Search results for: first order ordinary differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16377

Search results for: first order ordinary differential equations

15957 Existence of Minimal and Maximal Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type

Authors: Jorge Gonzalez-Camus

Abstract:

In this work is proved the existence of at least one minimal and maximal mild solutions to the Cauchy problem, for fractional evolution equation of neutral type, involving a general kernel. An operator A generating a resolvent family and integral resolvent family on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Kuratowski measure of noncompactness and fixed point theorems, specifically Darbo-type, and an iterative method of lower and upper solutions, based in an order in X induced by a normal cone P. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the theory of resolvent families, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, the existence of minimal and maximal mild solutions was proved through in an iterative method of lower and upper solutions, using the Azcoli-Arzela Theorem, and the Gronwall’s inequality. Finally, we recovered the case derivate in Caputo sense.

Keywords: fractional evolution equations, Volterra integral equations, minimal and maximal mild solutions, neutral type equations, non-local in time equations

Procedia PDF Downloads 176
15956 Investigating Elastica and Post Buckling Behavior Columns Using the Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

The purpose of this article is to analyze the finite displacement of Columns by applying the Modified Newmark Method. This research will be performed on Columns subjected to compressive axial load, therefore the non-linearity of the geometry is also considered. If the considered strut is perfect, the governing differential equation contains a branching point in the solution path. Investigation into the Elastica is a part of generalizing the developed method. It presents the ability of the Modified Newmark Method in treating non-linear differential equations Derived from elastic strut stability problems. These include not only an approximate polynomial solution for the Elastica problems, but can also recognize the branching point and the stable solution. However, this investigation deals with the post-buckling response of elastic and pin ended columns subjected to central or equally eccentric axial loads.

Keywords: columns, structural modeling, structures & structural stability, loads

Procedia PDF Downloads 314
15955 Improved Impossible Differential Cryptanalysis of Midori64

Authors: Zhan Chen, Wenquan Bi, Xiaoyun Wang

Abstract:

The Midori family of light weight block cipher is proposed in ASIACRYPT2015. It has attracted the attention of numerous cryptanalysts. There are two versions of Midori: Midori64 which takes a 64-bit block size and Midori128 the size of which is 128-bit. In this paper an improved 10-round impossible differential attack on Midori64 is proposed. Pre-whitening keys are considered in this attack. A better impossible differential path is used to reduce time complexity by decreasing the number of key bits guessed. A hash table is built in the pre-computation phase to reduce computational complexity. Partial abort technique is used in the key seiving phase. The attack requires 259 chosen plaintexts, 214.58 blocks of memory and 268.83 10-round Midori64 encryptions.

Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori

Procedia PDF Downloads 348
15954 Gas Flow, Time, Distance Dynamic Modelling

Authors: A. Abdul-Ameer

Abstract:

The equations governing the distance, pressure- volume flow relationships for the pipeline transportation of gaseous mixtures, are considered. A derivation based on differential calculus, for an element of this system model, is addressed. Solutions, yielding the input- output response following pressure changes, are reviewed. The technical problems associated with these analytical results are identified. Procedures resolving these difficulties providing thereby an attractive, simple, analysis route are outlined. Computed responses, validating thereby calculated predictions, are presented.

Keywords: pressure, distance, flow, dissipation, models

Procedia PDF Downloads 473
15953 Chebyshev Wavelets and Applications

Authors: Emanuel Guariglia

Abstract:

In this paper we deal with Chebyshev wavelets. We analyze their properties computing their Fourier transform. Moreover, we discuss the differential properties of Chebyshev wavelets due the connection coefficients. The differential properties of Chebyshev wavelets, expressed by the connection coefficients (also called refinable integrals), are given by finite series in terms of the Kronecker delta. Moreover, we treat the p-order derivative of Chebyshev wavelets and compute its Fourier transform. Finally, we expand the mother wavelet in Taylor series with an application both in fractional calculus and fractal geometry.

Keywords: Chebyshev wavelets, Fourier transform, connection coefficients, Taylor series, local fractional derivative, Cantor set

Procedia PDF Downloads 123
15952 Commutativity of Fractional Order Linear Time-Varying Systems

Authors: Salisu Ibrahim

Abstract:

The paper studies the commutativity associated with fractional order linear time-varying systems (LTVSs), which is an important area of study in control systems engineering. In this paper, we explore the properties of these systems and their ability to commute. We proposed the necessary and sufficient condition for commutativity for fractional order LTVSs. Through a simulation and mathematical analysis, we demonstrate that these systems exhibit commutativity under certain conditions. Our findings have implications for the design and control of fractional order systems in practical applications, science, and engineering. An example is given to show the effectiveness of the proposed method which is been computed by Mathematica and validated by the use of MATLAB (Simulink).

Keywords: fractional differential equation, physical systems, equivalent circuit, analog control

Procedia PDF Downloads 114
15951 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: convection flow, similarity, numerical analysis, spectral method, Williamson nanofluid, internal heat generation

Procedia PDF Downloads 183
15950 Commutativity of Fractional Order Linear Time-Varying System

Authors: Salisu Ibrahim

Abstract:

The paper studies the commutativity associated with fractional order linear time-varying systems (LTVSs), which is an important area of study in control systems engineering. In this paper, we explore the properties of these systems and their ability to commute. We proposed the necessary and sufficient condition for commutativity for fractional order LTVSs. Through a simulation and mathematical analysis, we demonstrate that these systems exhibit commutativity under certain conditions. Our findings have implications for the design and control of fractional order systems in practical applications, science, and engineering. An example is given to show the effectiveness of the proposed method which is been computed by Mathematica and validated by the use of Matlab (Simulink).

Keywords: fractional differential equation, physical systems, equivalent circuit, and analog control

Procedia PDF Downloads 77
15949 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement

Authors: Tudor Barbu

Abstract:

We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.

Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes

Procedia PDF Downloads 313
15948 Some Integral Inequalities of Hermite-Hadamard Type on Time Scale and Their Applications

Authors: Artion Kashuri, Rozana Liko

Abstract:

In this paper, the authors establish an integral identity using delta differentiable functions. By applying this identity, some new results via a general class of convex functions with respect to two nonnegative functions on a time scale are given. Also, for suitable choices of nonnegative functions, some special cases are deduced. Finally, in order to illustrate the efficiency of our main results, some applications to special means are obtained as well. We hope that current work using our idea and technique will attract the attention of researchers working in mathematical analysis, mathematical inequalities, numerical analysis, special functions, fractional calculus, quantum mechanics, quantum calculus, physics, probability and statistics, differential and difference equations, optimization theory, and other related fields in pure and applied sciences.

Keywords: convex functions, Hermite-Hadamard inequality, special means, time scale

Procedia PDF Downloads 150
15947 Numerical and Sensitivity Analysis of Modeling the Newcastle Disease Dynamics

Authors: Nurudeen Oluwasola Lasisi

Abstract:

Newcastle disease is a highly contagious disease of birds caused by a para-myxo virus. In this paper, we presented Novel quarantine-adjusted incident and linear incident of Newcastle disease model equations. We considered the dynamics of transmission and control of Newcastle disease. The existence and uniqueness of the solutions were obtained. The existence of disease-free points was shown, and the model threshold parameter was examined using the next-generation operator method. The sensitivity analysis was carried out in order to identify the most sensitive parameters of the disease transmission. This revealed that as parameters β,ω, and ᴧ increase while keeping other parameters constant, the effective reproduction number R_ev increases. This implies that the parameters increase the endemicity of the infection of individuals. More so, when the parameters μ,ε,γ,δ_1, and α increase, while keeping other parameters constant, the effective reproduction number R_ev decreases. This implies the parameters decrease the endemicity of the infection as they have negative indices. Analytical results were numerically verified by the Differential Transformation Method (DTM) and quantitative views of the model equations were showcased. We established that as contact rate (β) increases, the effective reproduction number R_ev increases, as the effectiveness of drug usage increases, the R_ev decreases and as the quarantined individual decreases, the R_ev decreases. The results of the simulations showed that the infected individual increases when the susceptible person approaches zero, also the vaccination individual increases when the infected individual decreases and simultaneously increases the recovery individual.

Keywords: disease-free equilibrium, effective reproduction number, endemicity, Newcastle disease model, numerical, Sensitivity analysis

Procedia PDF Downloads 45
15946 Backstepping Design and Fractional Differential Equation of Chaotic System

Authors: Ayub Khan, Net Ram Garg, Geeta Jain

Abstract:

In this paper, backstepping method is proposed to synchronize two fractional-order systems. The simulation results show that this method can effectively synchronize two chaotic systems.

Keywords: backstepping method, fractional order, synchronization, chaotic system

Procedia PDF Downloads 458
15945 Developing Ergonomic Prototype Testing Method for Manual Material Handling

Authors: Yusuf Nugroho Doyo Yekti, Budi Praptono, Fransiskus Tatas Dwi Atmaji

Abstract:

There is no ergonomic prototype testing method for manual material handling yet. This study has been carried out to demonstrate the comprehensive ergonomic assessment. The ergonomic assessment is important to improve safety of products and to ensure usefulness of the product. The prototype testing is conducted by involving few intended users and ordinary people. In this study, there are four operators who participated in several tests. Also, there are 30 ordinary people who joined the usability test. All the ordinary people never do material handling activity nor use material handling device. The methods used in the tests are Rapid Entire Body Assessment (REBA), Recommended Weight Limit (RWL), and Cardiovascular Load (%CVL) other than usability test and questionnaire. The proposed testing methods cover comprehensive ergonomic aspects, i.e. physical aspect, mental aspect, emotional aspects of human.

Keywords: ergonomic, manual material handling, prototype testing, assessment

Procedia PDF Downloads 517
15944 Analytical Solutions of Josephson Junctions Dynamics in a Resonant Cavity for Extended Dicke Model

Authors: S.I.Mukhin, S. Seidov, A. Mukherjee

Abstract:

The Dicke model is a key tool for the description of correlated states of quantum atomic systems, excited by resonant photon absorption and subsequently emitting spontaneous coherent radiation in the superradiant state. The Dicke Hamiltonian (DH) is successfully used for the description of the dynamics of the Josephson Junction (JJ) array in a resonant cavity under applied current. In this work, we have investigated a generalized model, which is described by DH with a frustrating interaction term. This frustrating interaction term is explicitly the infinite coordinated interaction between all the spin half in the system. In this work, we consider an array of N superconducting islands, each divided into two sub-islands by a Josephson Junction, taken in a charged qubit / Cooper Pair Box (CPB) condition. The array is placed inside the resonant cavity. One important aspect of the problem lies in the dynamical nature of the physical observables involved in the system, such as condensed electric field and dipole moment. It is important to understand how these quantities behave with time to define the quantum phase of the system. The Dicke model without frustrating term is solved to find the dynamical solutions of the physical observables in analytic form. We have used Heisenberg’s dynamical equations for the operators and on applying newly developed Rotating Holstein Primakoff (HP) transformation and DH we have arrived at the four coupled nonlinear dynamical differential equations for the momentum and spin component operators. It is possible to solve the system analytically using two-time scales. The analytical solutions are expressed in terms of Jacobi's elliptic functions for the metastable ‘bound luminosity’ dynamic state with the periodic coherent beating of the dipoles that connect the two double degenerate dipolar ordered phases discovered previously. In this work, we have proceeded the analysis with the extended DH with a frustrating interaction term. Inclusion of the frustrating term involves complexity in the system of differential equations and it gets difficult to solve analytically. We have solved semi-classical dynamic equations using the perturbation technique for small values of Josephson energy EJ. Because the Hamiltonian contains parity symmetry, thus phase transition can be found if this symmetry is broken. Introducing spontaneous symmetry breaking term in the DH, we have derived the solutions which show the occurrence of finite condensate, showing quantum phase transition. Our obtained result matches with the existing results in this scientific field.

Keywords: Dicke Model, nonlinear dynamics, perturbation theory, superconductivity

Procedia PDF Downloads 134
15943 Existence Solutions for Three Point Boundary Value Problem for Differential Equations

Authors: Mohamed Houas, Maamar Benbachir

Abstract:

In this paper, under weak assumptions, we study the existence and uniqueness of solutions for a nonlinear fractional boundary value problem. New existence and uniqueness results are established using Banach contraction principle. Other existence results are obtained using scheafer and krasnoselskii's fixed point theorem. At the end, some illustrative examples are presented.

Keywords: caputo derivative, boundary value problem, fixed point theorem, local conditions

Procedia PDF Downloads 428
15942 Design of a Chaotic Trajectory Generator Algorithm for Mobile Robots

Authors: J. J. Cetina-Denis, R. M. López-Gutiérrez, R. Ramírez-Ramírez, C. Cruz-Hernández

Abstract:

This work addresses the problem of designing an algorithm capable of generating chaotic trajectories for mobile robots. Particularly, the chaotic behavior is induced in the linear and angular velocities of a Khepera III differential mobile robot by infusing them with the states of the H´enon chaotic map. A possible application, using the properties of chaotic systems, is patrolling a work area. In this work, numerical and experimental results are reported and analyzed. In addition, two quantitative numerical tests are applied in order to measure how chaotic the generated trajectories really are.

Keywords: chaos, chaotic trajectories, differential mobile robot, Henon map, Khepera III robot, patrolling applications

Procedia PDF Downloads 309
15941 Thermal Buckling Analysis of Functionally Graded Beams with Various Boundary Conditions

Authors: Gholamreza Koochaki

Abstract:

This paper presents the buckling analysis of functionally graded beams with various boundary conditions. The first order shear deformation beam theory (Timoshenko beam theory) and the classical theory (Euler-Bernoulli beam theory) of Reddy have been applied to the functionally graded beams buckling analysis The material property gradient is assumed to be in thickness direction. The equilibrium and stability equations are derived using the total potential energy equations, classical theory and first order shear deformation theory assumption. The temperature difference and applied voltage are assumed to be constant. The critical buckling temperature of FG beams are upper than the isotropic ones. Also, the critical temperature is different for various boundary conditions.

Keywords: buckling, functionally graded beams, Hamilton's principle, Euler-Bernoulli beam

Procedia PDF Downloads 392
15940 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing

Authors: Changhong Guo, Shaomei Fang, Yong He

Abstract:

In this paper, fractional Black-Scholes models for the European option pricing were established based on the fractional G-Brownian motion (fGBm), which generalizes the concepts of the classical Brownian motion, fractional Brownian motion and the G-Brownian motion, and that can be used to be a tool for considering the long range dependence and uncertain volatility for the financial markets simultaneously. A generalized fractional Black-Scholes equation (FBSE) was derived by using the Taylor’s series of fractional order and the theory of absence of arbitrage. Finally, some explicit option pricing formulas for the European call option and put option under the FBSE were also solved, which extended the classical option pricing formulas given by F. Black and M. Scholes.

Keywords: European option pricing, fractional Black-Scholes equations, fractional g-Brownian motion, Taylor's series of fractional order, uncertain volatility

Procedia PDF Downloads 163
15939 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks

Authors: Ather Saeed, Arif Khan, Jeffrey Gosper

Abstract:

Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.

Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering

Procedia PDF Downloads 75
15938 A Mathematical-Based Formulation of EEG Fluctuations

Authors: Razi Khalafi

Abstract:

Brain is the information processing center of the human body. Stimuli in form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modeling of the EEG signal in case external stimuli but it can be used for the modeling of brain response in case of internal stimuli.

Keywords: Brain, stimuli, partial differential equation, response, eeg signal

Procedia PDF Downloads 433
15937 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures

Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli

Abstract:

In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.

Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel

Procedia PDF Downloads 131
15936 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides

Authors: R. B. Ogunrinde, C. C. Jibunoh

Abstract:

In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.

Keywords: spectral decomposition, linear RHS, homogeneous linear systems, eigenvalues of the Jacobian

Procedia PDF Downloads 330
15935 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data

Authors: Flavia Smarrazzo

Abstract:

Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.

Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures

Procedia PDF Downloads 281
15934 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously

Authors: S. Mehrab Amiri, Nasser Talebbeydokhti

Abstract:

Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme.  In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.

Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations

Procedia PDF Downloads 187
15933 Effect of Inclination Angle on Productivity of a Direct Contact Membrane Distillation (Dcmd) Process

Authors: Adnan Alhathal Alanezi, Alanood A. Alsarayreh

Abstract:

A direct contact membrane distillation (DCMD) system was modeled using various angles for the membrane unit and a Reynolds number range of 500 to 2000 in this numerical analysis. The Navier-Stokes, energy, and species transport equations were used to create a two-dimensional model. The finite volume method was used to solve the governing equations (FVM). The results showed that as the Reynolds number grows up to 1500, the heat transfer coefficient increases for all membrane angles except the 60ᵒ inclination angle. Additionally, increasing the membrane angle to 90ᵒreduces the exit influence while increasing heat transfer. According to these data, a membrane with a 90o inclination angle (also known as a vertical membrane) and a Reynolds number of 2000 might have the smallest temperature differential. Similarly, decreasing the inclination angle of the membrane keeps the temperature difference constant between Reynolds numbers 1000 and 2000; however, between Reynolds numbers 500 and 1000, the temperature difference decreases dramatically.

Keywords: direct contact membrane distillation, membrane inclination angle, heat and mass transfer, reynolds number

Procedia PDF Downloads 120
15932 Nonlinear Equations with n-Dimensional Telegraph Operator Iterated K-Times

Authors: Jessada Tariboon

Abstract:

In this article, using distribution kernel, we study the nonlinear equations with n-dimensional telegraph operator iterated k-times.

Keywords: telegraph operator, elementary solution, distribution kernel, nonlinear equations

Procedia PDF Downloads 489
15931 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

Authors: Rama Bhargava, Mania Goyal

Abstract:

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

Keywords: viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM

Procedia PDF Downloads 313
15930 A Mixed Finite Element Formulation for Functionally Graded Micro-Beam Resting on Two-Parameter Elastic Foundation

Authors: Cagri Mollamahmutoglu, Aykut Levent, Ali Mercan

Abstract:

Micro-beams are one of the most common components of Nano-Electromechanical Systems (NEMS) and Micro Electromechanical Systems (MEMS). For this reason, static bending, buckling, and free vibration analysis of micro-beams have been the subject of many studies. In addition, micro-beams restrained with elastic type foundations have been of particular interest. In the analysis of microstructures, closed-form solutions are proposed when available, but most of the time solutions are based on numerical methods due to the complex nature of the resulting differential equations. Thus, a robust and efficient solution method has great importance. In this study, a mixed finite element formulation is obtained for a functionally graded Timoshenko micro-beam resting on two-parameter elastic foundation. In the formulation modified couple stress theory is utilized for the micro-scale effects. The equation of motion and boundary conditions are derived according to Hamilton’s principle. A functional, derived through a scientific procedure based on Gateaux Differential, is proposed for the bending and buckling analysis which is equivalent to the governing equations and boundary conditions. Most important advantage of the formulation is that the mixed finite element formulation allows usage of C₀ type continuous shape functions. Thus shear-locking is avoided in a built-in manner. Also, element matrices are sparsely populated and can be easily calculated with closed-form integration. In this framework results concerning the effects of micro-scale length parameter, power-law parameter, aspect ratio and coefficients of partially or fully continuous elastic foundation over the static bending, buckling, and free vibration response of FG-micro-beam under various boundary conditions are presented and compared with existing literature. Performance characteristics of the presented formulation were evaluated concerning other numerical methods such as generalized differential quadrature method (GDQM). It is found that with less computational burden similar convergence characteristics were obtained. Moreover, formulation also includes a direct calculation of the micro-scale related contributions to the structural response as well.

Keywords: micro-beam, functionally graded materials, two-paramater elastic foundation, mixed finite element method

Procedia PDF Downloads 162
15929 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery

Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas

Abstract:

The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.

Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition

Procedia PDF Downloads 150
15928 Evaluation of Key Performance Indicators as Determinants of Dividend Paid on Ordinary Shares in Nigeria Banking Sector

Authors: Oliver Ikechukwu Inyiama, Boniface Uche Ugwuanyi

Abstract:

The aim of the research is to evaluate the key financial performance indicators that help both managers and their shareholders of Nigerian Banks to determine the appropriate dividend payout to their ordinary shareholders in an accounting year. Profitability, total asset, and earnings of commercial banks were selected as key performance indicators in Nigeria Banking Sector. They represent the independent variables of the study while dividend per share is the proxy for the dividend paid on ordinary shares which represent the dependent variable. The effect of profitability, total asset and earnings on dividend per share were evaluated through the ordinary least square method of multiple regression analysis. Test for normality of frequency distribution was conducted through descriptive statistics such as Jacque Bera Statistic, skewness and kurtosis. Rate of dividend payout was subsequently applied as an alternate dependent variable to test for robustness of the earlier results. The 64% adjusted R-squared of the pooled data indicates that profitability, total asset, and earnings explain the variation in dividend per share during the period under research while the remaining 36% variation in dividend per share could be explained by changes in other variables not captured by this study as well as the error term. The study concentrated on four leading Nigeria Commercial Banks namely; First Bank of Nigeria Plc, GTBank Plc, United Bank for Africa Plc and Zenith International Bank Plc. Dividend per share was found to be positively affected by total assets and earnings of the commercial banks. However, profitability which was proxied by profit after tax had a negative effect on dividend per share. The implication of the findings is that commercial banks in Nigeria pay more dividend when they are having a dwindling fortune in order to retain the confidence of the shareholders provided their gross earnings and size is on the increase. Therefore, the management and board of directors of Nigeria commercial banks should apply decent marketing strategies to enhance earnings through investment in profitable ventures for an improved dividend payout rate.

Keywords: assets, banks, indicators, performance, profitability, shares

Procedia PDF Downloads 163