Search results for: feature generation
4453 Simulation of Mid Infrared Supercontinuum Generation in Silicon Germanium Photonic Waveguides for Gas Spectroscopy
Authors: Proficiency Munsaka, Peter Baricholo, Erich Rohwer
Abstract:
Pulse evolutions along the 5 cm long, 6.0 ×4.2 μm² cross-section silicon germanium (SiGe) photonic waveguides were simulated and compared with experiments. Simulations were carried out by solving a generalized nonlinear Schrodinger equation (GNLSE) for an optical pulse evolution along the length of the SiGe photonic waveguides by the split-step Fourier method (SSFM). The solution obtained from the SSFM gave the pulse envelope in both time and spectral domain calculated at each distance step along the propagation direction. The SiGe photonic waveguides were pumped in an anomalous group velocity dispersion (GVD) regime using a 4.7 μm, 210 fs femtosecond laser to produce a significant supercontinuum (SC). The simulated propagation of ultrafast pulse along the SiGe photonic waveguides produced an SC covering the atmospheric window (2.5-8.5 μm) containing the molecular fingerprints for important gases. Thus, the mid-infrared supercontinuum generation in SiGe photonic waveguides system can be commercialized for gas spectroscopy for detecting gases that include CO₂, CH₄, H₂O, SO₂, SO₃, NO₂, H₂S, CO, and NO at trace level using absorption spectroscopy technique. The simulated profile evolutions are spectrally and temporally similar to those obtained by other researchers. Obtained evolution profiles are characterized by pulse compression, Soliton fission, dispersive wave generation, stimulated Raman Scattering, and Four Wave mixing.Keywords: silicon germanium photonic waveguide, supercontinuum generation, spectroscopy, mid infrared
Procedia PDF Downloads 1294452 Energy Usage in Isolated Areas of Honduras
Authors: Bryan Jefry Sabillon, Arlex Molina Cedillo
Abstract:
Currently, the raise in the demand of electrical energy as a consequence of the development of technology and population growth, as well as some projections made by ‘La Agencia Internacional de la Energía’ (AIE) and research institutes, reveal alarming data about the expected raise of it in the next few decades. Because of this, something should be made to raise the awareness of the rational and efficient usage of this resource. Because of the global concern of providing electrical energy to isolated areas, projects consisting of energy generation using renewable resources are commonly carried out. On a socioeconomically and cultural point of view, it can be foreseen a positive impact that would result for the society to have this resource. This article is focused on the great potential that Honduras shows, as a country that is looking forward to produce renewable energy due to the crisis that it’s living nowadays. Because of this, we present a detailed research that exhibits the main necessities that the rural communities are facing today, to allay the negative aspects due to the scarcity of electrical energy. We also discuss which should be the type of electrical generation method to be used, according to the disposition, geography, climate, and of course the accessibility of each area. Honduras is actually in the process of developing new methods for the generation of energy; therefore, it is of our concern to talk about renewable energy, the exploitation of which is a global trend. Right now the countries’ main energetic generation methods are: hydrological, thermic, wind, biomass and photovoltaic (this is one of the main sources of clean electrical generation). The use of these resources was possible partially due to the studies made by the organizations that focus on electrical energy and its demand, such as ‘La Cooperación Alemana’ (GIZ), ‘La Secretaria de Energía y Recursos Naturales’ (SERNA), and ‘El Banco Centroamericano de Integración Económica’ (BCIE), which eased the complete guide that is to be used in the protocol to be followed to carry out the three stages of this type of projects: 1) Licences and Permitions, 2) Fincancial Aspects and 3) The inscription for the Protocol in Kyoto. This article pretends to take the reader through the necessary information (according to the difficult accessibility that each zone might present), about the best option of electrical generation in zones that are totally isolated from the net, pretending to use renewable resources to generate electrical energy. We finally conclude that the usage of hybrid systems of generation of energy for small remote communities brings about a positive impact, not only because of the fact of providing electrical energy but also because of the improvements in education, health, sustainable agriculture and livestock, and of course the advances in the generation of energy which is the main concern of this whole article.Keywords: energy, isolated, renewable, accessibility
Procedia PDF Downloads 2284451 Electricity Sector's Status in Lebanon and Portfolio Optimization for the Future Electricity Generation Scenarios
Authors: Nour Wehbe
Abstract:
The Lebanese electricity sector is at the heart of a deep crisis. Electricity in Lebanon is supplied by Électricité du Liban (EdL) which has to suffer from technical and financial deficiencies for decades and proved to be insufficient and deficient as the demand still exceeds the supply. As a result, backup generation is widespread throughout Lebanon. The sector costs massive government resources and, on top of it, consumers pay massive additional amounts for satisfying their electrical needs. While the developed countries have been investing in renewable energy for the past two decades, the Lebanese government realizes the importance of adopting such energy sourcing strategies for the upgrade of the electricity sector in the country. The diversification of the national electricity generation mix has increased considerably in Lebanon's energy planning agenda, especially that a detailed review of the energy potential in Lebanon has revealed a great potential of solar and wind energy resources, a considerable potential of biomass resource, and an important hydraulic potential in Lebanon. This paper presents a review of the energy status of Lebanon, and illustrates a detailed review of the EDL structure with the existing problems and recommended solutions. In addition, scenarios reflecting implementation of policy projects are presented, and conclusions are drawn on the usefulness of a proposed evaluation methodology and the effectiveness of the adopted new energy policy for the electrical sector in Lebanon.Keywords: EdL Electricite du Liban, portfolio optimization, electricity generation mix, mean-variance approach
Procedia PDF Downloads 2474450 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems
Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan
Abstract:
Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling
Procedia PDF Downloads 834449 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2944448 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers
Authors: Rajkumar Kolangarakandy
Abstract:
Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL
Procedia PDF Downloads 3334447 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method
Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat
Abstract:
Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.Keywords: feature extraction, feature selection, image annotation, classification
Procedia PDF Downloads 5844446 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
Authors: Karima Qayumi, Alex Norta
Abstract:
The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)
Procedia PDF Downloads 4284445 Machine Learning-Based Techniques for Detecting and Mitigating Cyber-attacks on Automatic Generation Control in Smart Grids
Authors: Sami M. Alshareef
Abstract:
The rapid growth of smart grid technology has brought significant advancements to the power industry. However, with the increasing interconnectivity and reliance on information and communication technologies, smart grids have become vulnerable to cyber-attacks, posing significant threats to the reliable operation of power systems. Among the critical components of smart grids, the Automatic Generation Control (AGC) system plays a vital role in maintaining the balance between generation and load demand. Therefore, protecting the AGC system from cyber threats is of paramount importance to maintain grid stability and prevent disruptions. Traditional security measures often fall short in addressing sophisticated and evolving cyber threats, necessitating the exploration of innovative approaches. Machine learning, with its ability to analyze vast amounts of data and learn patterns, has emerged as a promising solution to enhance AGC system security. Therefore, this research proposal aims to address the challenges associated with detecting and mitigating cyber-attacks on AGC in smart grids by leveraging machine learning techniques on automatic generation control of two-area power systems. By utilizing historical data, the proposed system will learn the normal behavior patterns of AGC and identify deviations caused by cyber-attacks. Once an attack is detected, appropriate mitigation strategies will be employed to safeguard the AGC system. The outcomes of this research will provide power system operators and administrators with valuable insights into the vulnerabilities of AGC systems in smart grids and offer practical solutions to enhance their cyber resilience.Keywords: machine learning, cyber-attacks, automatic generation control, smart grid
Procedia PDF Downloads 844444 A Single Feature Probability-Object Based Image Analysis for Assessing Urban Landcover Change: A Case Study of Muscat Governorate in Oman
Authors: Salim H. Al Salmani, Kevin Tansey, Mohammed S. Ozigis
Abstract:
The study of the growth of built-up areas and settlement expansion is a major exercise that city managers seek to undertake to establish previous and current developmental trends. This is to ensure that there is an equal match of settlement expansion needs to the appropriate levels of services and infrastructure required. This research aims at demonstrating the potential of satellite image processing technique, harnessing the utility of single feature probability-object based image analysis technique in assessing the urban growth dynamics of the Muscat Governorate in Oman for the period 1990, 2002 and 2013. This need is fueled by the continuous expansion of the Muscat Governorate beyond predicted levels of infrastructural provision. Landsat Images of the years 1990, 2002 and 2013 were downloaded and preprocessed to forestall appropriate radiometric and geometric standards. A novel approach of probability filtering of the target feature segment was implemented to derive the spatial extent of the final Built-Up Area of the Muscat governorate for the three years period. This however proved to be a useful technique as high accuracy assessment results of 55%, 70%, and 71% were recorded for the Urban Landcover of 1990, 2002 and 2013 respectively. Furthermore, the Normalized Differential Built – Up Index for the various images were derived and used to consolidate the results of the SFP-OBIA through a linear regression model and visual comparison. The result obtained showed various hotspots where urbanization have sporadically taken place. Specifically, settlement in the districts (Wilayat) of AL-Amarat, Muscat, and Qurayyat experienced tremendous change between 1990 and 2002, while the districts (Wilayat) of AL-Seeb, Bawshar, and Muttrah experienced more sporadic changes between 2002 and 2013.Keywords: urban growth, single feature probability, object based image analysis, landcover change
Procedia PDF Downloads 2734443 Automatic Extraction of Water Bodies Using Whole-R Method
Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao
Abstract:
Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method
Procedia PDF Downloads 3824442 Investigation of Solar Concentrator Prototypes under Tunisian Conditions
Authors: Moncef Balghouthi, Mahmoud Ben Amara, Abdessalem Ben Hadj Ali, Amenallah Guizani
Abstract:
Concentrated solar power technology constitutes an interesting option to meet a part of future energy demand, especially when considering the high levels of solar radiation and clearness index that are available particularly in Tunisia. In this work, we present three experimental prototypes of solar concentrators installed in the research center of energy CRTEn in Tunisia. Two are medium temperature parabolic trough solar collector used to drive a cooling installation and for steam generation. The third is a parabolic dish concentrator used for hybrid generation of thermal and electric power. Optical and thermal evaluations were presented. Solutions and possibilities to construct locally the mirrors of the concentrator were discussed. In addition, the enhancement of the performances of the receivers by nano selective absorption coatings was studied. The improvement of heat transfer between the receiver and the heat transfer fluid was discussed for each application.Keywords: solar concentrators, optical and thermal evaluations, cooling and process heat, hybrid thermal and electric generation
Procedia PDF Downloads 2524441 A Deep Learning Approach to Online Social Network Account Compromisation
Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang
Abstract:
The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.Keywords: computer security, network security, online social network, account compromisation
Procedia PDF Downloads 1154440 Investigating the Steam Generation Potential of Lithium Bromide Based CuO Nanofluid under Simulated Solar Flux
Authors: Tamseela Habib, Muhammad Amjad, Muhammad Edokali, Masome Moeni, Olivia Pickup, Ali Hassanpour
Abstract:
Nanofluid-assisted steam generation is rapidly attracting attention amongst the scientific community since it can be applied in a wide range of industrial processes. Because of its high absorption rate of solar energy, nanoparticle-based solar steam generation could be a major contributor to many applications, including water desalination, sterilization and power generation. Lithium bromide-based iron oxide nanofluids have been previously studied in steam generation, which showed promising results. However, the efficiency of the system could be improved if a more heat-conductive nanofluid system could be utilised. In the current paper, we report on an experimental investigation of the photothermal conversion properties of functionalised Copper oxide (CuO) nanoparticles used in Lithium Bromide salt solutions. CuO binary nanofluid was prepared by chemical functionalization with polyethyleneimine (PEI). Long-term stability evaluation of prepared binary nanofluid was done by a high-speed centrifuge analyser which showed a 0.06 Instability index suggesting low agglomeration and sedimentation tendencies. This stability is also supported by the measurements from dynamic light scattering (DLS), transmission electron microscope (TEM), and ultraviolet-visible (UV-Vis) spectrophotometer. The fluid rheology is also characterised, which suggests the system exhibits a Newtonian fluid behavior. The photothermal conversion efficiency of different concentrations of CuO was experimentally investigated under a solar simulator. Experimental results reveal that the binary nanofluid in this study can remarkably increase the solar energy trapping efficiency and evaporation rate as compared to conventional fluids due to localized solar energy harvesting by the surface of the nanofluid. It was found that 0.1wt% CuO NP is the optimum nanofluid concentration for enhanced sensible and latent heat efficiencies.Keywords: nanofluids, vapor absorption refrigeration system, steam generation, high salinity
Procedia PDF Downloads 824439 Re-Os Application to Petroleum System: Implications from the Geochronology and Oil-Source Correlation of Duvernay Petroleum System, Western Canadian Sedimentary Basin
Authors: Junjie Liu, David Selby, Mark Obermajer, Andy Mort
Abstract:
The inaugural application of Re-Os dating, which is based on the beta decay of 187Re to 187Os with a long half-life of 41.577 ± 0.12 Byr and initially used for sulphide minerals and organic rich rocks, to petroleum systems was performed on bitumen of the Polaris Mississippi Valley Type Pb-Zn deposit, Canada. To further our understanding of the Re-Os system and its application to petroleum systems, here we present a study on Duvernay Petroleum System, Western Canadian Sedimentary Basin. The Late Devonian Duvernay Formation organic-rich shales are the only source of the petroleum system. The Duvernay shales reached maturation only during the Laramide Orogeny (80 – 35 Ma) and the generated oil migrated short distances into the interfingering Leduc reefs and overlying Nisku carbonates with no or little secondary alteration post oil-generation. Although very low in Re and Os, the asphaltenes of Duvernay-sourced Leduc and Nisku oils define a Laramide Re-Os age. In addition, the initial Os isotope compositions of the oil samples are similar to that of the Os isotope composition of the Duvernay Formation at the time of oil generation, but are very different to other oil-prone intervals of the basin, showing the ability of the Os isotope composition as an inorganic oil-source correlation tool. In summary, the ability of the Re-Os geochronometer to record the timing of oil generation and trace the source of an oil is confirmed in the Re-Os study of Duvernay Petroleum System.Keywords: Duvernay petroleum system, oil generation, oil-source correlation, Re-Os
Procedia PDF Downloads 3094438 Petroleum Generative Potential of Eocene-Paleocene Sequences of Potwar Basin, Pakistan
Authors: Syed Bilawal Ali Shah
Abstract:
The investigation of the hydrocarbon source rock potential of Eocene-Paleocene formations of Potwar Basin, part of Upper Indus Basin Pakistan, was done using geochemical and petrological techniques. Analysis was performed on forty-five core-cutting samples from two wells. The sequences analysed are Sakesar, Lockhart and Patala formations of Potwar Basin. Patala Formation is one of Potwar Basin's major petroleum-bearing source rocks. The Lockhart Formation samples VR (%Ro) and Tmax data indicate that the formation is early mature to immature for petroleum generation for hydrocarbon generation; samples from the Patala and Sakesar formations, however, have a peak oil generation window and an early maturity (oil window). With 3.37 weight percent mean TOC and HI levels up to 498 mg HC/g TOC, the source rock characteristics of the Sakesar and Patala formations generally exhibit good to very strong petroleum generative potential. The majority of sediments representing Lockhart Formation have 1.5 wt.% mean TOC having fair to good potential with HI values ranging between 203-498 mg HC/g TOC. 1. The analysed sediments of all formations possess primarily mixed Type II/III and Type III kerogen. Analysed sediments indicate that both the Sakesar and Patala formations can possess good oil-generation potential and may act as an oil source rock in the Potwar Basin.Keywords: Potwar Basin, Patala Shale, Rock-Eval pyrolysis, Indus Basin, VR %Ro
Procedia PDF Downloads 854437 DG Allocation to Reduce Production Cost by Reducing Losses in Radial Distribution Systems Using Fuzzy
Authors: G. V. Siva Krishna Rao, B. Srinivasa Rao
Abstract:
Electrical energy is vital in every aspect of day-to-day life. Keen interest is taken on all possible sources of energy from which it can be generated and this led to the encouragement of generating electrical power using renewable energy resources such as solar, tidal waves and wind energy. Due to the increasing interest on renewable sources in recent times, the studies on integration of distributed generation to the power grid have rapidly increased. Distributed Generation (DG) is a promising solution to many power system problems such as voltage regulation, power loss and reduction in operational cost, etc. To reduce production cost, it is important to minimize the losses by determining the location and size of local generators to be placed in the radial distribution systems. In this paper, reduction of production cost by optimal size of DG unit operated at optimal power factor is dealt. The optimal size of the DG unit is calculated analytically using approximate reasoning suitable nodes and DG placement to minimize production cost with minimum loss is determined by fuzzy technique. Total Cost of Power generation is compared with and without DG unit for 1 year duration. The suggested method is programmed under MATLAB software and is tested on IEEE 33 bus system and the results are presented.Keywords: distributed generation, operational cost, exact loss formula, optimum size, optimum location
Procedia PDF Downloads 4834436 Millenial Muslim Women’s Views on Religious Identity and Religious Leaders: The Role of the State on Religious Issues and Religious Radicalism in Jakarta
Authors: Achmad Muchadam Fahham, Sony Hendra Permana
Abstract:
Millennial Muslims are a generation of young people between 20-30 years. They will play an important role in various aspects of life for the next 10 to 20 years. In Indonesia, the population of this generation is quite large and in the next ten to twenty years they will occupy strategic position in various fields of social, economic and political life. One of the characteristics of the millenials generation are always connected to the internet and independence to learn anything from the internet. In terms of religion, the majority of millennial are Muslim. In digital era, the generation of millenial Muslim is vulnerable to the influence of radical Islamic thinking because of their easy access to that thought on social media, new media, and the books they read. This study seeks to examine the religious views of millennial Muslim women in four main focuses, namely religious identity, religious leaders, the role of the state on religious issues, and religious radicalism. This study was conducted with a qualitative approach, the data collection was carried out by the interview method. The study was conducted in Jakarta, mainly in religious study groups located in several mosques and shopping center in Jakarta. This study is expected to portray the religious views of millennial Muslim women, especially their commitment to Islamic identity, their views on the authority of religious leaders, the role of the state in various religious problems, and religious radicalism.Keywords: millenial Muslims, radicalism, muslim mowen, religious identity
Procedia PDF Downloads 1494435 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation
Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori
Abstract:
The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.Keywords: clustering, edges, feature points, landmark selection, X-means
Procedia PDF Downloads 2784434 Analysis of Construction Waste Generation and Its Effect in a Construction Site
Authors: R. K. D. G. Kaluarachchi
Abstract:
The generation of solid waste and its effective management are debated topics in Sri Lanka as well as in the global environment. It was estimated that the most of the waste generated in global was originated from construction and demolition of buildings. Thus, the proportion of construction waste in solid waste generation cannot be underestimated. The construction waste, which is the by-product generated and removed from work sites is collected in direct and indirect processes. Hence, the objectives of this research are to identify the proportion of construction waste which can be reused and identify the methods to reduce the waste generation without reducing the quality of the process. A 6-storey building construction site was selected for this research. The site was divided into six zones depending on the process. Ten waste materials were identified by considering the adverse effects on safety and health of people and the economic value of them. The generated construction waste in each zone was recorded per week for a period of five months. The data revealed that sand, cement, wood used for form work and rusted steel rods were the generated waste which has higher economic value in all zones. Structured interviews were conducted to gather information on how the materials are categorized as waste and the capability of reducing, reusing and recycling the waste. It was identified that waste is generated in following processes; ineffective storage of material for a longer time and improper handling of material during the work process. Further, the alteration of scheduled activities of construction work also yielded more waste. Finally, a proper management of construction waste is suggested to reduce and reuse waste.Keywords: construction-waste, effective management, reduce, reuse
Procedia PDF Downloads 1994433 Loss Minimization by Distributed Generation Allocation in Radial Distribution System Using Crow Search Algorithm
Authors: M. Nageswara Rao, V. S. N. K. Chaitanya, K. Amarendranath
Abstract:
This paper presents an optimal allocation and sizing of Distributed Generation (DG) in Radial Distribution Network (RDN) for total power loss minimization and enhances the voltage profile of the system. The two main important part of this study first is to find optimal allocation and second is optimum size of DG. The locations of DGs are identified by Analytical expressions and crow search algorithm has been employed to determine the optimum size of DG. In this study, the DG has been placed on single and multiple allocations.CSA is a meta-heuristic algorithm inspired by the intelligent behavior of the crows. Crows stores their excess food in different locations and memorizes those locations to retrieve it when it is needed. They follow each other to do thievery to obtain better food source. This analysis is tested on IEEE 33 bus and IEEE 69 bus under MATLAB environment and the results are compared with existing methods.Keywords: analytical expression, distributed generation, crow search algorithm, power loss, voltage profile
Procedia PDF Downloads 2334432 Evaluation of PV Orientation Effect on Mismatch between Consumption Load and PV Power Profiles
Authors: Iyad M. Muslih, Yehya Abdellatif, Sara Qutishat
Abstract:
Renewable energy and in particular solar photovoltaic energy is emerging as a reasonable power generation source. The intermittent and unpredictable nature of solar energy can represent a serious challenge to the utility grids, specifically at relatively high penetration. To minimize the impact of PV power systems on the grid, self-consumption is encouraged. Self-consumption can be improved by matching the PV power generation with the electrical load consumption profile. This study will focus in studying different load profiles and comparing them to typical solar PV power generation at the selected sites with the purpose of analyzing the mismatch in consumption load profile for different users; residential, commercial, and industrial versus the solar photovoltaic output generation. The PV array orientation can be adjusted to reduce the mismatch effects. The orientation shift produces a corresponding shift in the energy production curve. This shift has a little effect on the mismatch for residential loads due to the fact the peak load occurs at night due to lighting loads. This minor gain does not justify the power production loss associated with the orientation shift. The orientation shift for both commercial and industrial cases lead to valuable decrease in the mismatch effects. Such a design is worth considering for reducing grid penetration. Furthermore, the proposed orientation shift yielded better results during the summer time due to the extended daylight hours.Keywords: grid impact, HOMER, power mismatch, solar PV energy
Procedia PDF Downloads 6034431 Measuring How Brightness Mediates Auditory Salience
Authors: Baptiste Bouvier
Abstract:
While we are constantly flooded with stimuli in daily life, attention allows us to select the ones we specifically process and ignore the others. Some salient stimuli may sometimes pass this filter independently of our will, in a "bottom-up" way. The role of the acoustic properties of the timbre of a sound on its salience, i.e., its ability to capture the attention of a listener, is still not well understood. We implemented a paradigm called the "additional singleton paradigm", in which participants have to discriminate targets according to their duration. This task is perturbed (higher error rates and longer response times) by the presence of an irrelevant additional sound, of which we can manipulate a feature of our choice at equal loudness. This allows us to highlight the influence of the timbre features of a sound stimulus on its salience at equal loudness. We have shown that a stimulus that is brighter than the others but not louder leads to an attentional capture phenomenon in this framework. This work opens the door to the study of the influence of any timbre feature on salience.Keywords: attention, audition, bottom-up attention, psychoacoustics, salience, timbre
Procedia PDF Downloads 1684430 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems
Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu
Abstract:
In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP
Procedia PDF Downloads 384429 Biofeedback-Driven Sound and Image Generation
Authors: Claudio Burguez, María Castelló, Mikaela Pisani, Marcos Umpiérrez
Abstract:
BIOFEEDBACK exhibition offers a unique experience for each visitor, combining art, neuroscience, and technology in an interactive way. Using a headband that captures the bioelectric activity of the brain, the visitors are able to generate sound and images in a sequence loop, making them an integral part of the artwork. Through this interactive exhibit, visitors gain a deeper appreciation of the beauty and complexity of the brain. As a special takeaway, visitors will receive an NFT as a present, allowing them to continue their engagement with the exhibition beyond the physical space. We used the EEG Biofeedback technique following a closed-loop neuroscience approach, transforming EEG data captured by a Muse S headband in real-time into audiovisual stimulation. PureData is used for sound generation and Generative Adversarial Networks (GANs) for image generation. Thirty participants have experienced the exhibition. For some individuals, it was easier to focus than others. Participants who said they could focus during the exhibit stated that at one point, they felt that they could control the sound, while images were more abstract, and they did not feel that they were able to control them.Keywords: art, audiovisual, biofeedback, EEG, NFT, neuroscience, technology
Procedia PDF Downloads 714428 A New Approach to Image Stitching of Radiographic Images
Authors: Somaya Adwan, Rasha Majed, Lamya'a Majed, Hamzah Arof
Abstract:
In order to produce images with whole body parts, X-ray of different portions of the body parts is assembled using image stitching methods. A new method for image stitching that exploits mutually feature based method and direct based method to identify and merge pairs of X-ray medical images is presented in this paper. The performance of the proposed method based on this hybrid approach is investigated in this paper. The ability of the proposed method to stitch and merge the overlapping pairs of images is demonstrated. Our proposed method display comparable if not superior performance to other feature based methods that are mentioned in the literature on the standard databases. These results are promising and demonstrate the potential of the proposed method for further development to tackle more advanced stitching problems.Keywords: image stitching, direct based method, panoramic image, X-ray
Procedia PDF Downloads 5394427 A Study of Generation Y's Career Attitude at Workplace
Authors: Supriadi Hardianto, Aditya Daniswara
Abstract:
Today's workplace, flooded by millennial Generation or known also as Generation Y. A common problem that faced by the company towards Gen Y is a high turnover rate, attitudes problem, communication style, and different work style than the older generation. This is common in private sector. The objective of this study is to get a better understanding of the Gen Y Career Attitude at the workplace. The subject of this study is focusing on 430 respondent of Gen Y which age between 20 – 35 years old who works for a private company. The Questionnaire as primary data source captured 9 aspects of career attitude based on Career Attitudes Strategy Inventory (CASI). This Survey distributes randomly among Gen Y in the IT Industry (125 Respondent) and Manufacture Company (305 Respondent). A Random deep interview was conducted to get the better understanding of the etiology of their primary obstacles. The study showed that most of Indonesia Gen Y have a moderate score on Job satisfaction but in the other aspects, Gen Y has the lowest score on Skill Development, Career Worries, Risk-Taking Style, Dominant Style, Work Involvement, Geographical Barrier, Interpersonal Abuse, and Family Commitment. The top 5 obstacles outside that 9 aspects that faced by Gen Y are 1. Lower communication & networking support; 2. Self-confidence issues; 3. Financial Problem; 4. Emotional issues; 5. Age. We also found that parent perspective toward the way they are nurturing their child are not aligned with their child’s real life. This research fundamentally helps the organization and other Gen Y’s Stakeholders to have a better understanding of Gen Y Career Attitude at the workplace.Keywords: career attitudes, CASI, Gen Y, career attitude at workplace
Procedia PDF Downloads 1574426 An Ensemble-based Method for Vehicle Color Recognition
Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi
Abstract:
The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network
Procedia PDF Downloads 814425 A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality
Authors: Hoshang Kolivand, Mahyar Kolivand, Mohd Shahrizal Sunar, Mohd Azhar M. Arsad
Abstract:
Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. Δ+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments.Keywords: silhouette detection, shadow volumes, real-time shadows, rendering, augmented reality
Procedia PDF Downloads 4414424 A Political-Economic Analysis of Next Generation EU Recovery Fund
Authors: Fernando Martín-Espejo, Christophe Crombez
Abstract:
This paper presents a political-economic analysis of the reforms introduced during the coronavirus crisis at the EU level with a special emphasis on the recovery fund Next Generation EU (NGEU). It also introduces a spatial model to evaluate whether the governmental features of the recovery fund can be framed inside the community method. Particularly, by evaluating the brake clause in the NGEU legislation, this paper analyses theoretically the political and legislative implications of the introduction of flexibility clauses in the EU decision-making process.Keywords: EU, legislative procedures, spatial model, coronavirus
Procedia PDF Downloads 176