Search results for: foundation stiffness
1650 Structural Analysis of Hole-Type Plate for Weight Lightening of Road Sign
Authors: Joon-Yeop Na, Sang-Keun Baik, Kyu-Soo Chong
Abstract:
Road sign sizes are related to their support and foundation, and the large-scale support that is generally installed at roadsides can cause inconvenience to pedestrians and damage the urban landscape. The most influential factor in determining the support and foundation of road signs is the wind load. In this study, we introduce a hole-type road sign to analyze its effects on reducing wind load. A hole-type road sign reduces the drag coefficient that is applied when considering the air and fluid resistance of a plate when the wind pressure is calculated, thus serving as an effective option for lightening the weights of road sign structures. A hole-type road sign is punctured with a perforator. Furthermore, the size of the holes and their distance is determined considering the damage to characters, the poor performance of reflective sheets, and legibility. For the calculation of the optimal specification of a hole-type road sign, we undertook a theoretical examination for reducing the wind loads on hole-type road signs, and analyzed the bending and reflectivity of sample road sign plates. The analytic results confirmed that a hole-type road sign sample that contains holes of 6 mm in diameter with a distance of 18 mm between the holes shows reflectivity closest to that of existing road signs; moreover, the average bending moment resulted in a reduction of 4.24%, and the support’s diameter is reduced by 40.2%.Keywords: hole type, road sign, weight lightening, wind load
Procedia PDF Downloads 5461649 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring
Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus
Abstract:
A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.Keywords: cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave
Procedia PDF Downloads 3451648 A Research on the Effect of Soil-Structure Interaction on the Dynamic Response of Symmetrical Reinforced Concrete Buildings
Authors: Adinew Gebremeskel Tizazu
Abstract:
The effect of soil-structure interaction on the dynamic response of reinforced concrete buildings of regular and symmetrical geometry are considered in this study. The structures are presumed to be generally embedded in a homogenous soil formation underlain by very stiff material or bedrock. The structure-foundation–soil system is excited at the base by an earthquake ground motion. The superstructure is idealized as a system with lumped masses concentrated at the floor levels, and coupled with the substructure. The substructure system, which comprises of the foundation and soil, is represented, and replaced by springs and dashpots. Frequency-dependent impedances of the foundation system are incorporated in the discrete model in terms of the springs and dashpots coefficients. The excitation applied to the model is field ground motions of actual earthquake records. Modal superposition principle is employed to transform the equations of motion in geometrical coordinates to modal coordinates. However, the modal equations remain coupled with respect to damping terms due to the difference in damping mechanisms of the superstructure and the soil. Hence, proportional damping for the coupled structural system may not be assumed. An iterative approach is adopted and programmed to solve the system of coupled equations of motion in modal coordinates to obtain the displacement responses of the system. Parametric studies for responses of building structures with regular and symmetric plans of different structural properties and heights are made for fixed and flexible base conditions, for different soil conditions encountered in Addis Ababa. The displacement, base shear and base overturning moments are used in the comparison of different types of structures for various foundation embedment depths, site conditions and height of structures. These values are compared against those of fixed base structure. The study shows that the flexible base structures, generally exhibit different responses from those structures with fixed base. Basically, the natural circular frequencies, the base shears and the inter-story displacements for the flexible base are less than those of the fixed base structures. This trend is particularly evident when the flexible soil has large thickness. In contrast, the trend becomes less predictable, when the thickness of the flexible soil decreases. Moreover, in the latter case, the iteration undulates significantly making the prediction difficult. This is attributed to the highly jagged nature of the impedance functions of frequencies for such formations. In this case, it is difficult to conclude whether the conventional fixed-base approach yields conservative design forces, as is the case for soil formations of large thickness.Keywords: effect of soil structure, dynamic response corroborated, the modal superposition principle, parametric studies
Procedia PDF Downloads 321647 Optimization of Sodium Lauryl Surfactant Concentration for Nanoparticle Production
Authors: Oluwatoyin Joseph Gbadeyan, Sarp Adali, Bright Glen, Bruce Sithole
Abstract:
Sodium lauryl surfactant concentration optimization, for nanoparticle production, provided the platform for advanced research studies. Different concentrations (0.05 %, 0.1 %, and 0.2 %) of sodium lauryl surfactant was added to snail shells powder during milling processes for producing CaCO3 at smaller particle size. Epoxy nanocomposites prepared at filler content 2 wt.% synthesized with different volumes of sodium lauryl surfactant were fabricated using a conventional resin casting method. Mechanical properties such as tensile strength, stiffness, and hardness of prepared nanocomposites was investigated to determine the effect of sodium lauryl surfactant concentration on nanocomposite properties. It was observed that the loading of the synthesized nano-calcium carbonate improved the mechanical properties of neat epoxy at lower concentrations of sodium lauryl surfactant 0.05 %. Meaningfully, loading of achatina fulica snail shell nanoparticles manufactures, with small concentrations of sodium lauryl surfactant 0.05 %, increased the neat epoxy tensile strength by 26%, stiffness by 55%, and hardness by 38%. Homogeneous dispersion facilitated, by the addition of sodium lauryl surfactant during milling processes, improved mechanical properties. Research evidence suggests that nano-CaCO3, synthesized from achatina fulica snail shell, possesses suitable reinforcement properties that can be used for nanocomposite fabrication. The evidence showed that adding small concentrations of sodium lauryl surfactant 0.05 %, improved dispersion of nanoparticles in polymetrix material that provided mechanical properties improvement.Keywords: sodium lauryl surfactant, mechanical properties , achatina fulica snail shel, calcium carbonate nanopowder
Procedia PDF Downloads 1431646 Exploring the Career Experiences of Internationally Recruited Nurses at the Royal Berkshire NHS Foundation Trust
Authors: Natalie Preville, Carlos Joel Mejia-Olivares
Abstract:
In the UK, since the early 1950s when the NHS was founded, international staff in the NHS have played an important role. Currently, they represent 16% of the workforce within the NHS in the UK. Furthermore, to address the shortfalls in nursing staff, international recruitment programs have been essential to reduce the gaps in the UK nursing workforce over the last two decades. The NHS Long Term Plan (2019) aims to have a significant reduction of nursing vacancies to 5% by 2028. However, in 2021 and 2022, Workforce Race Equality Standards (WRES) reports stated that there is inequitable Career Progression (CP) among Internationally Recruited (IR) nurses as compared to British counterparts. In addition, there is sufficient literature exploring the motives and lived experiences of IR nurses, which underpins the findings. Therefore, the overall aim of this report is to conduct a scoping project to understand the experiences of the IR nurses who joined the NHS in the South East of England within the last 5 years. Methodology- This document is based on the data from a survey developed by Royal Berkshire NHS Foundation Trust using Microsoft forms and consisted of 23 questions divided into four themes, staff background, career experience, career progression and future career plans within Royal Berkshire NHS Foundation Trust. The descriptive analysis provided the initial analysis of the quantitative data. As a result, 44 responses were collected and evaluated by utilising Microsoft excel. Key findings: Career experiences; 72% of respondents felt that their current role was a good fit, and in a subsequent question, the main reason cited was having “relevant skills”. This indicates that, for the most part, the prior experience of IR nurses is a large factor in their placement, which is viewed positively; the next step is to effectively apply similar relevance in aligning prior experience with career progression opportunities. Moreover, 67% of respondents feel valued by the department/team, which is a great reflection of the values of the Trust being demonstrated towards IR Nurses. However, further studies may be necessary to explore the reasons why the remaining 33% may not feel valued; this can include having a better understanding of cultural perceptions of value. Perceived Barriers: Although 37% of respondents had been promoted since commencing employment with the Trust, the data indicates that there is still room for CP opportunities, as it is the leading barrier reported by the respondents. Secondly, the growing mix of cultures within the nursing workforce gives the appearance of inclusion. However, this is not the experience of some IR nurses. Conclusion statemen: Survey results indicate that this NHS Trust has an excellent foundation to integrate international nurses into their workforce with scope for career progression in a reasonable timeframe. However, it would be recommendable to include fast-tracking career promotions by recognizing previous studies and professional experience. Further exploration of staff career experiences and goals may provide additional useful data for future planning.Keywords: career progression, International nurses, perceived barriers, staff survey
Procedia PDF Downloads 771645 Influence of the Quality Differences in the Same Type of Bitumen and Dosage Rate of Reclaimed Asphalt on Lifetime
Authors: Pahirangan Sivapatham, , Esser Barbara
Abstract:
The impacts of the asphalt mix design, the properties of aggregates and quality differences in the same type of bitumen, as well as the dosage rate of reclaimed asphalt on the relevant material parameter of the analytical pavement design method are not known. Due to that, in this study, the influence of the above mentioned characteristics on relevant material parameters has been determined and analyzed by means of the analytical pavement calculations method. Therefore, material parameters for several asphalt mixes for asphalt wearing course, asphalt binder course and asphalt base course have been determined. Thereby several bitumens of the same type from different producer’s have been used. In addition, asphalt base course materials with three different dosages of reclaimed asphalt have been produced and tested. As material parameter according to the German analytical pavement design guide(RDO Asphalt), the stiffness’s at different temperatures and fatigue behavior have been determined. The findings of asphalt base course materials produced with several pen graded bitumen from different producers and different dosages of reclaimed asphalt indicate the distinct impact on fatigue behaviors and mechanical properties. The calculated test results of the analytical pavement design method show significant differences in the lifetimes. The pavement design calculation is to carry out by means of the actual material parameter. The calculated lifetime of the asphalt base course materials differentiates by the factor 3.2. The determining test results of bitumen characteristics meet the requirement according to the German Standards. But, further investigations of bitumen in different aging conditions show significant differences in their quality. The fatigue behavior and stiffness of asphalt pavement improves with increasing dosage of reclaimed asphalt. Furthermore, the type of aggregates used shows no significant influences.Keywords: reclaimed asphalt pavement, quality differences in the bitumen, life time calculation, Asphalt mix with RAP
Procedia PDF Downloads 1881644 Case Study; Drilled Shafts Installation in Difficult Site Conditions; Loose Sand and High Water Table
Authors: Anthony El Hachem, Hosam Salman
Abstract:
Selecting the most effective construction method for drilled shafts under the high phreatic surface can be a challenging task that requires effective communication between the design and construction teams. Slurry placement, temporary casing, and permanent casing are the three most commonly used installation techniques to ensure the stability of the drilled hole before casting the concrete. Each one of these methods has its implications on the installation and performance of the drilled piers. Drilled shafts were designed to support a fire wall for an Energy project in Central Texas. The subsurface consisted of interlayers of sands and clays of varying shear strengths. The design recommended that the shafts be installed with temporary casing or slurry displacement due to the anticipated groundwater seepage through granular soils. During the foundation construction, it was very difficult to maintain the stability of the hole, and the contractor requested to install the shafts using permanent casings. Therefore, the foundation design was modified to ensure that the cased shafts achieve the required load capacity. Effective and continuous communications between the owner, contractor and design team during field shaft installations to mitigate the unforeseen challenges helped the team to successfully complete the project.Keywords: construction challenges, deep foundations, drilled shafts, loose sands underwater table, permanent casing
Procedia PDF Downloads 1921643 The School Governing Council as the Impetus for Collaborative Education Governance: A Case Study of Two Benguet Municipalities in the Highlands of Northern Philippines
Authors: Maria Consuelo Doble
Abstract:
For decades, basic public education in the Philippines has been beleaguered by a governance scenario of multi-layered decision-making and the lack of collaboration between sectors in addressing issues on poor access to schools, high dropout rates, low survival rates, and poor student performance. These chronic problems persisted despite multiple efforts making it appear that the education system is incapable of reforming itself. In the mountainous rural towns of La Trinidad and Tuba, in the province of Benguet in Northern Philippines, collaborative education governance was catalyzed by the intervention of Synergeia Foundation, a coalition made up of individuals, institutions and organizations that aim to improve the quality of education in the Philippines. Its major thrust is to empower the major stakeholders at the community level to make education work by building the capacities of School Governing Councils (SGCs). Although mandated by the Department of Education in 2006, the SGCs in Philippine public elementary schools remained dysfunctional. After one year of capacity-building by Synergeia Foundation, some SGCs are already exhibiting active community-based multi-sectoral collaboration, while there are many that are not. With the myriad of factors hindering collaboration, Synergeia Foundation is now confronted with the pressing question: What are the factors that promote collaborative governance in the SGCs so that they can address the education-related issues that they are facing? Using Emerson’s (2011) framework on collaborative governance, this study analyzes the application of collaborative governance by highly-functioning SGCs in the public elementary schools of Tuba and La Trinidad. Findings of this action research indicate how the dynamics of collaboration composed of three interactive and iterative components – principled engagement, shared motivation and capacity for joint action – have resulted in meaningful short-term impact such as stakeholder engagement and decreased a number of dropouts. The change in the behavior of stakeholders is indicative of adaptation to a more collaborative approach in governing education in Benguet highland settings such as Tuba and La Trinidad.Keywords: basic public education, Benguet highlands, collaborative governance, School Governing Council
Procedia PDF Downloads 2901642 Strategic Shear Wall Arrangement in Buildings under Seismic Loads
Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili
Abstract:
Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range.Keywords: nonlinear analyses, pushover analysis, shear wall, plastic hinge, performance level
Procedia PDF Downloads 501641 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car
Authors: Erik Vassøy Olsen, Hirpa G. Lemu
Abstract:
Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat race car they have designed and built. The design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has a direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from the University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the above-mentioned requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of a possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with an equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.Keywords: composite material, Formula student, ION racing, monocoque design, structural equivalence
Procedia PDF Downloads 5011640 Protecting Migrants at Risk as Internally Displaced Persons: State Responses to Foreign Immigrants Displaced by Natural Disasters in Thailand, The United States, and Japan
Authors: Toake Endoh
Abstract:
Cross-border migration of people is a critical driver for sustainable economic development in the Asia-Pacific region. Meanwhile, the region is susceptible to mega-scale natural disasters, such as tsunami, earthquakes, and typhoons. When migrants are stranded in a foreign country by a disaster, who should be responsible for their safety and security? What legal or moral foundation is there to advocate for the protection and assistance of “migrants at risk (M@R)”? How can the states practice “good governance” in their response to displacement of the foreign migrants? This paper inquires how to protect foreign migrants displaced by a natural disaster under international law and proposes protective actions to be taken by of migrant-receiver governments. First, the paper discusses the theoretical foundation for protection of M@R and argues that the nation-states are charged of responsibility to protect at-risk foreigners as “internally displaced persons” in the light of the United Nations’ Guiding Principles of Internal Displacement (1998). Second, through the case study of the Kobe Earthquake in Japan (1995), the Tsunami in Thailand (2004), and the Hurricane Katrina in the U.S. (2005), the paper evaluates how effectively (or poorly) institutions and state actors addressed the specific vulnerability felt by M@R in these crises.Keywords: internal displaced persons, natural disaster, international migration, responsibility to protect
Procedia PDF Downloads 3181639 A Finite Element Analysis of Hexagonal Double-Arrowhead Auxetic Structure with Enhanced Energy Absorption Characteristics and Stiffness
Abstract:
Auxetic materials, as an emerging artificial designed metamaterial has attracted growing attention due to their promising negative Poisson’s ratio behaviors and tunable properties. The conventional auxetic lattice structures for which the deformation process is governed by a bending-dominated mechanism have faced the limitation of poor mechanical performance for many potential engineering applications. Recently, both load-bearing and energy absorption capabilities have become a crucial consideration in auxetic structure design. This study reports the finite element analysis of a class of hexagonal double-arrowhead auxetic structures with enhanced stiffness and energy absorption performance. The structure design was developed by extending the traditional double-arrowhead honeycomb to a hexagon frame, the stretching-dominated deformation mechanism was determined according to Maxwell’s stability criterion. The finite element (FE) models of 2D lattice structures established with stainless steel material were analyzed in ABAQUS/Standard for predicting in-plane structural deformation mechanism, failure process, and compressive elastic properties. Based on the computational simulation, the parametric analysis was studied to investigate the effect of the structural parameters on Poisson’s ratio and mechanical properties. The geometrical optimization was then implemented to achieve the optimal Poisson’s ratio for the maximum specific energy absorption. In addition, the optimized 2D lattice structure was correspondingly converted into a 3D geometry configuration by using the orthogonally splicing method. The numerical results of 2D and 3D structures under compressive quasi-static loading conditions were compared separately with the traditional double-arrowhead re-entrant honeycomb in terms of specific Young's moduli, Poisson's ratios, and specified energy absorption. As a result, the energy absorption capability and stiffness are significantly reinforced with a wide range of Poisson’s ratio compared to traditional double-arrowhead re-entrant honeycomb. The auxetic behaviors, energy absorption capability, and yield strength of the proposed structure are adjustable with different combinations of joint angle, struts thickness, and the length-width ratio of the representative unit cell. The numerical prediction in this study suggests the proposed concept of hexagonal double-arrowhead structure could be a suitable candidate for the energy absorption applications with a constant request of load-bearing capacity. For future research, experimental analysis is required for the validation of the numerical simulation.Keywords: auxetic, energy absorption capacity, finite element analysis, negative Poisson's ratio, re-entrant hexagonal honeycomb
Procedia PDF Downloads 871638 The Current State Of Human Gait Simulator Development
Authors: Stepanov Ivan, Musalimov Viktor, Monahov Uriy
Abstract:
This report examines the current state of human gait simulator development based on the human hip joint model. This unit will create a database of human gait types, useful for setting up and calibrating mechano devices, as well as the creation of new systems of rehabilitation, exoskeletons and walking robots. The system has ample opportunity to configure the dimensions and stiffness, while maintaining relative simplicity.Keywords: hip joint, human gait, physiotherapy, simulation
Procedia PDF Downloads 4061637 Collocation Errors Made by Saudi Learners of English
Authors: Pakenam Shiha, Nadine Lacsina
Abstract:
Systematic and in-depth analysis of ESL learners’ lexical errors, in general, and of collocation errors, in particular, are relatively rare. Analysis as such proves crucial in understanding how ESL learners construct and use these fixed expressions. Collocational competence of ESL learners is necessary for achieving a native-like proficiency level, which is one of the objectives of foundation programs. This study aims to examine the collocational competence of 50 Saudi foundation program students and identify the collocation errors that they often make. Furthermore, using a questionnaire, the challenges that students encounter in learning collocations and the ways in which their L1 affects their ability to recognize these expressions are identified. To identify the lexical errors and the collocational competence of the students a collocation test was administered. The 150-item lexical collocation test consists of verb-noun and adjective-noun structures. Results of the study reveal that there is a significant difference between the scores of students in the verb-noun and adjective-noun structures. The majority of errors were recorded in the adjective-noun structures due to the students’ L1 influence on the English collocations and the inability to distinguish between synonyms. Moreover, some challenges that students encountered were problems in translation, non-exposure to certain collocations, and degree of L1-L2 difference. All in all, the findings of this study can be interpreted in relation to the student's proficiency level and L2 instruction. Other findings of the study provide insights into language pedagogy—specifically strategies to help students learn collocations more effectively.Keywords: collocations, ESL, applied linguistics, lexical collocations
Procedia PDF Downloads 1221636 Use of FWD in Determination of Bonding Condition of Semi-Rigid Asphalt Pavement
Authors: Nonde Lushinga, Jiang Xin, Danstan Chiponde, Lawrence P. Mutale
Abstract:
In this paper, falling weight deflectometer (FWD) was used to determine the bonding condition of a newly constructed semi-rigid base pavement. Using Evercal back-calculation computer programme, it was possible to quickly and accurately determine the structural condition of the pavement system of FWD test data. The bonding condition of the pavement layers was determined from calculated shear stresses and strains (relative horizontal displacements) on the interface of pavement layers from BISAR 3.0 pavement computer programmes. Thus, by using non-linear layered elastic theory, a pavement structure is analysed in the same way as other civil engineering structures. From non-destructive FWD testing, the required bonding condition of pavement layers was quantified from soundly based principles of Goodman’s constitutive models shown in equation 2, thereby producing the shear reaction modulus (Ks) which gives an indication of bonding state of pavement layers. Furthermore, a Tack coat failure Ratio (TFR) which has long being used in the USA in pavement evaluation was also used in the study in order to give validity to the study. According to research [39], the interface between two asphalt layers is determined by use of Tack Coat failure Ratio (TFR) which is the ratio of the stiffness of top layer asphalt layers over the stiffness of the second asphalt layer (E1/E2) in a slipped pavement. TFR gives an indication of the strength of the tack coat which is the main determinants of interlayer slipping. The criteria is that if the interface was in the state full bond, TFR would be greater or equals to 1 and that if the TFR was 0, meant full slip. Results of the calculations showed that TFR value was 1.81 which re-affirmed the position that the pavement under study was in the state of full bond because the value was greater than 1. It was concluded that FWD can be used to determine bonding condition of existing and newly constructed pavements.Keywords: falling weight deflectometer (FWD), backcaluclation, semi-rigid base pavement, shear reaction modulus
Procedia PDF Downloads 5141635 The Impact of Board Director Characteristics on the Quality of Information Disclosure
Authors: Guo Jinhong
Abstract:
The purpose of this study is to explore the association between board member functions and information disclosure levels. Based on the literature variables, such as the characteristics of the board of directors in the past, a single comprehensive indicator is established as a substitute variable for board functions, and the information disclosure evaluation results published by the Securities and Foundation are used to measure the information disclosure level of the company. This study focuses on companies listed on the Taiwan Stock Exchange from 2006 to 2010 and uses descriptive statistical analysis, univariate analysis, correlation analysis and ordered normal probability (Ordered Probit) regression for empirical analysis. The empirical results show that there is a significant positive correlation between the function of board members and the level of information disclosure. This study also conducts a sensitivity test and draws similar conclusions, showing that boards with better board member functions have higher levels of information disclosure. In addition, this study also found that higher board independence, lower director shareholding pledge ratio, higher director shareholding ratio, and directors with rich professional knowledge and practical experience can help improve the level of information disclosure. The empirical results of this study provide strong support for the "relative regulations to improve the level of information disclosure" formulated by the competent authorities in recent years.Keywords: function of board members, information disclosure, securities, foundation
Procedia PDF Downloads 971634 Dynamic Test for Stability of Columns in Sway Mode
Authors: Elia Efraim, Boris Blostotsky
Abstract:
Testing of columns in sway mode is performed in order to determine the maximal allowable load limited by plastic deformations or their end connections and a critical load limited by columns stability. Motivation to determine accurate value of critical force is caused by its using as follow: - critical load is maximal allowable load for given column configuration and can be used as criterion of perfection; - it is used in calculation prescribed by standards for design of structural elements under combined action of compression and bending; - it is used for verification of theoretical analysis of stability at various end conditions of columns. In the present work a new non-destructive method for determination of columns critical buckling load in sway mode is proposed. The method allows performing measurements during the tests under loads that exceeds the columns critical load without losing its stability. The possibility of such loading is achieved by structure of the loading system. The system is performed as frame with rigid girder, one of the columns is the tested column and the other is additional two-hinged strut. Loading of the frame is carried out by the flexible traction element attached to the girder. The load applied on the tested column can achieve values that exceed the critical load by choice of parameters of the traction element and the additional strut. The system lateral stiffness and the column critical load are obtained by the dynamic method. The experiment planning and the comparison between the experimental and theoretical values were performed based on the developed dependency of lateral stiffness of the system on vertical load, taking into account semi-rigid connections of the column's ends. The agreement between the obtained results was established. The method can be used for testing of real full-size columns in industrial conditions.Keywords: buckling, columns, dynamic method, end-fixity factor, sway mode
Procedia PDF Downloads 3511633 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints
Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno
Abstract:
Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.Keywords: battery energy storage, power system stability, system strength, weak power system
Procedia PDF Downloads 611632 Examination of Porcine Gastric Biomechanics in the Antrum Region
Authors: Sif J. Friis, Mette Poulsen, Torben Strom Hansen, Peter Herskind, Jens V. Nygaard
Abstract:
Gastric biomechanics governs a large range of scientific and engineering fields, from gastric health issues to interaction mechanisms between external devices and the tissue. Determination of mechanical properties of the stomach is, thus, crucial, both for understanding gastric pathologies as well as for the development of medical concepts and device designs. Although the field of gastric biomechanics is emerging, advances within medical devices interacting with the gastric tissue could greatly benefit from an increased understanding of tissue anisotropy and heterogeneity. Thus, in this study, uniaxial tensile tests of gastric tissue were executed in order to study biomechanical properties within the same individual as well as across individuals. With biomechanical tests in the strain domain, tissue from the antrum region of six porcine stomachs was tested using eight samples from each stomach (n = 48). The samples were cut so that they followed dominant fiber orientations. Accordingly, from each stomach, four samples were longitudinally oriented, and four samples were circumferentially oriented. A step-wise stress relaxation test with five incremental steps up to 25 % strain with 200 s rest periods for each step was performed, followed by a 25 % strain ramp test with three different strain rates. Theoretical analysis of the data provided stress-strain/time curves as well as 20 material parameters (e.g., stiffness coefficients, dissipative energy densities, and relaxation time coefficients) used for statistical comparisons between samples from the same stomach as well as in between stomachs. Results showed that, for the 20 material parameters, heterogeneity across individuals, when extracting samples from the same area, was in the same order of variation as the samples within the same stomach. For samples from the same stomach, the mean deviation percentage for all 20 parameters was 21 % and 18 % for longitudinal and circumferential orientations, compared to 25 % and 19 %, respectively, for samples across individuals. This observation was also supported by a nonparametric one-way ANOVA analysis, where results showed that the 20 material parameters from each of the six stomachs came from the same distribution with a level of statistical significance of P > 0.05. Direction-dependency was also examined, and it was found that the maximum stress for longitudinal samples was significantly higher than for circumferential samples. However, there were no significant differences in the 20 material parameters, with the exception of the equilibrium stiffness coefficient (P = 0.0039) and two other stiffness coefficients found from the relaxation tests (P = 0.0065, 0.0374). Nor did the stomach tissue show any significant differences between the three strain-rates used in the ramp test. Heterogeneity within the same region has not been examined earlier, yet, the importance of the sampling area has been demonstrated in this study. All material parameters found are essential to understand the passive mechanics of the stomach and may be used for mathematical and computational modeling. Additionally, an extension of the protocol used may be relevant for compiling a comparative study between the human stomach and the pig stomach.Keywords: antrum region, gastric biomechanics, loading-unloading, stress relaxation, uniaxial tensile testing
Procedia PDF Downloads 4301631 Analyzing the Effects of Bio-fibers on the Stiffness and Strength of Adhesively Bonded Thermoplastic Bio-fiber Reinforced Composites by a Mixed Experimental-Numerical Approach
Authors: Sofie Verstraete, Stijn Debruyne, Frederik Desplentere
Abstract:
Considering environmental issues, the interest to apply sustainable materials in industry increases. Specifically for composites, there is an emerging need for suitable materials and bonding techniques. As an alternative to traditional composites, short bio-fiber (cellulose-based flax) reinforced Polylactic Acid (PLA) is gaining popularity. However, these thermoplastic based composites show issues in adhesive bonding. This research focusses on analyzing the effects of the fibers near the bonding interphase. The research applies injection molded plate structures. A first important parameter concerns the fiber volume fraction, which directly affects adhesion characteristics of the surface. This parameter is varied between 0 (pure PLA) and 30%. Next to fiber volume fraction, the orientation of fibers near the bonding surface governs the adhesion characteristics of the injection molded parts. This parameter is not directly controlled in this work, but its effects are analyzed. Surface roughness also greatly determines surface wettability, thus adhesion. Therefore, this research work considers three different roughness conditions. Different mechanical treatments yield values up to 0.5 mm. In this preliminary research, only one adhesive type is considered. This is a two-part epoxy which is cured at 23 °C for 48 hours. In order to assure a dedicated parametric study, simple and reproduceable adhesive bonds are manufactured. Both single lap (substrate width 25 mm, thickness 3 mm, overlap length 10 mm) and double lap tests are considered since these are well documented and quite straightforward to conduct. These tests are conducted for the different substrate and surface conditions. Dog bone tensile testing is applied to retrieve the stiffness and strength characteristics of the substrates (with different fiber volume fractions). Numerical modelling (non-linear FEA) relates the effects of the considered parameters on the stiffness and strength of the different joints, obtained through the abovementioned tests. Ongoing work deals with developing dedicated numerical models, incorporating the different considered adhesion parameters. Although this work is the start of an extensive research project on the bonding characteristics of thermoplastic bio-fiber reinforced composites, some interesting results are already prominent. Firstly, a clear correlation between the surface roughness and the wettability of the substrates is observed. Given the adhesive type (and viscosity), it is noticed that an increase in surface energy is proportional to the surface roughness, to some extent. This becomes more pronounced when fiber volume fraction increases. Secondly, ultimate bond strength (single lap) also increases with increasing fiber volume fraction. On a macroscopic level, this confirms the positive effect of fibers near the adhesive bond line.Keywords: adhesive bonding, bio-fiber reinforced composite, flax fibers, lap joint
Procedia PDF Downloads 1271630 Dynamic Test for Sway-Mode Buckling of Columns
Authors: Boris Blostotsky, Elia Efraim
Abstract:
Testing of columns in sway mode is performed in order to determine the maximal allowable load limited by plastic deformations or their end connections and a critical load limited by columns stability. Motivation to determine accurate value of critical force is caused by its using as follow: - critical load is maximal allowable load for given column configuration and can be used as criterion of perfection; - it is used in calculation prescribed by standards for design of structural elements under combined action of compression and bending; - it is used for verification of theoretical analysis of stability at various end conditions of columns. In the present work a new non-destructive method for determination of columns critical buckling load in sway mode is proposed. The method allows performing measurements during the tests under loads that exceeds the columns critical load without losing its stability. The possibility of such loading is achieved by structure of the loading system. The system is performed as frame with rigid girder, one of the columns is the tested column and the other is additional two-hinged strut. Loading of the frame is carried out by the flexible traction element attached to the girder. The load applied on the tested column can achieve a values that exceed the critical load by choice of parameters of the traction element and the additional strut. The system lateral stiffness and the column critical load are obtained by the dynamic method. The experiment planning and the comparison between the experimental and theoretical values were performed based on the developed dependency of lateral stiffness of the system on vertical load, taking into account a semi-rigid connections of the column's ends. The agreement between the obtained results was established. The method can be used for testing of real full-size columns in industrial conditions.Keywords: buckling, columns, dynamic method, semi-rigid connections, sway mode
Procedia PDF Downloads 3131629 Investigation of Scaling Laws for Stiffness and strength in Bioinspired Glass Sponge Structures Produced by Fused Filament Fabrication
Authors: Hassan Beigi Rizi, Harold Auradou, Lamine Hattali
Abstract:
Various industries, including civil engineering, automotive, aerospace, and biomedical fields, are currently seeking novel and innovative high-performance lightweight materials to reduce energy consumption. Inspired by the structure of Euplectella Aspergillum Glass Sponges (EA-sponge), 2D unit cells were created and fabricated using a Fused Filament Fabrication (FFF) process with Polylactic acid (PLA) filaments. The stiffness and strength of bio-inspired EA-sponge lattices were investigated both experimentally and numerically under uniaxial tensile loading and are compared to three standard square lattices with diagonal struts (Designs B and C) and non-diagonal struts (Design D) reinforcements. The aim is to establish predictive scaling laws models and examine the deformation mechanisms involved. The results indicated that for the EA-sponge structure, the relative moduli and yield strength scaled linearly with relative density, suggesting that the deformation mechanism is stretching-dominated. The Finite element analysis (FEA), with periodic boundary conditions for volumetric homogenization, confirms these trends and goes beyond the experimental limits imposed by the FFF printing process. Therefore, the stretching-dominated behavior, investigated from 0.1 to 0.5 relative density, demonstrate that the study of EA-sponge structure can be exploited for the realization of square lattice topologies that are stiff and strong and have attractive potential for lightweight structural applications. However, the FFF process introduces an accuracy limitation, with approximately 10% error, making it challenging to print structures with a relative density below 0.2. Future work could focus on exploring the impact of different printing materials on the performance of EA-sponge structures.Keywords: bio-inspiration, lattice structures, fused filament fabrication, scaling laws
Procedia PDF Downloads 51628 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM
Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei
Abstract:
In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank
Procedia PDF Downloads 1851627 Top-Down Construction Method in Concrete Structures: Advantages and Disadvantages of This Construction Method
Authors: Hadi Rouhi Belvirdi
Abstract:
The construction of underground structures using the traditional method, which begins with excavation and the implementation of the foundation of the underground structure, continues with the construction of the main structure from the ground up, and concludes with the completion of the final ceiling, is known as the Bottom-Up Method. In contrast to this method, there is an advanced technique called the Top-Down Method, which has practically replaced the traditional construction method in large projects in industrialized countries in recent years. Unlike the traditional approach, this method starts with the construction of surrounding walls, columns, and the final ceiling and is completed with the excavation and construction of the foundation of the underground structure. Some of the most significant advantages of this method include the elimination or minimization of formwork surfaces, the removal of temporary bracing during excavation, the creation of some traffic facilities during the construction of the structure, and the possibility of using it in limited and high-traffic urban spaces. Despite these numerous advantages, unfortunately, there is still insufficient awareness of this method in our country, to the extent that it can be confidently stated that most stakeholders in the construction industry are unaware of the existence of such a construction method. However, it can be utilized as a very important execution option alongside other conventional methods in the construction of underground structures. Therefore, due to the extensive practical capabilities of this method, this article aims to present a methodology for constructing underground structures based on the aforementioned advanced method to the scientific community of the country, examine the advantages and limitations of this method and their impacts on time and costs, and discuss its application in urban spaces. Finally, some underground structures executed in the Ahvaz urban rail, which are being implemented using this advanced method to the best of our best knowledge, will be introduced.Keywords: top-down method, bottom-up method, underground structure, construction method
Procedia PDF Downloads 111626 Music Education is Languishing in Rural South African Schools as Revealed Through Education Students
Authors: E. N. Jansen van Vuuren
Abstract:
When visiting Foundation Phase (FP) students during their Teaching Practice at schools in rural Mpumalanga, the lack of music education is evident through the absence of musical sounds, with the exception of a limited repertoire of songs that are sung by all classes everywhere you go. The absence of music teaching resources such as posters and music instruments add to the perception that generalist teachers in the FP are not teaching music. Pre-service students also acknowledge that they have never seen a music class being taught during their teaching practice visits at schools. This lack of music mentoring impacts the quality of teachers who are about to enter the workforce and ultimately results in the perpetuation of no music education in many rural schools. The situation in more affluent schools present a contrasting picture with music education being given a high priority and generalist teachers often being supported by music specialists, paid for by the parents. When student teachers start their music course, they have limited knowledge to use as a foundation for their studies. The aim of the study was to ascertain the music knowledge that students gained throughout their school careers so that the curriculum could be adapted to suit their needs. By knowing exactly what pre-service teachers know about music, the limited tuition time at tertiary level can be used in the most suitable manner and concentrate on filling the knowledge gaps. Many scholars write about the decline of music education in South African schools and mention reasons, but the exact music knowledge void amongst students does not feature in the studies. Knowing the parameters of students’ music knowledge will empower lecturers to restructure their curricula to meet the needs of pre-service students. The research question asks, “what is the extent of the music void amongst rural pre-service teachers in a B.Ed. FP course at an African university?” This action research was done using a pragmatic paradigm and mixed methodology. First year students in the cohort studying for a B.Ed. in FP were requested to complete an online baseline assessment to determine the status quo. This assessment was compiled using the CAPS music content for Grade R to 9. The data was sorted using the elements of music as a framework. Findings indicate that students do not have a suitable foundation in music education despite supposedly having had music tuition from grade R to grade 9. Knowing the content required to fill the lack of knowledge provides academics with valuable information to amend their curricula and to ensure that future teachers will be able to provide rural learners with the same foundations in music as those received by learners in more affluent schools. It is only then that the rich music culture of the African continent will thrive.Keywords: generalist educators, music education, music curriculum, pre-service teachers
Procedia PDF Downloads 681625 Axial Load Capacity of Drilled Shafts from In-Situ Test Data at Semani Site, in Albania
Authors: Neritan Shkodrani, Klearta Rrushi, Anxhela Shaha
Abstract:
Generally, the design of axial load capacity of deep foundations is based on the data provided from field tests, such as SPT (Standard Penetration Test) and CPT (Cone Penetration Test) tests. This paper reports the results of axial load capacity analysis of drilled shafts at a construction site at Semani, in Fier county, Fier prefecture in Albania. In this case, the axial load capacity analyses are based on the data of 416 SPT tests and 12 CPTU tests, which are carried out in this site construction using 12 boreholes (10 borings of a depth 30.0 m and 2 borings of a depth of 80.0m). The considered foundation widths range from 0.5m to 2.5 m and foundation embedment lengths is fixed at a value of 25m. SPT – based analytical methods from the Japanese practice of design (Building Standard Law of Japan) and CPT – based analytical Eslami and Fellenius methods are used for obtaining axial ultimate load capacity of drilled shafts. The considered drilled shaft (25m long and 0.5m - 2.5m in diameter) is analyzed for the soil conditions of each borehole. The values obtained from sets of calculations are shown in different charts. Then the reported axial load capacity values acquired from SPT and CPTU data are compared and some conclusions are found related to the mentioned methods of calculations.Keywords: deep foundations, drilled shafts, axial load capacity, ultimate load capacity, allowable load capacity, SPT test, CPTU test
Procedia PDF Downloads 1041624 Design of Nanoreinforced Polyacrylamide-Based Hybrid Hydrogels for Bone Tissue Engineering
Authors: Anuj Kumar, Kummara M. Rao, Sung S. Han
Abstract:
Bone tissue engineering has emerged as a potentially alternative method for localized bone defects or diseases, congenital deformation, and surgical reconstruction. The designing and the fabrication of the ideal scaffold is a great challenge, in restoring of the damaged bone tissues via cell attachment, proliferation, and differentiation under three-dimensional (3D) biological micro-/nano-environment. In this case, hydrogel system composed of high hydrophilic 3D polymeric-network that is able to mimic some of the functional physical and chemical properties of the extracellular matrix (ECM) and possibly may provide a suitable 3D micro-/nano-environment (i.e., resemblance of native bone tissues). Thus, this proposed hydrogel system is highly permeable and facilitates the transport of the nutrients and metabolites. However, the use of hydrogels in bone tissue engineering is limited because of their low mechanical properties (toughness and stiffness) that continue to posing challenges in designing and fabrication of tough and stiff hydrogels along with improved bioactive properties. For this purpose, in our lab, polyacrylamide-based hybrid hydrogels were synthesized by involving sodium alginate, cellulose nanocrystals and silica-based glass using one-step free-radical polymerization. The results showed good in vitro apatite-forming ability (biomineralization) and improved mechanical properties (under compression in the form of strength and stiffness in both wet and dry conditions), and in vitro osteoblastic (MC3T3-E1 cells) cytocompatibility. For in vitro cytocompatibility assessment, both qualitative (attachment and spreading of cells using FESEM) and quantitative (cell viability and proliferation using MTT assay) analyses were performed. The obtained hybrid hydrogels may potentially be used in bone tissue engineering applications after establishment of in vivo characterization.Keywords: bone tissue engineering, cellulose nanocrystals, hydrogels, polyacrylamide, sodium alginate
Procedia PDF Downloads 1511623 Non-Linear Dynamic Analyses of Grouted Pile-Sleeve Connection
Authors: Mogens Saberi
Abstract:
The focus of this article is to present the experience gained from the design of a grouted pile-sleeve connection and to present simple design expressions which can be used in the preliminary design phase of such connections. The grout pile-sleeve connection serves as a connection between an offshore jacket foundation and pre-installed piles located in the seabed. The jacket foundation supports a wind turbine generator resulting in significant dynamic loads on the connection. The connection is designed with shear keys in order to optimize the overall design but little experience is currently available in the use of shear keys in such connections. It is found that the consequence of introducing shear keys in the design is a very complex stress distribution which requires special attention due to significant fatigue loads. An optimal geometrical shape of the shear keys is introduced in order to avoid large stress concentration factors and a relatively easy fabrication. The connection is analysed in ANSYS Mechanical where the grout is modelled by a non-linear material model which allows for cracking of the grout material and captures the elastic-plastic behaviour of the grout material. Special types of finite elements are used in the interface between the pile sleeve and the grout material to model the slip surface between the grout material and the steel. Based on the performed finite element modelling simple design expressions are introduced.Keywords: fatigue design, non-linear finite element modelling, structural dynamics, simple design expressions
Procedia PDF Downloads 3841622 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece
Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos
Abstract:
The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.Keywords: earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening
Procedia PDF Downloads 2921621 The Side Effect of the Perforation Shape towards Behaviour Flexural in Castellated Beam
Authors: Harrys Purnama, Wardatul Jannah, Rizkia Nita Hawari
Abstract:
In the development of the times, there are many materials used to plan a building structure. Steel became one of the most widely used materials in building construction that works as the main structure. Steel Castellated Beam is a type of innovation in the use of steel in building construction. Steel Castellated Beam is a beam that used for long span construction (more than 10 meters). The Castellated Beam is two steel profiles that unified into one to get the appropriate profile height (more than 10 meters). The profile is perforated to minimize the profile's weight, increase the rate, save costs, and have architectural value. The perforations shape in the Castellated Beam can be circular, elliptical, hexagonal, and rectangular. The Castellated beam has a height (h) almost 50% higher than the initial profile thus increasing the axial bending value and the moment of inertia (Iₓ). In this analysis, there are 3 specimens were used with 12.1 meters span of Castellated Beam as the sample with varied perforation, such us round, hexagon, and octagon. Castellated Beam testing system is done with computer-based applications that named Staad Pro V8i. It is to provide a central load in the middle of the steel beam span. It aims to determine the effect of perforation on bending behavior on the steel Castellated Beam by applying some form of perforations on the steel Castellated Beam with test specimen WF 200.100.5.5.8. From the analysis, results found the behavior of steel Castellated Beam when receiving such central load. From the results of the analysis will be obtained the amount of load, shear, strain, and Δ (deflection). The result of analysis by using Staad Pro V8i shows that with the different form of perforations on the profile of Castellated steel, then we get the different tendency of inertia moment. From the analysis, results obtained the moment of the greatest inertia can increase the stiffness of Castellated steel. By increasing the stiffness of the steel Castellated Beam the deflection will be smaller, so it can withstand the moment and a large strength. The results of the analysis show that the most effective and efficient perforations are the steel beam with a hexagon perforation shape.Keywords: Castellated Beam, the moment of inertia, stress, deflection, bending test
Procedia PDF Downloads 168