model climate (GCM) scenarios, using input data of weather variables downscaled by Statistical Downscaling Model (SDSM). The reported analysis suggests that the sustainability of groundwater resources will be adversely affected by climate change during dry years. The area is projected to variably experience 2.53-22.80% decrease of spring discharge. A subsequent comprehensive set of management strategies as palliative and adaptive efforts was proposed to be implemented by relevant stakeholders to assist the community dealing with water deficit during the dry years. Three main adaptive strategies, namely socio-cultural, technical, and ecological measures, were proposed by incorporating physical and socio-economic characteristics of the area. This study presents a blueprint for assessing groundwater sustainability under climate change scenarios and developing tailored management strategies to cope with adverse impacts of climate change, which may become fundamental necessities across other tropical karst islands in the future.

Keywords: climate change, groundwater, management strategies, tropical karst island, Rote Island, Indonesia

Procedia PDF Downloads 155
707 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 86
706 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load

Authors: Ahmad Saadiq, Neeraj Sahu

Abstract:

Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.

Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve

Procedia PDF Downloads 325
705 Transient Phenomena in a 100 W Hall Thrusters: Experimental Measurements of Discharge Current and Plasma Parameter Evolution

Authors: Clémence Royer, Stéphane Mazouffre

Abstract:

Nowadays, electric propulsion systems play a crucial role in space exploration missions due to their high specific impulse and long operational life. The Hall thrusters are one of the most mature EP technologies. It is a gridless ion thruster that has proved reliable and high-performance for decades in various space missions. Operation of HT relies on electron emissions through a cathode placed outside a hollow dielectric channel that includes an anode at the back. Negatively charged particles are trapped in a magnetic field and efficiently slow down. By collisions, the electron cloud ionizes xenon atoms. A large electric field is generated in the axial direction due to the low electron transverse mobility in the region of a strong magnetic field. Positive particles are pulled out of the chamber at high velocity and are neutralized directly at the exhaust area. This phenomenon leads to the acceleration of the spacecraft system at a high specific impulse. While HT’s architecture and operating principle are relatively simple, the physics behind thrust is complex and still partly unknown. Current and voltage oscillations, as well as electron properties, have been captured over a 30 mn time period after ignition. The observed low-frequency oscillations exhibited specific frequency ranges, amplitudes, and stability patterns. Correlations between the oscillations and plasma characteristics we analyzed. The impact of these instabilities on thruster performance, including thrust efficiency, has been evaluated as well. Moreover, strategies for mitigating and controlling these instabilities have been developed, such as filtering. In this contribution, in addition to presenting a summary of the results obtained in the transient regime, we will present and discuss recent advances in Hall thruster plasma discharge filtering and control.

Keywords: electric propulsion, Hall Thruster, plasma diagnostics, low-frequency oscillations

Procedia PDF Downloads 90
704 Development and Implementation of Curvature Dependent Force Correction Algorithm for the Planning of Forced Controlled Robotic Grinding

Authors: Aiman Alshare, Sahar Qaadan

Abstract:

A curvature dependent force correction algorithm for planning force controlled grinding process with off-line programming flexibility is designed for ABB industrial robot, in order to avoid the manual interface during the process. The machining path utilizes a spline curve fit that is constructed from the CAD data of the workpiece. The fitted spline has a continuity of the second order to assure path smoothness. The implemented algorithm computes uniform forces normal to the grinding surface of the workpiece, by constructing a curvature path in the spatial coordinates using the spline method.

Keywords: ABB industrial robot, grinding process, offline programming, CAD data extraction, force correction algorithm

Procedia PDF Downloads 362
703 Experimental Studies on the Effect of Rake Angle on Turning Ti-6Al-4V with TiAlN Coated Carbides

Authors: Satyanarayana Kosaraju, Venu Gopal Anne, Sateesh Nagari

Abstract:

In this paper, the effect of cutting speed, feedrate and rake angle in tool geometry on cutting forces and temperature generated on the tool tip in turning were investigated. The data used for the investigation derived from experiments conducted on precision lathe according to the full factorial design to observe the effect of each factor level on the process performance. During the tests, depth of cut were kept constant and each test was conducted with a sharp coated tool insert. Ti-6Al-4V was used as the workpiece material. The effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analyzed. The main cutting force was observed to have a decreasing trend and temperature found to be increasing trend as the rake angle increased.

Keywords: cutting force, tool tip temperature, rake angle, machining

Procedia PDF Downloads 506
702 Reusing of HSS Hacksaw Blades as Rough Machining Tool

Authors: Raja V., Chokkalingam B.

Abstract:

For rough cutting, in many industries and educational institutions using carbon steels or HSS single point cutting tools in center lathe machine. In power hacksaw blades, only the cutter teeth region used to parting off the given material. The portions other than the teeth can be used as a single point cutting tool for rough turning and facing on soft materials. The hardness and Tensile strength of this used Power hacksaw blade is almost same as conventional cutting tools. In this paper, the effect of power hacksaw blades over conventional tool has been compared. Thickness of the blade (1.6 mm) is very small compared to its length and width. Hence, a special tool holding device is designed to hold the tool.

Keywords: hardness, high speed steels, power hacksaw blade, tensile strength

Procedia PDF Downloads 457
701 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 284
700 A Novel Eccentric Lapping Method with Two Rotatable Lapping Plates for Finishing Cemented Carbide Balls

Authors: C. C. Lv, Y. L. Sun, D. W. Zuo

Abstract:

Cemented carbide balls are usually implemented in industry under the environment of high speed, high temperature, corrosiveness and strong collisions. However, its application is limited due to high fabrication cost, processing efficiency and quality. A novel eccentric lapping method with two rotatable lapping plates was proposed in this paper. A mathematical model was constructed to analyze the influence of each design parameter on this lapping method. To validate this new lapping method, an orthogonal experiment was conducted with cemented carbide balls (YG6). The simulation model was verified and the optimal lapping parameters were derived. The results show that the surface roundness of the balls reaches to 0.65um from 2um in 1 hour using this lapping method. So, using this novel lapping method, it can effectively improve the machining precision and efficiency of cemented carbide balls.

Keywords: cemented carbide balls, eccentric lapping, high precision, lapping tracks, V-groove

Procedia PDF Downloads 394
699 Queueing Modeling of M/G/1 Fault Tolerant System with Threshold Recovery and Imperfect Coverage

Authors: Madhu Jain, Rakesh Kumar Meena

Abstract:

This paper investigates a finite M/G/1 fault tolerant multi-component machining system. The system incorporates the features such as standby support, threshold recovery and imperfect coverage make the study closer to real time systems. The performance prediction of M/G/1 fault tolerant system is carried out using recursive approach by treating remaining service time as a supplementary variable. The numerical results are presented to illustrate the computational tractability of analytical results by taking three different service time distributions viz. exponential, 3-stage Erlang and deterministic. Moreover, the cost function is constructed to determine the optimal choice of system descriptors to upgrading the system.

Keywords: fault tolerant, machine repair, threshold recovery policy, imperfect coverage, supplementary variable technique

Procedia PDF Downloads 292
698 Towards Automated Remanufacturing of Marine and Offshore Engineering Components

Authors: Aprilia, Wei Liang Keith Nguyen, Shu Beng Tor, Gerald Gim Lee Seet, Chee Kai Chua

Abstract:

Automated remanufacturing process is of great interest in today’s marine and offshore industry. Most of the current remanufacturing processes are carried out manually and hence they are error prone, labour-intensive and costly. In this paper, a conceptual framework for automated remanufacturing is presented. This framework involves the integration of 3D non-contact digitization, adaptive surface reconstruction, additive manufacturing and machining operation. Each operation is operated and interconnected automatically as one system. The feasibility of adaptive surface reconstruction on marine and offshore engineering components is also discussed. Several engineering components were evaluated and the results showed that this proposed system is feasible. Conclusions are drawn and further research work is discussed.

Keywords: adaptive surface reconstruction, automated remanufacturing, automatic repair, reverse engineering

Procedia PDF Downloads 326
697 Exploring Factors Related to Unplanning Readmission of Elderly Patients in Taiwan

Authors: Hui-Yen Lee, Hsiu-Yun Wei, Guey-Jen Lin, Pi-Yueh Lee Lee

Abstract:

Background: Unplanned hospital readmissions increase healthcare costs and have been considered a marker of poor healthcare performance. The elderly face a higher risk of unplanned readmission due to elderly-specific characteristics such as deteriorating body functions and the relatively high incidence of complications after treatment of acute diseases. Purpose: The aim of this study was exploring the factors that relate to the unplanned readmission of elderly within 14 days of discharge at our hospital in southern Taiwan. Methods: We retrospectively reviewed the medical records of patients aged ≥65 years who had been re-admitted between January 2018 and December 2018.The Charlson Comorbidity score was calculated using previous used method. Related factors that affected the rate of unplanned readmission within 14 days of discharge were screened and analyzed using the chi-squared test and logistic regression analysis. Results: This study enrolled 829 subjects aged more than 65 years. The numbers of unplanned readmission patients within 14 days were 318 cases, while those did not belong to the unplanned readmission were 511 cases. In 2018, the rate of elderly patients in unplanned 14 days readmissions was 38.4%. The majority patients were females (166 cases, 52.2%), with an average age of 77.6 ± 7.90 years (65-98). The average value of Charlson Comorbidity score was 4.42±2.76. Using logistic regression analysis, we found that the gastric or peptic ulcer (OR=1.917 , P< 0.002), diabetes (OR= 0.722, P< 0.043), hemiplegia (OR= 2.292, P< 0.015), metastatic solid tumor (OR= 2.204, P< 0.025), hypertension (OR= 0.696, P< 0.044), and skin ulcer/cellulitis (OR= 2.747, P< 0.022) have significantly higher risk of 14-day readmissions. Conclusion: The results of the present study may assist the healthcare teams to understand the factors that may affect unplanned readmission in the elderly. We recommend that these teams give efficient approach in their medical practice, provide timely health education for elderly, and integrative healthcare for chronic diseases in order to reduce unplanned readmissions.

Keywords: unplanning readmission, elderly, Charlson comorbidity score, logistic regression analysis

Procedia PDF Downloads 130
696 Primary Fallopian Tube Carcinoma: A Case Report

Authors: Mary Abigail T. Ty, Mary Jocelyn Yu-Laygo, Jocelyn Z. Mariano

Abstract:

This is a case of L.S.T., a 61 year old, G6P4 (3124) who presented with a one month history of intermittent, brownish, watery, non foul smelling vaginal discharge. There were no other accompanying symptoms. On rectovaginal examination, a palpable adnexal mass on the left was appreciated, with the lower border measuring 3 cm. The mass was non-tender, had irregular borders and solid areas. On transvaginal sonography, it revealed a left pelvic mass measuring 3 x 4 x 2 cm, with a Sassone score of 9. It had vascularization. The primary consideration was Ovarian Newgrowth, probably malignant in nature. CA-125 results were slightly elevated at 43.2 u/ml (NV: 0-35 u/ml). After intraoperative evaluation, the left fallopian tube was converted into a 9 x 4.5 x 3 cm bulbous cystic mass with solid areas. On cut section, the ampullary portion of the fallopian tube contained necrotic and friable looking tissues. Specimen was sent for frozen section and results revealed adenocarcinoma of the left fallopian tube. Patient subsequently underwent complete surgical staging with unremarkable post-operative course. The Surg Ico pathologic diagnosis was G6P4 (3124) Fallopian tube serous cystadenocarcinoma stage 1. The mean incidence of PFTC is 3.6 per million women yearly. This is associated with a generally low survival rate. The primary diagnosis is very difficult to establish because only 0–10% of patients suffering from PFTC are diagnosed pre-operatively. Symptoms play a very important role in the discovery of this disease, because there will be no presentation to the hospital without symptoms. The most common of which may be vaginal bleeding, abdominal pain, a palpable mass and ascites. A conglomerate of manifestations may be encountered, but not at all times. This is termed hydrops tubae profluens where there is presence of colicky pain with relief from intermittent passage of serosanguinous vaginal discharge. The significance of this report is to emphasize the rarity of the case and how the dilemma in the diagnosis is almost always present despite ancillary procedures.

Keywords: fallopian tube carcinoma, prognosis, rare, risk factors

Procedia PDF Downloads 320
695 New Findings on the Plasma Electrolytic Oxidation (PEO) of Aluminium

Authors: J. Martin, A. Nominé, T. Czerwiec, G. Henrion, T. Belmonte

Abstract:

The plasma electrolytic oxidation (PEO) is a particular electrochemical process to produce protective oxide ceramic coatings on light-weight metals (Al, Mg, Ti). When applied to aluminum alloys, the resulting PEO coating exhibit improved wear and corrosion resistance because thick, hard, compact and adherent crystalline alumina layers can be achieved. Several investigations have been carried out to improve the efficiency of the PEO process and one particular way consists in tuning the suitable electrical regime. Despite the considerable interest in this process, there is still no clear understanding of the underlying discharge mechanisms that make possible metal oxidation up to hundreds of µm through the ceramic layer. A key parameter that governs the PEO process is the numerous short-lived micro-discharges (micro-plasma in liquid) that occur continuously over the processed surface when the high applied voltage exceeds the critical dielectric breakdown value of the growing ceramic layer. By using a bipolar pulsed current to supply the electrodes, we previously observed that micro-discharges are delayed with respect to the rising edge of the anodic current. Nevertheless, explanation of the origin of such phenomena is still not clear and needs more systematic investigations. The aim of the present communication is to identify the relationship that exists between this delay and the mechanisms responsible of the oxide growth. For this purpose, the delay of micro-discharges ignition is investigated as the function of various electrical parameters such as the current density (J), the current pulse frequency (F) and the anodic to cathodic charge quantity ratio (R = Qp/Qn) delivered to the electrodes. The PEO process was conducted on Al2214 aluminum alloy substrates in a solution containing potassium hydroxide [KOH] and sodium silicate diluted in deionized water. The light emitted from micro-discharges was detected by a photomultiplier and the micro-discharge parameters (number, size, life-time) were measured during the process by means of ultra-fast video imaging (125 kfr./s). SEM observations and roughness measurements were performed to characterize the morphology of the elaborated oxide coatings while XRD was carried out to evaluate the amount of corundum -Al203 phase. Results show that whatever the applied current waveform, the delay of micro-discharge appearance increases as the process goes on. Moreover, the delay is shorter when the current density J (A/dm2), the current pulse frequency F (Hz) and the ratio of charge quantity R are high. It also appears that shorter delays are associated to stronger micro-discharges (localized, long and large micro-discharges) which have a detrimental effect on the elaborated oxide layers (thin and porous). On the basis of the results, a model for the growth of the PEO oxide layers will be presented and discussed. Experimental results support that a mechanism of electrical charge accumulation at the oxide surface / electrolyte interface takes place until the dielectric breakdown occurs and thus until micro-discharges appear.

Keywords: aluminium, micro-discharges, oxidation mechanisms, plasma electrolytic oxidation

Procedia PDF Downloads 264
694 Assessment of Trace Metals Contamination in Surficial and Core Sediments from Ghannouch- Gabes Coastline, Impact of Phosphogypsum Discharge, Southeastern of Tunisia, Mediterranean Sea: Geochemical and Mineralogical Approaches

Authors: Rim Ben Amor, Myriam Abidi, Moncef Gueddari

Abstract:

The purpose of the present study is to assess the level and the distribution of CaO, SO3, Cd, Cu, Pb and Zn incore sediments of Ghannouch-Gabes coast, Gulf of Gabes, Tunisian Mediterranean coast. The XRD analyses indicate that the sediments of Ghannouch-Gabes coast are mainly composed of quartz, calcite, gypsum and fluorine reflecting the impact of the phosphate fertilizer industrial waste. The vertical distribution of surface sediments shows for all the elements analyzed, that the area located between the commercial and the fishing port of Gabes, is the most polluted zone, where the two harbors acted as barriers and limited the dispersion of phosphogypsum discharge. The abundance order of metals was found to be Zn > Cd > Cu >Pb and that the highest levels of heavy metals were found in the uppermost segment of the sediment core compared to lower depth subsurface due to a continuous input of PG release and showed that the area between the two harbor suffered from several types of pollutants compared to reference core C1, collected from non-industrialized area. The level of pollution was evaluated using contamination factor (Cf), pollution load index (PLI) and the geoaccumulation index (Igeo). The obtained results of Igeo allowed us to distinguish that the area between the commercial harbor of Ghannouch and the fishing harbor of Gabes is the most polluted where sediments are strongly contaminated for Pb, Cu and Cd. The pollution load index (PLI) of all sediments collected classified them as "polluted". According to contamination factor (Cf), the sediments can be considered as ‘considerable’ to ‘very high’ contaminated for Pb, ‘very high to moderate’ for Cd, ‘ moderate’ for Zn, between ‘moderate’ and ‘considerable’ for Cu. Statistical analyses show that heavy metals, fluoride, calcium and sulphate are resulting from the same anthropogenic origin. The metallic pollution status of sediments of Ghanouch -Gabes coast is worrying and requires a serious intervention.

Keywords: trace metals, phosphogypsum, core sediments, accumulation factor, contamination factor

Procedia PDF Downloads 141
693 Evaluation of Traumatic Spine by Magnetic Resonance Imaging

Authors: Sarita Magu, Deepak Singh

Abstract:

Study Design: This prospective study was conducted at the department of Radio Diagnosis, at Pt B.D. Sharma PGIMS, Rohtak in 57 patients of spine injury on radiographs or radiographically normal patients with neurological deficits presenting within 72 hours of injury. Aims: Evaluation of the role of Magnetic Resonance Imaging (MRI) in Spinal Trauma Patients and to compare MRI findings with clinical profile and neurological status of the patient and to correlate the MRI findings with neurological recovery of the patient and predict the outcome. Material and Methods: Neurological status of patients was assessed at the time of admission and discharge in all the patients and at long term interval of six months to one year in 27 patients as per American spine injury association classification (ASIA). On MRI cord injury was categorized into cord hemorrhage, cord contusion, cord edema only, and normal cord. Quantitative assessment of injury on MRI was done using mean canal compromise (MCC), mean spinal cord compression (MSCC) and lesion length. Neurological status at admission and neurological recovery at discharge and long term follow up was compared with various qualitative cord findings and quantitative parameters on MRI. Results: Cord edema and normal cord was associated with favorable neurological outcome. Cord contusion show lesser neurological recovery as compared to cord edema. Cord hemorrhage was associated with worst neurological status at admission and poor neurological recovery. Mean MCC, MSCC, and lesion length values were higher in patients presenting with ASIA A grade injury and showed decreasing trends towards ASIA E grade injury. Patients showing neurological recovery over the period of hospital stay and long term follow up had lower mean MCC, MSCC, and lesion length as compared to patients showing no neurological recovery. The data was statistically significant with p value <.05. Conclusion: Cord hemorrhage and higher MCC, MSCC and lesion length has poor prognostic value in spine injury patients.

Keywords: spine injury, cord hemorrhage, cord contusion, MCC, MSCC, lesion length, ASIA grading

Procedia PDF Downloads 355
692 Study on Dynamic Stiffness Matching and Optimization Design Method of a Machine Tool

Authors: Lu Xi, Li Pan, Wen Mengmeng

Abstract:

The stiffness of each component has different influences on the stiffness of the machine tool. Taking the five-axis gantry machining center as an example, we made the modal analysis of the machine tool, followed by raising and lowering the stiffness of the pillar, slide plate, beam, ram and saddle so as to study the stiffness matching among these components on the standard of whether the stiffness of the modified machine tool changes more than 50% relative to the stiffness of the original machine tool. The structural optimization of the machine tool can be realized by changing the stiffness of the components whose stiffness is mismatched. For example, the stiffness of the beam is mismatching. The natural frequencies of the first six orders of the beam increased by 7.70%, 0.38%, 6.82%, 7.96%, 18.72% and 23.13%, with the weight increased by 28Kg, leading to the natural frequencies of several orders which had a great influence on the dynamic performance of the whole machine increased by 1.44%, 0.43%, 0.065%, which verified the correctness of the optimization method based on stiffness matching proposed in this paper.

Keywords: machine tool, optimization, modal analysis, stiffness matching

Procedia PDF Downloads 101
691 CNC Milling-Drilling Machine Cutting Tool Holder

Authors: Hasan Al Dabbas

Abstract:

In this paper, it is addressed that the mechanical machinery captures a major share of innovation in drilling and milling chucks technology. Users demand higher speeds in milling because they are cutting more aluminum and are relying on higher speeds to eliminate secondary finishing operations. To meet that demand, milling-machine builders have enhanced their machine’s rigidity. Moreover, faster cutting has caught up with boring mills. Cooling these machine’s internal components is a challenge at high speeds. Another trend predicted that it is more use of controlled axes to let the machines do many more operations on 5 sides without having to move or re-fix the work. Advances of technology in mechanical engineering have helped to make high-speed machining equipment. To accompany these changes in milling and drilling machines chucks, the demand of easiest software is increased. An open architecture controller is being sought that would allow flexibility and information exchange.

Keywords: drilling, milling, chucks, cutting edges, tools, machines

Procedia PDF Downloads 572
690 Feasibility and Acceptability of an Emergency Department Digital Pain Self-Management Intervention: An Randomized Controlled Trial Pilot Study

Authors: Alexandria Carey, Angela Starkweather, Ann Horgas, Hwayoung Cho, Jason Beneciuk

Abstract:

Background/Significance: Over 3.4 million acute axial low back pain (aLBP) cases are treated annually in the United States (US) emergency departments (ED). ED patients with aLBP receive varying verbal and written discharge routine care (RC), leading to ineffective patient self-management. Ineffective self-management increase chronic low back pain (cLPB) transition risks, a chief cause of worldwide disability, with associated costs >$60 million annually. This research addresses this significant problem by evaluating an ED digital pain self-management intervention (EDPSI) focused on improving self-management through improved knowledge retainment, skills, and self-efficacy (confidence) (KSC) thus reducing aLBP to cLBP transition in ED patients discharged with aLBP. The research has significant potential to increase self-efficacy, one of the most potent mechanisms of behavior change and improve health outcomes. Focusing on accessibility and usability, the intervention may reduce discharge disparities in aLBP self-management, especially with low health literacy. Study Questions: This research will answer the following questions: 1) Will an EDPSI focused on improving KSC progress patient self-management behaviors and health status?; 2) Is the EDPSI sustainable to improve pain severity, interference, and pain recurrence?; 3) Will an EDPSI reduce aLBP to cLBP transition in patients discharged with aLBP? Aims: The pilot randomized-controlled trial (RCT) study’s objectives assess the effects of a 12-week digital self-management discharge tool in patients with aLBP. We aim to 1) Primarily assess the feasibility [recruitment, enrollment, and retention], and [intervention] acceptability, and sustainability of EDPSI on participant’s pain self-management; 2) Determine the effectiveness and sustainability of EDPSI on pain severity/interference among participants. 3) Explore patient preferences, health literacy, and changes among participants experiencing the transition to cLBP. We anticipate that EDPSI intervention will increase likelihood of achieving self-management milestones and significantly improve pain-related symptoms in aLBP. Methods: The study uses a two-group pilot RCT to enroll 30 individuals who have been seen in the ED with aLBP. Participants are randomized into RC (n=15) or RC + EDPSI (n=15) and receive follow-up surveys for 12-weeks post-intervention. EDPSI innovative content focuses on 1) highlighting discharge education; 2) provides self-management treatment options; 3) actor demonstration of ergonomics, range of motion movements, safety, and sleep; 4) complementary alternative medicine (CAM) options including acupuncture, yoga, and Pilates; 5) combination therapies including thermal application, spinal manipulation, and PT treatments. The intervention group receives Booster sessions via Zoom to assess and reinforce their knowledge retention of techniques and provide return demonstration reinforcing ergonomics, in weeks two and eight. Outcome Measures: All participants are followed for 12-weeks, assessing pain severity/ interference using the Brief Pain Inventory short-form (BPI-sf) survey, self-management (measuring KSC) using the short 13-item Patient Activation Measure (PAM), and self-efficacy using the Pain Self-Efficacy Questionnaire (PSEQ) weeks 1, 6, and 12. Feasibility is measured by recruitment, enrollment, and retention percentages. Acceptability and education satisfaction are measured using the Education-Preference and Satisfaction Questionnaire (EPSQ) post-intervention. Self-management sustainment is measured including PSEQ, PAM, and patient satisfaction and healthcare utilization (PSHU) requesting patient overall satisfaction, additional healthcare utilization, and pain management related to continued back pain or complications post-injury.

Keywords: digital, pain self-management, education, tool

Procedia PDF Downloads 49
689 Mn3O4 anchored Broccoli-Flower like Nickel Manganese Selenide Composite for Ultra-efficient Solid-State Hybrid Supercapacitors with Extended Durability

Authors: Siddhant Srivastav, Shilpa Singh, Sumanta Kumar Meher

Abstract:

Innovative renewable energy sources for energy storage/conversion is the demand of the current scenario in electrochemical machinery. In this context, choosing suitable organic precipitants for tuning the crystal characteristics and microstructures is a challenge. On the same note, herein we report broccoli flower-like porous Mn3O4/NiSe2−MnSe2 composite synthesized using a simple two step hydrothermal synthesis procedure assisted by sluggish precipitating agent and an effective cappant followed by intermediated anion exchange. The as-synthesized material was exposed to physical and chemical measurements depicting poly-crystallinity, stronger bonding and broccoli flower-like porous arrangement. The material was assessed electrochemically by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) measurements. The Electrochemical studies reveal redox behavior, supercapacitive charge-discharge shape and extremely low charge transfer resistance. Further, the fabricated Mn3O4/NiSe2−MnSe2 composite based solid-state hybrid supercapacitor (Mn3O4/NiSe2−MnSe2 ||N-rGO) delivers excellent rate specific capacity, very low internal resistance, with energy density (~34 W h kg–1) of a typical rechargeable battery and power density (11995 W kg–1) of an ultra-supercapacitor. Consequently, it can be a favorable contender for supercapacitor applications for high performance energy storage utilizations. A definitive exhibition of the supercapacitor device is credited to electrolyte-ion buffering reservior alike behavior of broccoli flower like Mn3O4/NiSe2−MnSe2, enhanced by upgraded electronic and ionic conductivities of N- doped rGO (negative electrode) and PVA/KOH gel (electrolyte separator), respectively

Keywords: electrolyte-ion buffering reservoir, intermediated-anion exchange, solid-state hybrid supercapacitor, supercapacitive charge-dischargesupercapacitive charge-discharge

Procedia PDF Downloads 75