Search results for: input dealers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2209

Search results for: input dealers

1789 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance

Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.

Keywords: machine learning, MR prostate, PI-Rads 3, radiomics

Procedia PDF Downloads 188
1788 Seismic Behaviour of RC Knee Joints in Closing and Opening Actions

Authors: S. Mogili, J. S. Kuang, N. Zhang

Abstract:

Knee joints, the beam column connections found at the roof level of a moment resisting frame buildings, are inherently different from conventional interior and exterior beam column connections in the way that forces from adjoining members are transferred into joint and then resisted by the joint. A knee connection has two distinct load resisting mechanisms, each for closing and opening actions acting simultaneously under reversed cyclic loading. In spite of many distinct differences in the behaviour of shear resistance in knee joints, there are no special design provisions in the major design codes available across the world due to lack of in-depth research on the knee connections. To understand the relative importance of opening and closing actions in design, it is imperative to study knee joints under varying shear stresses, especially at higher opening-to-closing shear stress ratios. Three knee joint specimens, under different input shear stresses, were designed to produce a varying ratio of input opening to closing shear stresses. The design was carried out in such a way that the ratio of flexural strength of beams with consideration of axial forces in opening to closing actions are maintained at 0.5, 0.7, and 1.0, thereby resulting in the required variation of opening to closing joint shear stress ratios among the specimens. The behaviour of these specimens was then carefully studied in terms of closing and opening capacities, hysteretic behaviour, and envelope curves to understand the differences in joint performance based on which an attempt to suggest design guidelines for knee joints is made emphasizing the relative importance of opening and closing actions. Specimens with relatively higher opening stresses were observed to be more vulnerable under the action of seismic loading.

Keywords: Knee-joints, large-scale testing, opening and closing shear stresses, seismic performance

Procedia PDF Downloads 221
1787 Commissioning, Test and Characterization of Low-Tar Biomass Gasifier for Rural Applications and Small-Scale Plant

Authors: M. Mashiur Rahman, Ulrik Birk Henriksen, Jesper Ahrenfeldt, Maria Puig Arnavat

Abstract:

Using biomass gasification to make producer gas is one of the promising sustainable energy options available for small scale plant and rural applications for power and electricity. Tar content in producer gas is the main problem if it is used directly as a fuel. A low-tar biomass (LTB) gasifier of approximately 30 kW capacity has been developed to solve this. Moving bed gasifier with internal recirculation of pyrolysis gas has been the basic principle of the LTB gasifier. The gasifier focuses on the concept of mixing the pyrolysis gases with gasifying air and burning the mixture in separate combustion chamber. Five tests were carried out with the use of wood pellets and wood chips separately, with moisture content of 9-34%. The LTB gasifier offers excellent opportunities for handling extremely low-tar in the producer gas. The gasifiers producer gas had an extremely low tar content of 21.2 mg/Nm³ (avg.) and an average lower heating value (LHV) of 4.69 MJ/Nm³. Tar content found in different tests in the ranges of 10.6-29.8 mg/Nm³. This low tar content makes the producer gas suitable for direct use in internal combustion engine. Using mass and energy balances, the average gasifier capacity and cold gas efficiency (CGE) observed 23.1 kW and 82.7% for wood chips, and 33.1 kW and 60.5% for wood pellets, respectively. Average heat loss in term of higher heating value (HHV) observed 3.2% of thermal input for wood chips and 1% for wood pellets, where heat loss was found 1% of thermal input in term of enthalpy. Thus, the LTB gasifier performs better compared to typical gasifiers in term of heat loss. Equivalence ratio (ER) in the range of 0.29 to 0.41 gives better performance in terms of heating value and CGE. The specific gas production yields at the above ER range were in the range of 2.1-3.2 Nm³/kg. Heating value and CGE changes proportionally with the producer gas yield. The average gas compositions (H₂-19%, CO-19%, CO₂-10%, CH₄-0.7% and N₂-51%) obtained for wood chips are higher than the typical producer gas composition. Again, the temperature profile of the LTB gasifier observed relatively low temperature compared to typical moving bed gasifier. The average partial oxidation zone temperature of 970°C observed for wood chips. The use of separate combustor in the partial oxidation zone substantially lowers the bed temperature to 750°C. During the test, the engine was started and operated completely with the producer gas. The engine operated well on the produced gas, and no deposits were observed in the engine afterwards. Part of the producer gas flow was used for engine operation, and corresponding electrical power was found to be 1.5 kW continuously, and maximum power of 2.5 kW was also observed, while maximum generator capacity is 3 kW. A thermodynamic equilibrium model is good agreement with the experimental results and correctly predicts the equilibrium bed temperature, gas composition, LHV of the producer gas and ER with the experimental data, when the heat loss of 4% of the energy input is considered.

Keywords: biomass gasification, low-tar biomass gasifier, tar elimination, engine, deposits, condensate

Procedia PDF Downloads 114
1786 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks

Authors: Ashkan Ebadi, Adam Krzyzak

Abstract:

Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.

Keywords: tourism, hotel recommender system, hybrid, implicit features

Procedia PDF Downloads 272
1785 VISMA: A Method for System Analysis in Early Lifecycle Phases

Authors: Walter Sebron, Hans Tschürtz, Peter Krebs

Abstract:

The choice of applicable analysis methods in safety or systems engineering depends on the depth of knowledge about a system, and on the respective lifecycle phase. However, the analysis method chain still shows gaps as it should support system analysis during the lifecycle of a system from a rough concept in pre-project phase until end-of-life. This paper’s goal is to discuss an analysis method, the VISSE Shell Model Analysis (VISMA) method, which aims at closing the gap in the early system lifecycle phases, like the conceptual or pre-project phase, or the project start phase. It was originally developed to aid in the definition of the system boundary of electronic system parts, like e.g. a control unit for a pump motor. Furthermore, it can be also applied to non-electronic system parts. The VISMA method is a graphical sketch-like method that stratifies a system and its parts in inner and outer shells, like the layers of an onion. It analyses a system in a two-step approach, from the innermost to the outermost components followed by the reverse direction. To ensure a complete view of a system and its environment, the VISMA should be performed by (multifunctional) development teams. To introduce the method, a set of rules and guidelines has been defined in order to enable a proper shell build-up. In the first step, the innermost system, named system under consideration (SUC), is selected, which is the focus of the subsequent analysis. Then, its directly adjacent components, responsible for providing input to and receiving output from the SUC, are identified. These components are the content of the first shell around the SUC. Next, the input and output components to the components in the first shell are identified and form the second shell around the first one. Continuing this way, shell by shell is added with its respective parts until the border of the complete system (external border) is reached. Last, two external shells are added to complete the system view, the environment and the use case shell. This system view is also stored for future use. In the second step, the shells are examined in the reverse direction (outside to inside) in order to remove superfluous components or subsystems. Input chains to the SUC, as well as output chains from the SUC are described graphically via arrows, to highlight functional chains through the system. As a result, this method offers a clear and graphical description and overview of a system, its main parts and environment; however, the focus still remains on a specific SUC. It helps to identify the interfaces and interfacing components of the SUC, as well as important external interfaces of the overall system. It supports the identification of the first internal and external hazard causes and causal chains. Additionally, the method promotes a holistic picture and cross-functional understanding of a system, its contributing parts, internal relationships and possible dangers within a multidisciplinary development team.

Keywords: analysis methods, functional safety, hazard identification, system and safety engineering, system boundary definition, system safety

Procedia PDF Downloads 224
1784 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model

Authors: A. Clementking, C. Jothi Venkateswaran

Abstract:

Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.

Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining

Procedia PDF Downloads 477
1783 Transient Simulation Using SPACE for ATLAS Facility to Investigate the Effect of Heat Loss on Major Parameters

Authors: Suhib A. Abu-Seini, Kyung-Doo Kim

Abstract:

A heat loss model for ATLAS facility was introduced using SPACE code predefined correlations and various dialing factors. As all previous simulations were carried out using a heat loss free input; the facility was considered to be completely insulated and the core power was reduced by the experimentally measured values of heat loss to compensate to the account for the loss of heat, this study will consider heat loss throughout the simulation. The new heat loss model will be affecting SPACE code simulation as heat being leaked out of the system throughout a transient will alter many parameters corresponding to temperature and temperature difference. For that, a Station Blackout followed by a multiple Steam Generator Tube Rupture accident will be simulated using both the insulated system approach and the newly introduced heat loss input of the steady state. Major parameters such as system temperatures, pressure values, and flow rates to be put into comparison and various analysis will be suggested upon it as the experimental values will not be the reference to validate the expected outcome. This study will not only show the significance of heat loss consideration in the processes of prevention and mitigation of various incidents, design basis and beyond accidents as it will give a detailed behavior of ATLAS facility during both processes of steady state and major transient, but will also present a verification of how credible the data acquired of ATLAS are; since heat loss values for steady state were already mismatched between SPACE simulation results and ATLAS data acquiring system. Acknowledgement- This work was supported by the Korean institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.

Keywords: ATLAS, heat loss, simulation, SPACE, station blackout, steam generator tube rupture, verification

Procedia PDF Downloads 224
1782 Rest API Based System-level Test Automation for Mobile Applications

Authors: Jisoo Song

Abstract:

Today’s mobile applications are communicating with servers more and more in order to access external services or information. Also, server-side code changes are more frequent than client-side code changes in a mobile application. The frequent changes lead to an increase in testing cost increase. To reduce costs, UI based test automation can be one of the solutions. It is a common automation technique in system-level testing. However, it can be unsuitable for mobile applications. When you automate tests based on UI elements for mobile applications, there are some limitations such as the overhead of script maintenance or the difficulty of finding invisible defects that UI elements cannot represent. To overcome these limitations, we present a new automation technique based on Rest API. You can automate system-level tests through test scripts that you write. These scripts call a series of Rest API in a user’s action sequence. This technique does not require testers to know the internal implementation details, only input and expected output of Rest API. You can easily modify test cases by modifying Rest API input values and also find problems that might not be evident from the UI level by validating output values. For example, when an application receives price information from a payment server and user cannot see it at UI level, Rest API based scripts can check whether price information is correct or not. More than 10 mobile applications at our company are being tested automatically based on Rest API scripts whenever application source code, mostly server source code, is built. We are finding defects right away by setting a script as a build job in CI server. The build job starts when application code builds are completed. This presentation will also include field cases from our company.

Keywords: case studies at SK Planet, introduction of rest API based test automation, limitations of UI based test automation

Procedia PDF Downloads 448
1781 Constitutional Identity: The Connection between National Constitutions and EU Law

Authors: Norbert Tribl

Abstract:

European contemporary scientific public opinion considers the concept of constitutional identity as a highlighted issue. Some scholars interpret the matter as the manifestation of a conflict of Europe. Nevertheless, constitutional identity is a bridge between the Member States and the EU rather than a river that will wash away the achievements of the integration. In accordance with the opinion of the author, the main problem of constitutional identity in Europe is the undetermined nature: the exact concept of constitutional identity has not been defined until now. However, this should be the first step to understand and use identity as a legal institution. Having regard to this undetermined nature, the legal-theoretical examination of constitutional identity is the main purpose of this study. The concept of constitutional identity appears in the Anglo-Saxon legal systems by a different approach than in the supranational system of European Integration. While the interpretation of legal institutions in conformity with the constitution is understood under it, the European concept is applied when possible conflicts arise between the legal system of the European supranational space and certain provisions of the national constitutions of the member states. The European concept of constitutional identity intends to offer input in determining the nature of the relationship between the constitutional provisions of the member states and the legal acts of the EU integration. In the EU system of multilevel constitutionalism, a long-standing central debate on integration surrounds the conflict between EU legal acts and the constitutional provisions of the member states. In spite of the fact that the Court of Justice of the European Union stated in Costa v. E.N.E.L. that the member states cannot refer to the provisions of their respective national constitutions against the integration. Based on the experience of more than 50 years since the above decision, and also in light of the Treaty of Lisbon, we now can clearly see that EU law has itself identified an obligation for the EU to protect the fundamental constitutional features of the Member States under Article 4 (2) of Treaty on European Union, by respecting the national identities of member states. In other words, the European concept intends to offer input for the determination of the nature of the relationship between the constitutional provisions of the member states and the legal acts of the EU integration.

Keywords: constitutional identity, EU law, European Integration, supranationalism

Procedia PDF Downloads 147
1780 Gas Flow, Time, Distance Dynamic Modelling

Authors: A. Abdul-Ameer

Abstract:

The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.

Keywords: pressure, distance, flow, dissipation, models

Procedia PDF Downloads 473
1779 Synthesis of Na-LSX Zeolite and Hydrosodalite from Polish Fly Ashes

Authors: Barbara Bialecka, Zdzislaw Adamczyk, Magdalena Cempa

Abstract:

In the work, the results of investigations into the hydrothermal zeolitization of fly ash from hard coal combustion in one of Polish Power Station have been presented. The chemical composition of the ash was determined by the method of X-ray fluorescence (XRF), whereas the phases of both fly ash and the products after synthesis were identified using microscopic observations, X-ray diffraction analysis (XRD) as well as electron scanning microscopy with measurements of the chemical compositions in micro areas (SEM/EDS). The synthesis was carried out with various concentrations of NaOH solution (3M, 4M and 6M) in the following conditions: synthesis temperature – 80ᵒC, synthesis time – 16 hours, volume of NaOH solution – 350ml, fly ash mass – 14g. The main chemical components of fly ash were SiO₂ and Al₂O₃, the contents of which reached 51.62 and 28.14%mas., respectively. The input ash contained mainly such phases as mullite, quarz, magnetite, and glass. The research results indicate that the phase composition of products after zeolitization was differentiated. The material after synthesis in 3M NaOH solution was found to contain mullite, quarz, magnetite, and Na-LSX zeolite. The products of synthesis in 4M NaOH solution were very similar to those in 3M solution (mullite, quarz, magnetite, Na-LSX zeolite), but they additionally contained hydrosodalite. The material after synthesis in 6M NaOH solution contains mullite, quarz, magnetite (similarly to synthesis in 3M and 4M NaOH solition) and additionally hydrosodalite. Therefore, the products of synthesis contain relic components from the fly ash input sample in the form of mullite, quarz, and magnetite, as well as new phases, which are Na-LSX zeolite and hydrosodalite. It should be noted that the products of synthesis in the case of 4M NaOH solution contained both new phases (Na-LSX zeolite and hydrosodalite), while the products from the extreme concentration of NaOH solutions (3M and 6M) contained only one of them. Observations in the scanning electron microscope revealed the new phases’ morphology. It was found that Na-LSX zeolite formed cubic crystals, whereas hydrosodalite formed characteristic aggregations. The results of investigations into the chemical composition in the micro area of phase grains in the products after synthesis reveal some dependencies, among others a characteristic increase in the content of sodium, related to the increased concentration of NaOH solution.

Keywords: Na-LSX, fly ash, hydrosodalite, zeolite

Procedia PDF Downloads 172
1778 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting

Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva

Abstract:

The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.

Keywords: dipole antenna, double-band, high efficiency, rectenna

Procedia PDF Downloads 124
1777 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia

Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman

Abstract:

Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.

Keywords: mechanistic-empirical pavement design guide (MEPDG), traffic characteristics, materials properties, climate, Riyadh

Procedia PDF Downloads 226
1776 Influence of Microstructure on Deformation Mechanisms and Mechanical Properties of Additively Manufactured Steel

Authors: Etienne Bonnaud, David Lindell

Abstract:

Correlations between microstructure, deformation mechanisms, and mechanical properties in additively manufactured 316L steel components have been investigated. Mechanical properties in the vertical direction (building direction) and in the horizontal direction (in plane directions) are markedly different. Vertically built specimens show lower yield stress but higher elongation than their horizontally built counterparts. Microscopic observations by electron back scattered diffraction (EBSD) for both build orientations reveal a strong [110] fiber texture in the build direction but different grain morphologies. These microstructures are used as input in subsequent crystal plasticity numerical simulations to understand their influence on the deformation mechanisms and the mechanical properties. Mean field simulations using a visco plastic self consistent (VPSC) model were carried out first but did not give results consistent with the tensile test experiments. A more detailed full-field model had to be used based on the Visco Plastic Fast Fourier Transform (VPFTT) method. A more accurate microstructure description was then input to the simulation model, where thin vertical regions of smaller grains were also taken into account. It turned out that these small grain clusters were responsible for the discrepancies in yield stress and hardening. Texture and morphology have a strong effect on mechanical properties. The different mechanical behaviors between vertically and horizontally printed specimens could be explained by means of numerical full-field crystal plasticity simulations, and the presence of thin clusters of smaller grains was shown to play a central role in the deformation mechanisms.

Keywords: additive manufacturing, crystal plasticity, full-field simulations, mean-field simulations, texture

Procedia PDF Downloads 70
1775 Effects of Changes in LULC on Hydrological Response in Upper Indus Basin

Authors: Ahmad Ammar, Umar Khan Khattak, Muhammad Majid

Abstract:

Empirically based lumped hydrologic models have an extensive track record of use for various watershed managements and flood related studies. This study focuses on the impacts of LULC change for 10 year period on the discharge in watershed using lumped model HEC-HMS. The Indus above Tarbela region acts as a source of the main flood events in the middle and lower portions of Indus because of the amount of rainfall and topographic setting of the region. The discharge pattern of the region is influenced by the LULC associated with it. In this study the Landsat TM images were used to do LULC analysis of the watershed. Satellite daily precipitation TRMM data was used as input rainfall. The input variables for model building in HEC-HMS were then calculated based on the GIS data collected and pre-processed in HEC-GeoHMS. SCS-CN was used as transform model, SCS unit hydrograph method was used as loss model and Muskingum was used as routing model. For discharge simulation years 2000 and 2010 were taken. HEC-HMS was calibrated for the year 2000 and then validated for 2010.The performance of the model was assessed through calibration and validation process and resulted R2=0.92 during calibration and validation. Relative Bias for the years 2000 was -9% and for2010 was -14%. The result shows that in 10 years the impact of LULC change on discharge has been negligible in the study area overall. One reason is that, the proportion of built-up area in the watershed, which is the main causative factor of change in discharge, is less than 1% of the total area. However, locally, the impact of development was found significant in built up area of Mansehra city. The analysis was done on Mansehra city sub-watershed with an area of about 16 km2 and has more than 13% built up area in 2010. The results showed that with an increase of 40% built-up area in the city from 2000 to 2010 the discharge values increased about 33 percent, indicating the impact of LULC change on discharge value.

Keywords: LULC change, HEC-HMS, Indus Above Tarbela, SCS-CN

Procedia PDF Downloads 512
1774 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 114
1773 Application of Multidimensional Model of Evaluating Organisational Performance in Moroccan Sport Clubs

Authors: Zineb Jibraili, Said Ouhadi, Jorge Arana

Abstract:

Introduction: Organizational performance is recognized by some theorists as one-dimensional concept, and by others as multidimensional. This concept, which is already difficult to apply in traditional companies, is even harder to identify, to measure and to manage when voluntary organizations are concerned, essentially because of the complexity of that form of organizations such as sport clubs who are characterized by the multiple goals and multiple constituencies. Indeed, the new culture of professionalization and modernization around organizational performance emerges new pressures from the state, sponsors, members and other stakeholders which have required these sport organizations to become more performance oriented, or to build their capacity in order to better manage their organizational performance. The evaluation of performance can be made by evaluating the input (e.g. available resources), throughput (e.g. processing of the input) and output (e.g. goals achieved) of the organization. In non-profit organizations (NPOs), questions of performance have become increasingly important in the world of practice. To our knowledge, most of studies used the same methods to evaluate the performance in NPSOs, but no recent study has proposed a club-specific model. Based on a review of the studies that specifically addressed the organizational performance (and effectiveness) of NPSOs at operational level, the present paper aims to provide a multidimensional framework in order to understand, analyse and measure organizational performance of sport clubs. This paper combines all dimensions founded in literature and chooses the most suited of them to our model that we will develop in Moroccan sport clubs case. Method: We propose to implicate our unified model of evaluating organizational performance that takes into account all the limitations found in the literature. On a sample of Moroccan sport clubs ‘Football, Basketball, Handball and Volleyball’, for this purpose we use a qualitative study. The sample of our study comprises data from sport clubs (football, basketball, handball, volleyball) participating on the first division of the professional football league over the period from 2011 to 2016. Each football club had to meet some specific criteria in order to be included in the sample: 1. Each club must have full financial data published in their annual financial statements, audited by an independent chartered accountant. 2. Each club must have sufficient data. Regarding their sport and financial performance. 3. Each club must have participated at least once in the 1st division of the professional football league. Result: The study showed that the dimensions that constitute the model exist in the field with some small modifications. The correlations between the different dimensions are positive. Discussion: The aim of this study is to test the unified model emerged from earlier and narrower approaches for Moroccan case. Using the input-throughput-output model for the sketch of efficiency, it was possible to identify and define five dimensions of organizational effectiveness applied to this field of study.

Keywords: organisational performance, model multidimensional, evaluation organizational performance, sport clubs

Procedia PDF Downloads 323
1772 Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW

Authors: Meena Agrawal, Chaitanya P. Agrawal

Abstract:

The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW.

Keywords: data acquisition and control, LabVIEW, microcontroller cRIO, Smart Micro-Grid

Procedia PDF Downloads 333
1771 A Neural Network for the Prediction of Contraction after Burn Injuries

Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen

Abstract:

A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.

Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound

Procedia PDF Downloads 55
1770 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
1769 Single Ion Transport with a Single-Layer Graphene Nanopore

Authors: Vishal V. R. Nandigana, Mohammad Heiranian, Narayana R. Aluru

Abstract:

Graphene material has found tremendous applications in water desalination, DNA sequencing and energy storage. Multiple nanopores are etched to create opening for water desalination and energy storage applications. The nanopores created are of the order of 3-5 nm allowing multiple ions to transport through the pore. In this paper, we present for the first time, molecular dynamics study of single ion transport, where only one ion passes through the graphene nanopore. The diameter of the graphene nanopore is of the same order as the hydration layers formed around each ion. Analogous to single electron transport resulting from ionic transport is observed for the first time. The current-voltage characteristics of such a device are similar to single electron transport in quantum dots. The current is blocked until a critical voltage, as the ions are trapped inside a hydration shell. The trapped ions have a high energy barrier compared to the applied input electrical voltage, preventing the ion to break free from the hydration shell. This region is called “Coulomb blockade region”. In this region, we observe zero transport of ions inside the nanopore. However, when the electrical voltage is beyond the critical voltage, the ion has sufficient energy to break free from the energy barrier created by the hydration shell to enter into the pore. Thus, the input voltage can control the transport of the ion inside the nanopore. The device therefore acts as a binary storage unit, storing 0 when no ion passes through the pore and storing 1 when a single ion passes through the pore. We therefore postulate that the device can be used for fluidic computing applications in chemistry and biology, mimicking a computer. Furthermore, the trapped ion stores a finite charge in the Coulomb blockade region; hence the device also acts a super capacitor.

Keywords: graphene nanomembrane, single ion transport, Coulomb blockade, nanofluidics

Procedia PDF Downloads 321
1768 An Empirical Study on the Integration of Listening and Speaking Activities with Writing Instruction for Middles School English Language Learners

Authors: Xueyan Hu, Liwen Chen, Weilin He, Sujie Peng

Abstract:

Writing is an important but challenging skill For English language learners. Due to the small amount of time allocated for writing classes at schools, students have relatively few opportunities to practice writing in the classroom. While the practice of integrating listening and speaking activates with writing instruction has been used for adult English language learners, its application for young English learners has seldom been examined due to the challenge of listening and speaking activities for young English language learners. The study attempted to integrating integrating listening and speaking activities with writing instruction for middle school English language learners so as to improving their writing achievements and writing abilities in terms of the word use, coherence, and complexity in their writings. Guided by Gagne's information processing learning theory and memetics, this study conducted a 8-week writing instruction with an experimental class (n=44) and a control class (n=48) . Students in the experimental class participated in a series of listening and retelling activities about a writing sample the teacher used for writing instruction during each period of writing class. Students in the control class were taught traditionally with teachers’ direction instruction using the writing sample. Using the ANCOVA analysis of the scores of students’ writing, word-use, Chinese-English translation and the text structure, this study showed that the experimental writing instruction can significantly improve students’ writing performance. Compared with the students in the control class, the students in experimental class had significant better performance in word use and complexity in their essays. This study provides useful enlightenment for the teaching of English writing for middle school English language learners. Teachers can skillfully use information technology to integrate listening, speaking, and writing teaching, considering students’ language input and output. Teachers need to select suitable and excellent composition templates for students to ensure their high-quality language input.

Keywords: wring instruction, retelling, English language learners, listening and speaking

Procedia PDF Downloads 82
1767 Concussion: Clinical and Vocational Outcomes from Sport Related Mild Traumatic Brain Injury

Authors: Jack Nash, Chris Simpson, Holly Hurn, Ronel Terblanche, Alan Mistlin

Abstract:

There is an increasing incidence of mild traumatic brain injury (mTBI) cases throughout sport and with this, a growing interest from governing bodies to ensure these are managed appropriately and player welfare is prioritised. The Berlin consensus statement on concussion in sport recommends a multidisciplinary approach when managing those patients who do not have full resolution of mTBI symptoms. There are as of yet no standardised guideline to follow in the treatment of complex cases mTBI in athletes. The aim of this project was to analyse the outcomes, both clinical and vocational, of all patients admitted to the mild Traumatic Brain Injury (mTBI) service at the UK’s Defence Military Rehabilitation Centre Headley Court between 1st June 2008 and 1st February 2017, as a result of a sport induced injury, and evaluate potential predictive indicators of outcome. Patients were identified from a database maintained by the mTBI service. Clinical and occupational outcomes were ascertained from medical and occupational employment records, recorded prospectively, at time of discharge from the mTBI service. Outcomes were graded based on the vocational independence scale (VIS) and clinical documentation at discharge. Predictive indicators including referral time, age at time of injury, previous mental health diagnosis and a financial claim in place at time of entry to service were assessed using logistic regression. 45 Patients were treated for sport-related mTBI during this time frame. Clinically 96% of patients had full resolution of their mTBI symptoms after input from the mTBI service. 51% of patients returned to work at their previous vocational level, 4% had ongoing mTBI symptoms, 22% had ongoing physical rehabilitation needs, 11% required mental health input and 11% required further vestibular rehabilitation. Neither age, time to referral, pre-existing mental health condition nor compensation seeking had a significant impact on either vocational or clinical outcome in this population. The vast majority of patients reviewed in the mTBI clinic had persistent symptoms which could not be managed in primary care. A consultant-led, multidisciplinary approach to the diagnosis and management of mTBI has resulted in excellent clinical outcomes in these complex cases. High levels of symptom resolution suggest that this referral and treatment pathway is successful and is a model which could be replicated in other organisations with consultant led input. Further understanding of both predictive and individual factors would allow clinicians to focus treatments on those who are most likely to develop long-term complications following mTBI. A consultant-led, multidisciplinary service ensures a large number of patients will have complete resolution of mTBI symptoms after sport-related mTBI. Further research is now required to ascertain the key predictive indicators of outcome following sport-related mTBI.

Keywords: brain injury, concussion, neurology, rehabilitation, sports injury

Procedia PDF Downloads 157
1766 The Effect of Soil-Structure Interaction on the Post-Earthquake Fire Performance of Structures

Authors: A. T. Al-Isawi, P. E. F. Collins

Abstract:

The behaviour of structures exposed to fire after an earthquake is not a new area of engineering research, but there remain a number of areas where further work is required. Such areas relate to the way in which seismic excitation is applied to a structure, taking into account the effect of soil-structure interaction (SSI) and the method of analysis, in addition to identifying the excitation load properties. The selection of earthquake data input for use in nonlinear analysis and the method of analysis are still challenging issues. Thus, realistic artificial ground motion input data must be developed to certify that site properties parameters adequately describe the effects of the nonlinear inelastic behaviour of the system and that the characteristics of these parameters are coherent with the characteristics of the target parameters. Conversely, ignoring the significance of some attributes, such as frequency content, soil site properties and earthquake parameters may lead to misleading results, due to the misinterpretation of required input data and the incorrect synthesise of analysis hypothesis. This paper presents a study of the post-earthquake fire (PEF) performance of a multi-storey steel-framed building resting on soft clay, taking into account the effects of the nonlinear inelastic behaviour of the structure and soil, and the soil-structure interaction (SSI). Structures subjected to an earthquake may experience various levels of damage; the geometrical damage, which indicates the change in the initial structure’s geometry due to the residual deformation as a result of plastic behaviour, and the mechanical damage which identifies the degradation of the mechanical properties of the structural elements involved in the plastic range of deformation. Consequently, the structure presumably experiences partial structural damage but is then exposed to fire under its new residual material properties, which may result in building failure caused by a decrease in fire resistance. This scenario would be more complicated if SSI was also considered. Indeed, most earthquake design codes ignore the probability of PEF as well as the effect that SSI has on the behaviour of structures, in order to simplify the analysis procedure. Therefore, the design of structures based on existing codes which neglect the importance of PEF and SSI can create a significant risk of structural failure. In order to examine the criteria for the behaviour of a structure under PEF conditions, a two-dimensional nonlinear elasto-plastic model is developed using ABAQUS software; the effects of SSI are included. Both geometrical and mechanical damages have been taken into account after the earthquake analysis step. For comparison, an identical model is also created, which does not include the effects of soil-structure interaction. It is shown that damage to structural elements is underestimated if SSI is not included in the analysis, and the maximum percentage reduction in fire resistance is detected in the case when SSI is included in the scenario. The results are validated using the literature.

Keywords: Abaqus Software, Finite Element Analysis, post-earthquake fire, seismic analysis, soil-structure interaction

Procedia PDF Downloads 121
1765 Legal Judgment Prediction through Indictments via Data Visualization in Chinese

Authors: Kuo-Chun Chien, Chia-Hui Chang, Ren-Der Sun

Abstract:

Legal Judgment Prediction (LJP) is a subtask for legal AI. Its main purpose is to use the facts of a case to predict the judgment result. In Taiwan's criminal procedure, when prosecutors complete the investigation of the case, they will decide whether to prosecute the suspect and which article of criminal law should be used based on the facts and evidence of the case. In this study, we collected 305,240 indictments from the public inquiry system of the procuratorate of the Ministry of Justice, which included 169 charges and 317 articles from 21 laws. We take the crime facts in the indictments as the main input to jointly learn the prediction model for law source, article, and charge simultaneously based on the pre-trained Bert model. For single article cases where the frequency of the charge and article are greater than 50, the prediction performance of law sources, articles, and charges reach 97.66, 92.22, and 60.52 macro-f1, respectively. To understand the big performance gap between articles and charges, we used a bipartite graph to visualize the relationship between the articles and charges, and found that the reason for the poor prediction performance was actually due to the wording precision. Some charges use the simplest words, while others may include the perpetrator or the result to make the charges more specific. For example, Article 284 of the Criminal Law may be indicted as “negligent injury”, "negligent death”, "business injury", "driving business injury", or "non-driving business injury". As another example, Article 10 of the Drug Hazard Control Regulations can be charged as “Drug Control Regulations” or “Drug Hazard Control Regulations”. In order to solve the above problems and more accurately predict the article and charge, we plan to include the article content or charge names in the input, and use the sentence-pair classification method for question-answer problems in the BERT model to improve the performance. We will also consider a sequence-to-sequence approach to charge prediction.

Keywords: legal judgment prediction, deep learning, natural language processing, BERT, data visualization

Procedia PDF Downloads 121
1764 Isolation Enhancement of Compact Dual-Band Printed Multiple Input Multiple Output Antenna for WLAN Applications

Authors: Adham M. Salah, Tariq A. Nagem, Raed A. Abd-Alhameed, James M. Noras

Abstract:

Recently, the demand for wireless communications systems to cover more than one frequency band (multi-band) with high data rate has been increased for both fixed and mobile services. Multiple Input Multiple Output (MIMO) technology is one of the significant solutions for attaining these requirements and to achieve the maximum channel capacity of the wireless communications systems. The main issue associated with MIMO antennas especially in portable devices is the compact space between the radiating elements which leads to limit the physical separation between them. This issue exacerbates the performance of the MIMO antennas by increasing the mutual coupling between the radiating elements. In other words, the mutual coupling will be stronger if the radiating elements of the MIMO antenna are closer. This paper presents a low–profile dual-band (2×1) MIMO antenna that works at 2.4GHz, 5.3GHz and 5.8GHz for wireless local area networks (WLAN) applications. A neutralization line (NL) technique for enhancing the isolation has been used by introducing a strip line with a length of λg/4 at the isolation frequency (2.4GHz) between the radiating elements. The overall dimensions of the antenna are 33.5 x 36 x 1.6 mm³. The fabricated prototype shows a good agreement between the simulated and measured results. The antenna impedance bandwidths are 2.38–2.75 GHz and 4.4–6 GHz for the lower and upper band respectively; the reflection coefficient and mutual coupling are better than -25 dB in both lower and higher bands. The MIMO antenna performance characteristics are reported in terms of the scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient, capacity loss, antenna gain, and radiation patterns. Analysis of these characteristics indicates that the design is appropriate for the WLAN terminal applications.

Keywords: ECC, neutralization line, MIMO antenna, multi-band, mutual coupling, WLAN

Procedia PDF Downloads 133
1763 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery

Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas

Abstract:

The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.

Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition

Procedia PDF Downloads 150
1762 High Input Driven Factors in Idea Campaigns in Large Organizations: A Case Depicting Best Practices

Authors: Babar Rasheed, Saad Ghafoor

Abstract:

Introduction: Idea campaigns are commonly held across organizations for generating employee engagement. The contribution is specifically designed to identify and solve prevalent issues. It is argued that numerous organizations fail to achieve their desired goals despite arranging for such campaigns and investing heavily in them. There are however practices that organizations use to achieve higher degree of effectiveness, and these practices may be up for exploration by research to make them usable for the other organizations. Purpose: The aim of this research is to surface the idea management practices of a leading electric company with global operations. The study involves a large sized, multi site organization that is attributed to have added challenges in terms of managing ideas from employees, in comparison to smaller organizations. The study aims to highlight the factors that are looked at as the idea management team strategies for the campaign, sets terms and rewards for it, makes follow up with the employees and lastly, evaluate and award ideas. Methodology: The study is conducted in a leading electric appliance corporation that has a large number of employees and is based in numerous regions of the world. A total of 7 interviews are carried out involving the chief innovation officer, innovation manager and members of idea management and evaluation teams. The interviews are carried out either on Skype or in-person based on the availability of the interviewee. Findings: While this being a working paper and while the study is under way, it is anticipated that valuable information is being achieved about specific details on how idea management systems are governed and how idea campaigns are carried out. The findings may be particularly useful for innovation consultants as resources they can use to promote idea campaigning. The usefulness of the best practices highlighted as a result is, in any case, the most valuable output of this study.

Keywords: employee engagement, motivation, idea campaigns, large organizations, best practices, employees input, organizational output

Procedia PDF Downloads 173
1761 Contrasting Infrastructure Sharing and Resource Substitution Synergies Business Models

Authors: Robin Molinier

Abstract:

Industrial symbiosis (I.S) rely on two modes of cooperation that are infrastructure sharing and resource substitution to obtain economic and environmental benefits. The former consists in the intensification of use of an asset while the latter is based on the use of waste, fatal energy (and utilities) as alternatives to standard inputs. Both modes, in fact, rely on the shift from a business-as-usual functioning towards an alternative production system structure so that in a business point of view the distinction is not clear. In order to investigate the way those cooperation modes can be distinguished, we consider the stakeholders' interplay in the business model structure regarding their resources and requirements. For infrastructure sharing (following economic engineering literature) the cost function of capacity induces economies of scale so that demand pooling reduces global expanses. Grassroot investment sizing decision and the ex-post pricing strongly depends on the design optimization phase for capacity sizing whereas ex-post operational cost sharing minimizing budgets are less dependent upon production rates. Value is then mainly design driven. For resource substitution, synergies value stems from availability and is at risk regarding both supplier and user load profiles and market prices of the standard input. Baseline input purchasing cost reduction is thus more driven by the operational phase of the symbiosis and must be analyzed within the whole sourcing policy (including diversification strategies and expensive back-up replacement). Moreover, while resource substitution involves a chain of intermediate processors to match quality requirements, the infrastructure model relies on a single operator whose competencies allow to produce non-rival goods. Transaction costs appear higher in resource substitution synergies due to the high level of customization which induces asset specificity, and non-homogeneity following transaction costs economics arguments.

Keywords: business model, capacity, sourcing, synergies

Procedia PDF Downloads 174
1760 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors

Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller

Abstract:

In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.

Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault

Procedia PDF Downloads 53