Search results for: fault detection and isolation (FDI)
4296 Hand Detection and Recognition for Malay Sign Language
Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Norhafilah Bara
Abstract:
Developing a software application using an interface with computers and peripheral devices using gestures of human body such as hand movements keeps growing in interest. A review on this hand gesture detection and recognition based on computer vision technique remains a very challenging task. This is to provide more natural, innovative and sophisticated way of non-verbal communication, such as sign language, in human computer interaction. Nevertheless, this paper explores hand detection and hand gesture recognition applying a vision based approach. The hand detection and recognition used skin color spaces such as HSV and YCrCb are applied. However, there are limitations that are needed to be considered. Almost all of skin color space models are sensitive to quickly changing or mixed lighting circumstances. There are certain restrictions in order for the hand recognition to give better results such as the distance of user’s hand to the webcam and the posture and size of the hand.Keywords: hand detection, hand gesture, hand recognition, sign language
Procedia PDF Downloads 3064295 Bridges Seismic Isolation Using CNT Reinforced Polymer Bearings
Authors: Mohamed Attia, Vissarion Papadopoulos
Abstract:
There is no doubt that there is a continuous deterioration of structures as a result of multiple hazards which can be divided into natural hazards (e.g., earthquakes, floods, winds) and other hazards due to human behavior (e.g., ship collisions, excessive traffic, terrorist attacks). There have been numerous attempts to address the catastrophic consequences of these hazards and traditional solutions through structural design and safety factors within the design codes, but there has not been much research addressing solutions through the use of new materials that have high performance and can be more effective than usual materials such as reinforced concrete and steel. To illustrate the effect of one of the new high-performance materials, carbon nanotube-reinforced polymer (CNT/polymer) bearings with different weight fractions were simulated as structural components of seismic isolation using ABAQUS in the connection between a bridge superstructure and the substructure. The results of the analyzes showed a significant increase in the time period of the bridge and a clear decrease in the bending moment at the base of the bridge piers at each time step of the time-history analysis in the case of using CNT/polymer bearings compared to the case of direct contact between the superstructure of the bridge and the substructure.Keywords: seismic isolation, bridges damage, earthquake hazard, earthquake resistant structures
Procedia PDF Downloads 1954294 Evaluating Gallein Dye as a Beryllium Indicator
Authors: Elise M. Shauf
Abstract:
Beryllium can be found naturally in some fruits and vegetables (carrots, garden peas, kidney beans, pears) at very low concentrations, but is typically not clinically significant due to the low-level exposure and limited absorption of beryllium by the stomach and intestines. However, acute or chronic beryllium exposure can result in harmful toxic and carcinogenic biological effects. Beryllium can be both a workplace hazard and an environmental pollutant, therefore determining the presence of beryllium at trace levels can be essential to protect workers as well as the environment. Analysis of gallein, C₂₀H₁₂O₇, to determine if it is usable as a fluorescent dye for beryllium detection. The primary detection method currently in use includes hydroxybenzoquinoline sulfonates (HBQS), for which alternative indicators are desired. Unfortunately, gallein does not have the desired aspects needed as a dye for beryllium detection due to the peak shift properties.Keywords: beryllium detection, fluorescent, gallein dye, indicator, spectroscopy
Procedia PDF Downloads 1424293 Isothermal Solid-Phase Amplification System for Detection of Yersinia pestis
Authors: Olena Mayboroda, Angel Gonzalez Benito, Jonathan Sabate Del Rio, Marketa Svobodova, Sandra Julich, Herbert Tomaso, Ciara K. O'Sullivan, Ioanis Katakis
Abstract:
DNA amplification is required for most molecular diagnostic applications but conventional PCR has disadvantages for field testing. Isothermal amplification techniques are being developed to respond to this problem. One of them is the Recombinase Polymerase Amplification (RPA) that operates at isothermal conditions without sacrificing specificity and sensitivity in easy-to-use formats. In this work RPA was used for the optical detection of solid-phase amplification of the potential biowarfare agent Yersinia pestis. Thiolated forward primers were immobilized on the surface of maleimide-activated microtitre plates for the quantitative detection of synthetic and genomic DNA, with elongation occurring only in the presence of the specific template DNA and solution phase reverse primers. Quantitative detection was achieved via the use of biotinylated reverse primers and post-amplification addition of streptavidin-HRP conjugate. The overall time of amplification and detection was less than 1 hour at a constant temperature of 37oC. Single-stranded and double-stranded DNA sequences were detected achieving detection limits of 4.04*10-13 M and 3.14*10-16 M, respectively. The system demonstrated high specificity with negligible responses to non-specific targets.Keywords: recombinase polymerase amplification, Yersinia pestis, solid-phase detection, ELONA
Procedia PDF Downloads 3034292 Error Probability of Multi-User Detection Techniques
Authors: Komal Babbar
Abstract:
Multiuser Detection is the intelligent estimation/demodulation of transmitted bits in the presence of Multiple Access Interference. The authors have presented the Bit-error rate (BER) achieved by linear multi-user detectors: Matched filter (which treats the MAI as AWGN), Decorrelating and MMSE. In this work, authors investigate the bit error probability analysis for Matched filter, decorrelating, and MMSE. This problem arises in several practical CDMA applications where the receiver may not have full knowledge of the number of active users and their signature sequences. In particular, the behavior of MAI at the output of the Multi-user detectors (MUD) is examined under various asymptotic conditions including large signal to noise ratio; large near-far ratios; and a large number of users. In the last section Authors also shows Matlab Simulation results for Multiuser detection techniques i.e., Matched filter, Decorrelating, MMSE for 2 users and 10 users.Keywords: code division multiple access, decorrelating, matched filter, minimum mean square detection (MMSE) detection, multiple access interference (MAI), multiuser detection (MUD)
Procedia PDF Downloads 5274291 Saliency Detection Using a Background Probability Model
Authors: Junling Li, Fang Meng, Yichun Zhang
Abstract:
Image saliency detection has been long studied, while several challenging problems are still unsolved, such as detecting saliency inaccurately in complex scenes or suppressing salient objects in the image borders. In this paper, we propose a new saliency detection algorithm in order to solving these problems. We represent the image as a graph with superixels as nodes. By considering appearance similarity between the boundary and the background, the proposed method chooses non-saliency boundary nodes as background priors to construct the background probability model. The probability that each node belongs to the model is computed, which measures its similarity with backgrounds. Thus we can calculate saliency by the transformed probability as a metric. We compare our algorithm with ten-state-of-the-art salient detection methods on the public database. Experimental results show that our simple and effective approach can attack those challenging problems that had been baffling in image saliency detection.Keywords: visual saliency, background probability, boundary knowledge, background priors
Procedia PDF Downloads 4294290 An Efficient Fundamental Matrix Estimation for Moving Object Detection
Authors: Yeongyu Choi, Ju H. Park, S. M. Lee, Ho-Youl Jung
Abstract:
In this paper, an improved method for estimating fundamental matrix is proposed. The method is applied effectively to monocular camera based moving object detection. The method consists of corner points detection, moving object’s motion estimation and fundamental matrix calculation. The corner points are obtained by using Harris corner detector, motions of moving objects is calculated from pyramidal Lucas-Kanade optical flow algorithm. Through epipolar geometry analysis using RANSAC, the fundamental matrix is calculated. In this method, we have improved the performances of moving object detection by using two threshold values that determine inlier or outlier. Through the simulations, we compare the performances with varying the two threshold values.Keywords: corner detection, optical flow, epipolar geometry, RANSAC
Procedia PDF Downloads 4064289 Long Distance Aspirating Smoke Detection for Large Radioactive Areas
Authors: Michael Dole, Pierre Ninin, Denis Raffourt
Abstract:
Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.Keywords: air sampling, fire detection, long distance, radioactive areas
Procedia PDF Downloads 1594288 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision
Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek
Abstract:
This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking
Procedia PDF Downloads 4574287 Diagnosis Of Static, Dynamic, And Mixed Eccentricity In Line Start Permanent Magnet Synchronous Motor By Using FEM
Authors: Mohamed Moustafa Mahmoud Sedky
Abstract:
In line start permanent magnet synchronous motor, eccentricity is a common fault that can make it necessary to remove the motor from the production line. However, because the motor may be inaccessible, diagnosing the fault is not easy. This paper presents an FEM that identifies different models, static eccentricity, dynamic eccentricity, and mixed eccentricity, at no load and full load. The method overcomes the difficulty of applying FEMs to transient behavior. It simulates motor speed, torque and flux density distribution along the air gap for SE, DE, and ME. This paper represents the various effects of different eccentricities types on the transient performance.Keywords: line start permanent magnet, synchronous machine, static eccentricity, dynamic eccentricity, mixed eccentricity
Procedia PDF Downloads 3794286 Fear of Isolation, Online Efficacy, and Selective Exposure in Online Political Discourse
Authors: Kyujin Shim
Abstract:
This study explores how individual motivations in political psychology will lead to political expression and online discourse, and how those online political discourses result in individuals’ exposure to extreme/ personally-entertaining/ disinhibiting content. This study argues that a new framework beyond the conventional paradigm (e.g., selective exposure based on partisanship/ ideology) is needed for better grasp of non-ideological/ anarchic, and/or of nonpartisan yet anonymity-/ extremity-/ disinhibition-related online behaviors regarding political conversations. Further, this study proposes a new definition of ‘selective exposure,’ with special attention to online efficacy and psychological motivations/gratifications sought in the online sphere.Keywords: selective exposure, fear of isolation, political psychology, online discourse
Procedia PDF Downloads 4334285 Assessment of Image Databases Used for Human Skin Detection Methods
Authors: Saleh Alshehri
Abstract:
Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.Keywords: image databases, image processing, pattern recognition, neural networks
Procedia PDF Downloads 2714284 Ultraviolet Visible Spectroscopy Analysis on Transformer Oil by Correlating It with Various Oil Parameters
Authors: Rajnish Shrivastava, Y. R. Sood, Priti Pundir, Rahul Srivastava
Abstract:
Power transformer is one of the most important devices that are used in power station. Due to several fault impending upon it or due to ageing, etc its life gets lowered. So, it becomes necessary to have diagnosis of oil for fault analysis. Due to the chemical, electrical, thermal and mechanical stress the insulating material in the power transformer degraded. It is important to regularly assess the condition of oil and the remaining life of the power transformer. In this paper UV-VIS absorption graph area is correlated with moisture content, Flash point, IFT and Density of Transformer oil. Since UV-VIS absorption graph area varies accordingly with the variation in different transformer parameters. So by obtaining the correlation among different oil parameters for oil with respect to UV-VIS absorption area, decay contents of transformer oil can be predictedKeywords: breakdown voltage (BDV), interfacial Tension (IFT), moisture content, ultra violet-visible rays spectroscopy (UV-VIS)
Procedia PDF Downloads 6424283 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 534282 Isolation and Chemical Characterization of Residual Lignin from Areca Nut Shells
Authors: Dipti Yadav, Latha Rangan, Pinakeswar Mahanta
Abstract:
Recent fuel-development strategies to reduce oil dependency, mitigate greenhouse gas emissions, and utilize domestic resources have generated interest in the search for alternative sources of fuel supplies. Bioenergy production from lignocellulosic biomass has a great potential. Cellulose, hemicellulose and Lignin are main constituent of woods or agrowaste. In all the industries there are always left over or waste products mainly lignin, due to the heterogeneous nature of wood and pulp fibers and the heterogeneity that exists between individual fibers, no method is currently available for the quantitative isolation of native or residual lignin without the risk of structural changes during the isolation. The potential benefits from finding alternative uses of lignin are extensive, and with a double effect. Lignin can be used to replace fossil-based raw materials in a wide range of products, from plastics to individual chemical products, activated carbon, motor fuels and carbon fibers. Furthermore, if there is a market for lignin for such value-added products, the mills will also have an additional economic incentive to take measures for higher energy efficiency. In this study residual lignin were isolated from areca nut shells by acid hydrolysis and were analyzed and characterized by Fourier Transform Infrared (FTIR), LCMS and complexity of its structure investigated by NMR.Keywords: Areca nut, Lignin, wood, bioenergy
Procedia PDF Downloads 4744281 Quantitative Seismic Interpretation in the LP3D Concession, Central of the Sirte Basin, Libya
Authors: Tawfig Alghbaili
Abstract:
LP3D Field is located near the center of the Sirt Basin in the Marada Trough approximately 215 km south Marsa Al Braga City. The Marada Trough is bounded on the west by a major fault, which forms the edge of the Beda Platform, while on the east, a bounding fault marks the edge of the Zelten Platform. The main reservoir in the LP3D Field is Upper Paleocene Beda Formation. The Beda Formation is mainly limestone interbedded with shale. The reservoir average thickness is 117.5 feet. To develop a better understanding of the characterization and distribution of the Beda reservoir, quantitative seismic data interpretation has been done, and also, well logs data were analyzed. Six reflectors corresponding to the tops of the Beda, Hagfa Shale, Gir, Kheir Shale, Khalifa Shale, and Zelten Formations were picked and mapped. Special work was done on fault interpretation part because of the complexities of the faults at the structure area. Different attribute analyses were done to build up more understanding of structures lateral extension and to view a clear image of the fault blocks. Time to depth conversion was computed using velocity modeling generated from check shot and sonic data. The simplified stratigraphic cross-section was drawn through the wells A1, A2, A3, and A4-LP3D. The distribution and the thickness variations of the Beda reservoir along the study area had been demonstrating. Petrophysical analysis of wireline logging also was done and Cross plots of some petrophysical parameters are generated to evaluate the lithology of reservoir interval. Structure and Stratigraphic Framework was designed and run to generate different model like faults, facies, and petrophysical models and calculate the reservoir volumetric. This study concluded that the depth structure map of the Beda formation shows the main structure in the area of study, which is north to south faulted anticline. Based on the Beda reservoir models, volumetric for the base case has been calculated and it has STOIIP of 41MMSTB and Recoverable oil of 10MMSTB. Seismic attributes confirm the structure trend and build a better understanding of the fault system in the area.Keywords: LP3D Field, Beda Formation, reservoir models, Seismic attributes
Procedia PDF Downloads 2134280 Investigation of Wind Farm Interaction with Ethiopian Electric Power’s Grid: A Case Study at Ashegoda Wind Farm
Authors: Fikremariam Beyene, Getachew Bekele
Abstract:
Ethiopia is currently on the move with various projects to raise the amount of power generated in the country. The progress observed in recent years indicates this fact clearly and indisputably. The rural electrification program, the modernization of the power transmission system, the development of wind farm is some of the main accomplishments worth mentioning. As it is well known, currently, wind power is globally embraced as one of the most important sources of energy mainly for its environmentally friendly characteristics, and also that once it is installed, it is a source available free of charge. However, integration of wind power plant with an existing network has many challenges that need to be given serious attention. In Ethiopia, a number of wind farms are either installed or are under construction. A series of wind farm is planned to be installed in the near future. Ashegoda Wind farm (13.2°, 39.6°), which is the subject of this study, is the first large scale wind farm under construction with the capacity of 120 MW. The first phase of 120 MW (30 MW) has been completed and is expected to be connected to the grid soon. This paper is concerned with the investigation of the wind farm interaction with the national grid under transient operating condition. The main concern is the fault ride through (FRT) capability of the system when the grid voltage drops to exceedingly low values because of short circuit fault and also the active and reactive power behavior of wind turbines after the fault is cleared. On the wind turbine side, a detailed dynamic modelling of variable speed wind turbine of a 1 MW capacity running with a squirrel cage induction generator and full-scale power electronics converters is done and analyzed using simulation software DIgSILENT PowerFactory. On the Ethiopian electric power corporation side, after having collected sufficient data for the analysis, the grid network is modeled. In the model, a fault ride-through (FRT) capability of the plant is studied by applying 3-phase short circuit on the grid terminal near the wind farm. The results show that the Ashegoda wind farm can ride from voltage deep within a short time and the active and reactive power performance of the wind farm is also promising.Keywords: squirrel cage induction generator, active and reactive power, DIgSILENT PowerFactory, fault ride-through capability, 3-phase short circuit
Procedia PDF Downloads 1724279 A Research and Application of Feature Selection Based on IWO and Tabu Search
Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu
Abstract:
Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.Keywords: intrusion detection, feature selection, iwo, tabu search
Procedia PDF Downloads 5304278 Isolation, Structure Elucidation, and Biological Evaluation of Acetylated Flavonoid Glycosides from Centaurium spicatum
Authors: Abdelaaty A. Shahat, Mansour S. Alsaid
Abstract:
Four Acetylated flavonol glycosides were isolated from Centaurium spicatum (L.) Fritsch (Gentianaceae). Structure elucidation, especially the localization of the acetyl groups, and complete 1H and 13C NMR assignments of these biologically active compounds were carried out using one- and two-dimensional NMR methods, including CNMR, DEPT-135 and DEPT-90 and gradient-assisted experiments such as DQF-COSY, TOCSY, HSQC and HMBC experiments. The antioxidant activities of the new acetylated flavonoid glycosides using DPPH• assay were determined. The compounds tested showed a good DPPH• activity compared with control, but their activity was lower than that of their corresponding aglycone, quercetin.Keywords: Centaurium spicatum, flavonoids, biological activity, isolation, glycosides
Procedia PDF Downloads 4064277 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.Keywords: attention, fire detection, smoke detection, spatio-temporal
Procedia PDF Downloads 2034276 An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging
Authors: Ashraf Abuelhaija, Klaus Solbach
Abstract:
In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier.Keywords: EM coupling, inter-element isolation, magnetic resonance imaging (mri), parallel transmit
Procedia PDF Downloads 4954275 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1264274 Attack Redirection and Detection using Honeypots
Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat
Abstract:
A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner
Procedia PDF Downloads 1554273 Unlocking the Potential of Neglected Cereal Resources Waste: Exploring Functional Properties of Algerian Pearl Millet Starch via Wet Milling and Ultrasound Techniques
Authors: Sarra Bouhallel, Sara Legbedj, Rima Messaoud, Sofia Saffarbatti
Abstract:
In the context of global waste management and sustainable resource utilization, millets emerge as a vital yet underutilized cereal resource. Despite their exceptional nutritional profile and resilience to harsh environmental conditions, their potential remains largely untapped. This study aims to contribute to the valorization of seven Algerian pearl millet landraces (Pennisetum glaucum (L.) R. Br) from the southern region by focusing on the characterization of their starches. Utilizing both conventional wet milling, incorporating sodium azide as a microbial growth inhibitor, and a novel green technology—Ultrasound-assisted isolation, we explore avenues for enhancing the functional properties of these starches. Analysis of key functional properties such as swelling power and water solubility index reveals significant enhancements, particularly during heat treatment near the gelatinization temperature [70 - 80 °C]. Furthermore, our investigation into the influence of pre-treatment methods on isolated starches highlights the potential of Ultrasound-assisted isolation in reducing absorbency and water solubility compared to conventional methods. Through rigorous data analysis using SPSS software (Version 23), we ascertain the efficiency of Ultrasound-assisted isolation, underscoring its promising role in the valorization of pearl millet waste. This research not only sheds light on the functional properties of pearl millet starch but also underscores the imperative of sustainable waste management in harnessing the full potential of underutilized cereal resources.Keywords: isolation, solubility, starch, swelling, ultrasound
Procedia PDF Downloads 644272 Design Optimization of Doubly Fed Induction Generator Performance by Differential Evolution
Authors: Mamidi Ramakrishna Rao
Abstract:
Doubly-fed induction generators (DFIG) due to their advantages like speed variation and four-quadrant operation, find its application in wind turbines. DFIG besides supplying power to the grid has to support reactive power (kvar) under grid voltage variations, should contribute minimum fault current during faults, have high efficiency, minimum weight, adequate rotor protection during crow-bar-operation from +20% to -20% of rated speed. To achieve the optimum performance, a good electromagnetic design of DFIG is required. In this paper, a simple and heuristic global optimization – Differential Evolution has been used. Variables considered are lamination details such as slot dimensions, stack diameters, air gap length, and generator stator and rotor stack length. Two operating conditions have been considered - voltage and speed variations. Constraints included were reactive power supplied to the grid and limiting fault current and torque. The optimization has been executed separately for three objective functions - maximum efficiency, weight reduction, and grid fault stator currents. Subsequent calculations led to the conclusion that designs determined through differential evolution help in determining an optimum electrical design for each objective function.Keywords: design optimization, performance, DFIG, differential evolution
Procedia PDF Downloads 1494271 Preliminary Results on a Maximum Mean Discrepancy Approach for Seizure Detection
Authors: Boumediene Hamzi, Turky N. AlOtaiby, Saleh AlShebeili, Arwa AlAnqary
Abstract:
We introduce a data-driven method for seizure detection drawing on recent progress in Machine Learning. The method is based on embedding probability measures in a high (or infinite) dimensional reproducing kernel Hilbert space (RKHS) where the Maximum Mean Discrepancy (MMD) is computed. The MMD is metric between probability measures that are computed as the difference between the means of probability measures after being embedded in an RKHS. Working in RKHS provides a convenient, general functional-analytical framework for theoretical understanding of data. We apply this approach to the problem of seizure detection.Keywords: kernel methods, maximum mean discrepancy, seizure detection, machine learning
Procedia PDF Downloads 2384270 Isolation and Identification of Microorganisms from Marine-Associated Samples under Laboratory Conditions
Authors: Sameen Tariq, Saira Bano, Sayyada Ghufrana Nadeem
Abstract:
The Ocean, which covers over 70% of the world's surface, is wealthy in biodiversity as well as a rich wellspring of microorganisms with huge potential. The oceanic climate is home to an expansive scope of plants, creatures, and microorganisms. Marine microbial networks, which incorporate microscopic organisms, infections, and different microorganisms, enjoy different benefits in biotechnological processes. Samples were collected from marine environments, including soil and water samples, to cultivate the uncultured marine organisms by using Zobell’s medium, Sabouraud’s dextrose agar, and casein media for this purpose. Following isolation, we conduct microscopy and biochemical tests, including gelatin, starch, glucose, casein, catalase, and carbohydrate hydrolysis for further identification. The results show that more gram-positive and gram-negative bacteria. The isolation process of marine organisms is essential for understanding their ecological roles, unraveling their biological secrets, and harnessing their potential for various applications. Marine organisms exhibit remarkable adaptations to thrive in the diverse and challenging marine environment, offering vast potential for scientific, medical, and industrial applications. The isolation process plays a crucial role in unlocking the secrets of marine organisms, understanding their biological functions, and harnessing their valuable properties. They offer a rich source of bioactive compounds with pharmaceutical potential, including antibiotics, anticancer agents, and novel therapeutics. This study is an attempt to explore the diversity and dynamics related to marine microflora and their role in biofilm formation.Keywords: marine microorganisms, ecosystem, fungi, biofilm, gram-positive, gram-negative
Procedia PDF Downloads 454269 Strabismus Detection Using Eye Alignment Stability
Authors: Anoop T. R., Otman Basir, Robert F. Hess, Ben Thompson
Abstract:
Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. Currently, many children with strabismus remain undiagnosed until school entry because current automated screening methods have limited success in the preschool age range. A method for strabismus detection using eye alignment stability (EAS) is proposed. This method starts with face detection, followed by facial landmark detection, eye region segmentation, eye gaze extraction, and eye alignment stability estimation. Binarization and morphological operations are performed for segmenting the pupil region from the eye. After finding the EAS, its absolute value is used to differentiate the strabismic eye from the non-strabismic eye. If the value of the eye alignment stability is greater than a particular threshold, then the eyes are misaligned, and if its value is less than the threshold, the eyes are aligned. The method was tested on 175 strabismic and non-strabismic images obtained from Kaggle and Google Photos. The strabismic eye is taken as a positive class, and the non-strabismic eye is taken as a negative class. The test produced a true positive rate of 100% and a false positive rate of 7.69%.Keywords: strabismus, face detection, facial landmarks, eye segmentation, eye gaze, binarization
Procedia PDF Downloads 764268 Outdoor Anomaly Detection with a Spectroscopic Line Detector
Authors: O. J. G. Somsen
Abstract:
One of the tasks of optical surveillance is to detect anomalies in large amounts of image data. However, if the size of the anomaly is very small, limited information is available to distinguish it from the surrounding environment. Spectral detection provides a useful source of additional information and may help to detect anomalies with a size of a few pixels or less. Unfortunately, spectral cameras are expensive because of the difficulty of separating two spatial in addition to one spectral dimension. We investigate the possibility of modifying a simpler spectral line detector for outdoor detection. This may be especially useful if the area of interest forms a line, such as the horizon. We use a monochrome CCD that also enables detection into the near infrared. A simple camera is attached to the setup to determine which part of the environment is spectrally imaged. Our preliminary results indicate that sensitive detection of very small targets is indeed possible. Spectra could be taken from the various targets by averaging columns in the line image. By imaging a set of lines of various width we found narrow lines that could not be seen in the color image but remained visible in the spectral line image. A simultaneous analysis of the entire spectra can produce better results than visual inspection of the line spectral image. We are presently developing calibration targets for spatial and spectral focusing and alignment with the spatial camera. This will present improved results and more use in outdoor applicationKeywords: anomaly detection, spectroscopic line imaging, image analysis, outdoor detection
Procedia PDF Downloads 4814267 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence
Authors: Chawarat Rotejanaprasert, Andrew Lawson
Abstract:
Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.Keywords: Bayesian, spatial, temporal, surveillance, prospective
Procedia PDF Downloads 311