Search results for: conventional construction methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20671

Search results for: conventional construction methods

20251 Linearization and Process Standardization of Construction Design Engineering Workflows

Authors: T. R. Sreeram, S. Natarajan, C. Jena

Abstract:

Civil engineering construction is a network of tasks involving varying degree of complexity and streamlining, and standardization is the only way to establish a systemic approach to design. While there are off the shelf tools such as AutoCAD that play a role in the realization of design, the repeatable process in which these tools are deployed often is ignored. The present paper addresses this challenge through a sustainable design process and effective standardizations at all stages in the design workflow. The same is demonstrated through a case study in the context of construction, and further improvement points are highlighted.

Keywords: syste, lean, value stream, process improvement

Procedia PDF Downloads 118
20250 Rapid Processing Techniques Applied to Sintered Nickel Battery Technologies for Utility Scale Applications

Authors: J. D. Marinaccio, I. Mabbett, C. Glover, D. Worsley

Abstract:

Through use of novel modern/rapid processing techniques such as screen printing and Near-Infrared (NIR) radiative curing, process time for the sintering of sintered nickel plaques, applicable to alkaline nickel battery chemistries, has been drastically reduced from in excess of 200 minutes with conventional convection methods to below 2 minutes using NIR curing methods. Steps have also been taken to remove the need for forming gas as a reducing agent by implementing carbon as an in-situ reducing agent, within the ink formulation.

Keywords: batteries, energy, iron, nickel, storage

Procedia PDF Downloads 435
20249 The Tense Dichotomy Between Shari'ah Compliance and the Goals of an Economic Bank

Authors: Camille Paldi

Abstract:

The tense dichotomy between Shari’ah compliance and the economic goals of an Islamic Bank produces a proliferation of reverse engineered products, which are barely in compliance with Islamic law. The result is basically a hybrid conventional banking system with conventional products in Islamic disguise using Arabic and Islamic terminology. Many Islamic financial professionals and academics advocate for the use of conventional products and devices despite their non-Shari’ah compliance based on commercial necessity and the need to compete. However, this dangerous trend will lead to the demise of the Islamic finance industry. Rather than thoughtlessly following conventional products and practice, Islamic finance professionals should delve into the Shari’ah to find the answers to the current Islamic banking conundrum and lead the industry on the right path of developing Shari’ah based products and using Shari’ah devices to hedge risk.

Keywords: Islamic banking, Shari'ah, finance, investment

Procedia PDF Downloads 342
20248 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of adjuvant polycarboxylate superplasticizer on the workability of these and their action deflocculating of the fine recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0/5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption

Procedia PDF Downloads 328
20247 The Porsche Pavilion in Wolfsburg, Germany

Authors: H. Pasternak, T. Krausche

Abstract:

The Porsche Pavilion is an innovative stainless steel construction using the principle, often used in ship and car design, as an advantage for building a light but stiff structure. The Pavilion is a one of a kind and outstanding construction that you can find. It fits right in the existing parts of the Autostadt within the lagoon landscape and was built in only eight months. With its curving lines and exiting bends the structure is an extraordinary work which was designed by Henn architects, Munich. The monocoque has a good balance between material and support structure. The stiffness is achieved by the upper and lower side sheathing plates and the intermediate formers. Also the roof shell has no joints and a smooth surface. The assembling of the structure requires a large time and effort cost due to many welds which are necessary to connect all section to one large shell.

Keywords: construction welding, exhibition building, light steel construction, monocoque

Procedia PDF Downloads 520
20246 A Structure-Based Approach for Adaptable Building System

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, importance of sustainability principles for building construction is obviously known and great significance must be attached to consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 574
20245 Reliability Analysis of Construction Schedule Plan Based on Building Information Modelling

Authors: Lu Ren, You-Liang Fang, Yan-Gang Zhao

Abstract:

In recent years, the application of BIM (Building Information Modelling) to construction schedule plan has been the focus of more and more researchers. In order to assess the reasonable level of the BIM-based construction schedule plan, that is whether the schedule can be completed on time, some researchers have introduced reliability theory to evaluate. In the process of evaluation, the uncertain factors affecting the construction schedule plan are regarded as random variables, and probability distributions of the random variables are assumed to be normal distribution, which is determined using two parameters evaluated from the mean and standard deviation of statistical data. However, in practical engineering, most of the uncertain influence factors are not normal random variables. So the evaluation results of the construction schedule plan will be unreasonable under the assumption that probability distributions of random variables submitted to the normal distribution. Therefore, in order to get a more reasonable evaluation result, it is necessary to describe the distribution of random variables more comprehensively. For this purpose, cubic normal distribution is introduced in this paper to describe the distribution of arbitrary random variables, which is determined by the first four moments (mean, standard deviation, skewness and kurtosis). In this paper, building the BIM model firstly according to the design messages of the structure and making the construction schedule plan based on BIM, then the cubic normal distribution is used to describe the distribution of the random variables due to the collecting statistical data of the random factors influencing construction schedule plan. Next the reliability analysis of the construction schedule plan based on BIM can be carried out more reasonably. Finally, the more accurate evaluation results can be given providing reference for the implementation of the actual construction schedule plan. In the last part of this paper, the more efficiency and accuracy of the proposed methodology for the reliability analysis of the construction schedule plan based on BIM are conducted through practical engineering case.

Keywords: BIM, construction schedule plan, cubic normal distribution, reliability analysis

Procedia PDF Downloads 137
20244 Evaluating the Use of Swedish by-Product Foundry Sand in Asphalt Mixtures

Authors: Dina Kuttah

Abstract:

It is well known that recycling of by-product materials saves natural resources, reduces by-product volumes, and reduces the need for virgin materials. The steel industry produces a myriad of metal components for industrial chains, which in turn generates mineral discarded sand molds. Although these sands are clean before their use, after casting, they may contain contaminants. Therefore, huge quantities of excess by-product foundry sand (BFS) end up occupying large volumes in landfills. In Sweden, approximately 200000 tonnes of excess BFS end up in landfills. The transportation and construction industries have the greatest potential for reuse by-products because they use vast quantities of earthen materials annually. Accordingly, experimental work has been undertaken to evaluate the possible use of two chosen BFS from two Swedish foundries in a conventional Swedish asphalt mixture. The experimental procedure of this research has focused on the dosage, environmental and technical properties of the same mixture type ABT 11 and the same bitumen (160/220) but at different replacement proportions of the conventional fine sand with the two BFS. The environmental requirements, in addition to the technical requirements, namely, void ratio, static indirect tensile strength ratio, and resilient modulus before and after moisture-induced sensitivity tests of the asphalt mixtures, have been investigated in the current study. The test results demonstrated that the BFS from both foundries can be incorporated in the selected asphalt mixture at specified replacement proportions of the conventional fine sand fraction 0-2 mm, as discussed in the paper.

Keywords: asphalt mixtures, by-product foundry sand, indirect tensile strength, moisture induced sensitivity tests, resilient modulus

Procedia PDF Downloads 131
20243 Deviations and Defects of the Sub-Task’s Requirements in Construction Projects

Authors: Abdullah Almusharraf, Andrew Whyte

Abstract:

The sub-task pattern in terms of the deviations and defects should be identified and understand in order to improve the quality practices in construction projects. Therefore, the sub-task susceptibility to exposure to deviations and defects have been evaluated and classified via six classifications that have proposed in this study. 34 case studies on specific sub-task (from compression member in construction concrete structure) have been collected from seven construction projects in order to examined study’s classifications. The study revealed that the sub-task has high sensitive to deviation where (91%) of the cases recorded as deviations, however, only (19%) of cases recorded as defects. Another findings were that the actual work during the execution process has high source of deviation for this sub-task (74%) while only (26%) of the deviation source was due to both design documentations with the actual work. These findings significantly imply that it could be used the study’s classifications to determine the pattern of each sub-task and develop the proactive actions to overcome issues of the sub-task deviations and defects.

Keywords: sub-tasks, deviations, defects, quality, construction projects

Procedia PDF Downloads 435
20242 Multi-Criteria Bid/No Bid Decision Support Framework for General Contractors: A Case of Pakistan

Authors: Nida Iftikhar, Jamaluddin Thaheem, Bilal Iftikhar

Abstract:

In the construction industry, adequate and effective decision-making can mean the difference between success and failure. Bidding is the most important element of the construction business since it is a mean by which contractors obtain work. This is probably the only option for any contractor firm to sustain in the market and achieve its objective of earning the profits by winning tenders. The capability to select most appropriate ventures not only defines the success and wellbeing of contractor firms but also their survival and sustainability in the industry. The construction practitioners are usually on their own when it comes to deciding on bidding for a project or not. Usually, experience-based solutions are offered where a lot of subjectivity is involved. This research has been opted considering the local construction industry of Pakistan in order to examine the critical success factors from contractors’ perspective while making bidding decisions, listing and evaluating critical factors in order of their importance, categorization of these factors into decision support & decision oppose groups and to develop a framework to help contractors in the decision-making process. Literature review, questionnaires, and structured interviews are used for identification and quantification of factors affecting bid/no bid decision-making. Statistical methods of ranking analysis and analytical hierarchy process of multi-criteria decision-making method are used for analysis. It is found that profitability, need for work and financial health of client are the most decisive factors in bid/no bid decision-making while project size, project type, fulfilling the tender conditions imposed by the client and relationship, identity & reputation of the client are least impact factors in bid/no bid decision-making. Further, to verify the developed framework, case studies have been conducted to evaluate the bid/no bid decision-making in building procurement. This is the first of its nature study in the context of the local construction industry and recommends using a holistic decision-making framework for such business-critical deliberations.

Keywords: bidding, bid decision-making, construction procurement, contractor

Procedia PDF Downloads 184
20241 Adaptability of Steel-Framed Industrialized Building System

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, importance of sustainability principles for building construction is obviously known and great significance must be attached to consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 358
20240 Study on Monitoring Techniques Developed for a City Railway Construction

Authors: Myoung-Jin Lee, Sung-Jin Lee, Young-Kon Park, Jin-Wook Kim, Bo-Kyoung Kim, Song-Hun Chong, Sun-Il Kim

Abstract:

Currently, sinkholes may occur due to natural or unknown causes. When the sinkhole is an instantaneous phenomenon, most accidents occur because of significant damage. Thus, methods of monitoring are being actively researched, such that the impact of the accident can be mitigated. A sinkhole can severely affect and wreak havoc in community-based facilities such as a city railway construction. Therefore, the development of a laser / scanning system and an image-based tunnel is one method of pre-monitoring that it stops the accidents. The laser scanning is being used but this has shortcomings as it involves the development of expensive equipment. A laser / videobased scanning tunnel is being developed at Korea Railroad Research Institute. This is designed to automatically operate the railway. The purpose of the scanning is to obtain an image of the city such as of railway structures (stations, tunnel). At the railway structures, it has developed 3D laser scanning that can find a micro-crack can not be distinguished by the eye. An additional aim is to develop technology to monitor the status of the railway structure without the need for expensive post-processing of 3D laser scanning equipment, by developing corresponding software.

Keywords: 3D laser scanning, sinkhole, tunnel, city railway construction

Procedia PDF Downloads 426
20239 Enhancing Dispute Resolution in Construction: The Potential Contributions of Dispute Boards and the Roadblock to Vaster Adoption

Authors: Zeyad M. Abdelgawad, A. Samer Ezeldin, Waleed El Nemr

Abstract:

The Egyptian construction industry has evolved significantly over the past decade, driven by enhanced economic sectors and the need for industrial development. This complexity requires diverse and flexible alternative dispute resolution (ADR) techniques. Dispute boards (DB) are globally recognized as effective ADR methods, especially since their introduction to World Bank projects in 1995. Despite their advantages, dispute boards remain underutilized in Egypt aside from the World Bank-financed projects due to several misconceptions. The study reveals the perceptions hindering the wider adoption of dispute boards in the Egyptian construction industry through detailed literature review and interviews with the experts. The perceptions encompassed the lack of awareness and understanding of dispute boards and implementation procedures, misconceptions about the costs associated with implementing dispute boards and the impact on the bid prices, the common orientation of resolving disputes internally and avoid resorting to external parties to preserve the long-term relationship, and lack of trust in the ability of the dispute boards to positively affect the project performance. In response to these identified misconceptions, a proposed alternative draft to the FIDIC 2017 clause twenty-one “Disputes and Arbitration” is provided, offering a way for a practical application of the dispute boards within the Egyptian context.

Keywords: alternative dispute resolution, claim management system, dispute boards, Egyptian construction industry, FIDIC

Procedia PDF Downloads 8
20238 A Concept to Assess the Economic Importance of the On-Site Activities of ETICS

Authors: V. Sulakatko, F. U. Vogdt, I. Lill

Abstract:

Construction technology and on-site construction activities have a direct influence on the life cycle costs of energy efficiently renovated apartment buildings. The systematic inadequacies of the External Thermal Insulation Composite System (ETICS) which occur during the construction phase increase the risk for all stakeholders, reduce mechanical durability and increase the life cycle costs of the building. The economic effect of these shortcomings can be minimised if the risk of the most significant on-site activities is recognised. The objective of the presented ETICS economic assessment concept is to evaluate the economic influence of on-site shortcomings and reveal their significance to the foreseeable future repair costs. The model assembles repair techniques, discusses their direct cost calculation methods, argues over the proper usage of net present value over the life cycle of the building, and proposes a simulation tool to evaluate the risk of on-site activities. As the technique is dependent on the selected real interest rate, a sensitivity analysis is anticipated to determine the validity of the recommendations. After the verification of the model on the sample buildings by the industry, it is expected to increase economic rationality of resource allocation and reduce high-risk systematic shortcomings during the construction process of ETICS.

Keywords: activity-based cost estimating, cost estimation, ETICS, life cycle costing

Procedia PDF Downloads 287
20237 Effect of Recycled Grey Water on Bacterial Concrete

Authors: T. Deepa, S. R. Inchara, S. V. Venkatesh, Seema Tharannum

Abstract:

Concrete is the most widely used structural material. It is made using locally available materials. However, Concrete has low tensile strength and may crack in the early days with exothermic hydration. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for Biomineralization or MICP (Microbially Induced Calcite Precipitation) Technique and to address the increased Construction water demand, Recycled Grey Water which is obtained from STP of PES University, opted in place of Potable water. In this work, M30 grade conventional concrete is designed using OPC 53 grade cement, Manufactured Sand, Natural coarse aggregates, and Potable water. Conventional Concrete (CC), Bacterial Concrete with Potable water (BS), and Recycled Grey Water concrete (RGW) are the three different concrete specimens casted. Experimental studies such as the strength test and the surface hardness test are conducted on Conventional and Bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for Self-healing - as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD).Noticeable Calcium salt deposition is observed on the surface of BS and RGW cracked specimen. Surface hardness and EDAX test gave promising result on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gain in Compression and Flexure. Results also indicate that Recycled Grey Water can be a substitute for Normal water in concrete.

Keywords: bacillus subtilis, bacterial concrete, recycled grey water, self-healing, surface hardness of concrete

Procedia PDF Downloads 127
20236 The Utilization of Recycled Construction and Demolition Waste Aggregate in Asphaltic Concrete

Authors: Inas Kamel, Noor Z. Habib

Abstract:

Utilizing construction and demolition wastes in hotmix asphalt (HMA) pavement construction can reduce the adverse environmental effect of its inadequate disposal and reduce the pressure of extracting and processing mineral aggregates (MA). This study aims to examine the viability of replacing MA by recycled construction and demolition waste aggregates (RCDWA) in the wearing course of asphaltic concrete (AC) pavements without compromising its loadbearing capacity. The Marshall Method was used to evaluate the performance of AC wearing course specimens by replacing MA by 10%, 20% and 30% RCDWA. Grade 60/70 bitumen was used in the range 3.0-5.5%, with 05% increments, to generate the optimum bitumen content (OBC). From the volumetric analysis and test property curves, the mixture containing 20% RCDWA was chosen as the preferred mix at 5.1% OBC. It possessed a 10% increase in Marshall Stability compared to the reference specimen, containing 100% MA, and a 6% increase in Marshall flow.

Keywords: aggregate, asphaltic concrete, Marshall method, optimum bitumen content, recycled construction and demolition waste

Procedia PDF Downloads 148
20235 Development and Characterization of a Bio-Sourced Composite Material Based on Phase Change Material and Hemp Shives

Authors: Hachmi Toifane, Pierre Tittelein, Anh Dung Tran Le, Laurent Zalewsi

Abstract:

This study introduces a composite material composed of bio-sourced phase-change material (PCM) of plant origin combined with hemp shives, developed in response to environmental challenges in the construction sector. The state of the art emphasizes the low thermal storage capacity of bio-based materials and highlights increasing need for developing sustainable materials that offer optimal thermal, mechanical, and hydric performances. The combining of PCM's thermal properties and hygric properties of hemp shives results in a material that combines lightness, strength, and hygrothermal regulation. Various formulations are being assessed and compared to conventional hemp concrete. Thermal characterization includes the measurements of thermal conductivity and numerical simulations to evaluate the thermal storage capacity. The results indicate that the addition of PCM significantly enhances the material's thermal storage capacity, positioning this one as a promising, eco-friendly solution for sustainable construction and for improving the energy efficiency of buildings.

Keywords: hemp composite, bio-sourced phase change material, thermal storage, hemp shives

Procedia PDF Downloads 36
20234 Integrating Sustainable Construction Principles into Curriculum Design for Built Environment Professional Programs in Nigeria

Authors: M. Yakubu, M. B. Isah, S. Bako

Abstract:

This paper presents the findings of a research which sought to investigate the readiness to integrate sustainable construction principles into curriculum design for built environment professional programs in the Nigerian Universities. Developing the knowledge and understanding that construction professionals acquire of sustainable construction practice leads to considerable improvement in the environmental performance of the construction sector. Integrating sustainable environmental issues within the built environment education curricula provide the basis of this research. An integration of sustainable development principles into the universities built environment professional programmes are carried out with a view of finding solutions to the key issues identified. The perspectives of academia have been assessed and findings tested for validity through the analysis of primary quantitative data that has been collected. The secondary data generated has shown that there are significant differences in the approach to curriculum design within the built environment professional programmes, and this reveals that there is no ‘best practice’ that is clearly identifiable. Sequel to the above, this research reveals that engaging all stakeholders would be a useful component of built environment curriculum development, and that the curriculum be negotiated with interested parties. These parties have been identified as academia, government, construction industry and built environment professionals.

Keywords: built environment, curriculum development, sustainable construction, sustainable development

Procedia PDF Downloads 414
20233 Coordinated Voltage Control in a Radial Distribution System

Authors: Shivarudraswamy, Anubhav Shrivastava, Lakshya Bhat

Abstract:

Distributed generation has indeed become a major area of interest in recent years. Distributed Generation can address large number of loads in a power line and hence has better efficiency over the conventional methods. However there are certain drawbacks associated with it, increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/-5% of the base value even after the introduction of DG’s. Three methods for regulation of voltage are discussed. A sensitivity based analysis is later carried out to determine the priority among the various methods listed in the paper.

Keywords: distributed generators, distributed system, reactive power, voltage control

Procedia PDF Downloads 489
20232 The Successful in Construction Project via Effectiveness of Project Team

Authors: Zarabizan Zakaria, Hayati Zainal

Abstract:

The construction industry is one of the most important sectors that contribute to the nation’s economy and catalyze towards the growth of other industries. However, some construction projects have not been completed on its stipulated time and duration, scope and budget due to several factors. This problem arises due to the weaknesses of human factors, especially from ineffective leadership quality practiced by project managers and contractors in managing project teams. Therefore, a construction project should impose the element of Project Team. The project team is formed in the implementation of the project which includes the project brief, project scope, customer requirements and provided designs. Many organizations in the construction sector use teams to meet today's global competition and customer expectations, however, team effectiveness evaluation is required. In insuring the construction team is successful and effectiveness, the construction department must encourage, measure, set up, and evaluate or review the effectiveness of project team that was formed. In order to produce a better outcome for a high-end project, an effective and efficient project team is required which also help in increasing overall productivity. The purpose of this study is to determine the role of team effectiveness in the construction project team based on the overall construction project performance. It examines several different factors which related to team effectiveness. It also examines the relationship between team effectiveness factor and project performance aspect. Team Effect Review and Project Performance Review are developed to be used for data collection. Data collected were analyzed using several statistical tests. Results obtained from data analysis are validated using semi-structured interviews. Besides that, a comprehensive survey were developed to assess the way construction project teams in order to maintain its effectiveness throughout the project phase. In order to determine a project successful it has been found that Project Team Leadership is the most important factor. In addition, the definition of team effectiveness in the construction project team is developed based on the perspective of project clients and project team members. The results of this study are expected to provide an idea on the factors that are needed to be focused on improving the team's effectiveness towards project performance aspects. At the same time, the definition of team effectiveness from team members and owner views has been developed in order to provide a better understanding of the word team's effectiveness in construction projects.

Keywords: project team, leadership, construction project, project successful

Procedia PDF Downloads 170
20231 Qualitative and Quantitative Research Methodology Theoretical Framework and Descriptive Theory: PhD Construction Management

Authors: Samuel Quashie

Abstract:

PhDs in Construction Management often designs their methods based on those established in social sciences using theoretical models, to collect, gather and analysis data to answer research questions. Work aim is to apply qualitative and quantitative as a data analysis method, and as part of the theoretical framework - descriptive theory. To improve the ability to replicate the contribution to knowledge the research. Using practical triangulation approach, which covers, interviews and observations, literature review and (archival) document studies, project-based case studies, questionnaires surveys and review of integrated systems used in, construction and construction related industries. The clarification of organisational context and management delivery that influences organizational performance and quality of product and measures are achieved. Results illustrate improved reliability in this research approach when interpreting real world phenomena; cumulative results of research can be applied with confidence under similar environments. Assisted validity of the PhD research outcomes and strengthens the confidence to apply cumulative results of research under similar conditions in the Built Environment research systems, which have been criticised for the lack of reliability in approaches when interpreting real world phenomena.

Keywords: case studies, descriptive theory, theoretical framework, qualitative and quantitative research

Procedia PDF Downloads 379
20230 Development of Work Breakdown Structure for EVMS in South Korea

Authors: Dong-Ho Kim, Su-Sang Lim, Sang-Won Han, Chang-Taek Hyun

Abstract:

In the construction site, the cost and schedules are the most important management elements. Despite efforts to integrated management the cost and schedule, WBS classification is struggling to differ from each other. The cost and schedule can be integrated and can be managed due to the characteristic of the detail system in the case of Korea around the axis of pressure and official fixture system. In this research, the Work Breakdown Structure (WBS) integrating the cost and schedules around in government office construction, WBS which can be used in common was presented in order to analyze the detail system of the public institution construction and improve. As to this method, the efficient administration of not only the link application of the cost and schedule but also construction project is expected.

Keywords: WBS, EVMS, integrated cost and schedule, Korea case

Procedia PDF Downloads 377
20229 Factors Affecting Implementation of Construction Health and Safety Regulations, Their Effects and Mitigation Measures in Building Construction Project Sites of Hawassa City

Authors: Tadewos Awugchew Wudineh

Abstract:

Health and safety issues have always been a major problem and concern in the building construction industry. The health and safety regulations are stated to eliminate the potential hazards and to reduce the consequential risks. However, the importance of the regulations seems to be overlooked in building construction sites of Hawassa City. Accordingly, many companies don’t follow the regulations as construction workers are more likely to be injured and killed by construction accident than any other type of employment. This paper aimed to identify factors that affect the implementation of construction health and safety regulations, their effects and mitigation measures in building construction project sites of Hawassa City. To reach this objective, a review of literature as well as the Ethiopian construction health and safety regulations have been undertaken. Mainly a five-point Likert scale questionnaire was distributed, and statistical analysis was used to summarize, interpret the data, and to find the significances of the responses. In addition, interviews were carried out. Accordingly, the findings indicate that the top factors which affect the implementation of CHS regulations are, availability and development of a clear health and safety policy, health and safety inspections by top management, conducting health and safety training and orientation, provision of healthy and safe working environment and employment of trained safety officers. The study revealed that implementation or non-implementation of CHS regulations have effects on the worker’s productivity, job satisfaction, rate of accidents, and cost greatly. Thus, the suggestion to minimize the impact on worker’s job performance are, developing of a clear health and safety policy, management commitment towards implementation of health and safety regulations, health and safety education and training and conducting regular health and safety inspections. It was concluded from the study that good implementation of health and safety regulations are the results from administrative and management commitment which calls for more attention to be paid to improve the implementation of CHS regulations in building construction sites of Hawassa City.

Keywords: construction health and safety regulations, effects, factors, mitigation

Procedia PDF Downloads 249
20228 Digital Design and Fabrication: A Review of Trend and Its Impact in the African Context

Authors: Mohamed Al Araby, Amany Salman, Mostafa Amin, Mohamed Madbully, Dalia Keraa, Mariam Ali, Marah Abdelfatah, Mariam Ahmed, Ahmed Hassab

Abstract:

In recent years, the architecture, engineering, and construction (A.E.C.) industry have been exposed to important innovations, most notably the global integration of digital design and fabrication (D.D.F.) processes in the industry’s workflow. Despite this evolution in that sector, Africa was excluded from the examination of this development. The reason behind this exclusion is the preconceived view of it as a developing region that still employs traditional methods of construction. The primary objective of this review is to investigate the trend of digital construction (D.C.) in the African environment and the difficulties in its regular utilization of it. This objective can be attained by recognizing the notion of distributed computing in Africa and evaluating the impact of the projects deploying this technology on both the immediate and broader contexts. The paper’s methodology begins with the collection of data from 224 initiatives throughout Africa. Then, 50 of these projects were selected based on the criteria of the project's recency, typology variety, and location diversity. After that, a literature-based comparative analysis was undertaken. This study’s findings reveal a pattern of motivation for applying digital fabrication processes. Moreover, it is essential to evaluate the socio-economic effects of these projects on the population living near the analyzed subject. The last step in this study is identifying the influence on the neighboring nations.

Keywords: Africa, digital construction, digital design, fabrication

Procedia PDF Downloads 160
20227 Dynamic Environmental Impact Study during the Construction of the French Nuclear Power Plants

Authors: A. Er-Raki, D. Hartmann, J. P. Belaud, S. Negny

Abstract:

This paper has a double purpose: firstly, a literature review of the life cycle analysis (LCA) and secondly a comparison between conventional (static) LCA and multi-level dynamic LCA on the following items: (i) inventories evolution with time (ii) temporal evolution of the databases. The first part of the paper summarizes the state of the art of the static LCA approach. The different static LCA limits have been identified and especially the non-consideration of the spatial and temporal evolution in the inventory, for the characterization factors (FCs) and into the databases. Then a description of the different levels of integration of the notion of temporality in life cycle analysis studies was made. In the second part, the dynamic inventory has been evaluated firstly for a single nuclear plant and secondly for the entire French nuclear power fleet by taking into account the construction durations of all the plants. In addition, the databases have been adapted by integrating the temporal variability of the French energy mix. Several iterations were used to converge towards the real environmental impact of the energy mix. Another adaptation of the databases to take into account the temporal evolution of the market data of the raw material was made. An identification of the energy mix of the time studied was based on an extrapolation of the production reference values of each means of production. An application to the construction of the French nuclear power plants from 1971 to 2000 has been performed, in which a dynamic inventory of raw material has been evaluated. Then the impacts were characterized by the ILCD 2011 characterization method. In order to compare with a purely static approach, a static impact assessment was made with the V 3.4 Ecoinvent data sheets without adaptation and a static inventory considering that all the power stations would have been built at the same time. Finally, a comparison between static and dynamic LCA approaches was set up to determine the gap between them for each of the two levels of integration. The results were analyzed to identify the contribution of the evolving nuclear power fleet construction to the total environmental impacts of the French energy mix during the same period. An equivalent strategy using a dynamic approach will further be applied to identify the environmental impacts that different scenarios of the energy transition could bring, allowing to choose the best energy mix from an environmental viewpoint.

Keywords: LCA, static, dynamic, inventory, construction, nuclear energy, energy mix, energy transition

Procedia PDF Downloads 102
20226 Case Study; Drilled Shafts Installation in Difficult Site Conditions; Loose Sand and High Water Table

Authors: Anthony El Hachem, Hosam Salman

Abstract:

Selecting the most effective construction method for drilled shafts under the high phreatic surface can be a challenging task that requires effective communication between the design and construction teams. Slurry placement, temporary casing, and permanent casing are the three most commonly used installation techniques to ensure the stability of the drilled hole before casting the concrete. Each one of these methods has its implications on the installation and performance of the drilled piers. Drilled shafts were designed to support a fire wall for an Energy project in Central Texas. The subsurface consisted of interlayers of sands and clays of varying shear strengths. The design recommended that the shafts be installed with temporary casing or slurry displacement due to the anticipated groundwater seepage through granular soils. During the foundation construction, it was very difficult to maintain the stability of the hole, and the contractor requested to install the shafts using permanent casings. Therefore, the foundation design was modified to ensure that the cased shafts achieve the required load capacity. Effective and continuous communications between the owner, contractor and design team during field shaft installations to mitigate the unforeseen challenges helped the team to successfully complete the project.

Keywords: construction challenges, deep foundations, drilled shafts, loose sands underwater table, permanent casing

Procedia PDF Downloads 186
20225 Impact of Tillage and Crop Establishment on Fertility and Sustainability of the Rice-Wheat Cropping System in Inceptisols of Varanasi, Up, India

Authors: Pramod Kumar Sharma, Pratibha Kumari, Udai Pratap Singh, Sustainability

Abstract:

In the Indo-Gangetic Plains of South-East Asia, the rice-wheat cropping system (RWCS) is dominant with conventional tillage (CT) without residue management, which shows depletion of soil fertility and non-sustainable crop productivity. Hence, this investigation was planned to identify suitable natural resource management practices involving different tillage and crop establishment (TCE) methods along with crop residue and their effects, on the sustainability of dominant cropping systems through enhancing soil fertility and productivity. This study was conducted for two consecutive years 2018-19 and 2019-20 on a long-term field experiment that was started in the year 2015-16 taking six different combinations of TCE methods viz. CT, partial conservation agriculture (PCA) i.e. anchored residue of rice and full conservation agriculture (FCA)] i.e. anchored residue of rice and wheat under RWCS in terms of crop productivity, sustainability of soil health, and crop nutrition by the crops. Results showed that zero tillage direct-seeded rice (ZTDSR) - zero tillage wheat (ZTW) [FCA + green gram residue retention (RR)] recorded the highest yield attributes and yield during both the crops. Compared to conventional tillage rice (CTR)-conventional tillage wheat (CTW) [residue removal (R 0 )], the soil quality parameters were improved significantly with ZTDSR-ZTW (FCA+RR). Overall, ZTDSR-ZTW (FCA+RR) had higher nutrient uptake by the crops than CT-based treatment CTR-CTW (R 0 ) and CTR-CTW (RI).These results showed that there is significant profitability of yield and resource utilization by the adoption of FCA it may be a better alternative to the dominant tillage system i.e. CT in RWSC.

Keywords: tillage and crop establishment, soil fertility, rice-wheat cropping system, sustainability

Procedia PDF Downloads 100
20224 Unstructured Learning: Development of Free Form Construction in Waldorf and Normative Preschools

Authors: Salam Kodsi

Abstract:

In this research, we sought to focus on constructive play and examine its components in the context of two different educational approaches: Waldorf and normative schools. When they are free to choose, construction is one of the forms of play most favored by children. Its short-term and long-term cognitive contributions are apparent in various areas of development. The lack of empirical studies about play in Waldorf schools, which addresses the possibility of this incidental learning inspired the need to enrich the body of existing knowledge. 90 children (4-6 yrs.old) four preschools ( two normative, two Waldorf) participated in a small homogeneous city. Naturalistic observations documented the time frame, physical space, and construction materials related to the freeform building; processes of construction among focal representative children and its products. The study’s main finding with respect to the construction output points to a connection between educational approach and level of construction sophistication. Higher levels of sophistication were found at the Waldorf preschools than at the mainstream preschools. This finding emerged due to the differences in the level of sophistication among the older children in the two types of preschools, while practically no differences emerged among the younger children. Discussion of the research findings considered the differences between the play environments in terms of time, physical space, and construction materials. The construction processes were characterized according to the design model stages. The construction output was characterized according to the sophistication scale dimensions and the connections between approach, age and gender, and sophistication level.

Keywords: constructive play, preschool, design process model, complexity

Procedia PDF Downloads 114
20223 Contributing Factors to Building Failures and Defects in the Nigerian Construction Industry

Authors: Ndibarafinia Tobin

Abstract:

Building defect and failure are common phenomena in the Nigerian construction industry. The activities of the inexperienced labor force in the Nigerian construction industry have tarnished the image of practicing construction professionals in recent past. Defects and collapse can cause unnecessary expenditure, delays, loss of lives, property and left many people injured. They are also generating controversies among parties involved. Also, if this situation is left unanswered and untreated, it will lead to more serious problems in the future upcoming construction projects in Nigeria. Quite a number of factors are responsible for collapse of high-rise, reinforced concrete buildings in Nigeria. Government, professional bodies and stakeholders are asking countless questions as to who should be responsible and how solutions could be proffered. Therefore this study is aimed to identify the contributing factors to high-rise buildings defects and failures in Nigeria, which frequently occur in construction project in order to minimize time and cost and also the roles of professionals and other participants play in the industry in terms of the use of building materials, placement and curing of concrete, modification in the use of a building, collapse of building induced by fire and other causes. The data is collected from questionnaire from various players in construction industry in Nigeria. This study is succeeds in identifying the causes of building failure and also suggesting possible measures to be taken by government and other regulatory bodies in the building industry to avert this and also improve the effectiveness of managing appraisal process of failures and defects in the future.

Keywords: building defects, building failures, Nigerian construction industry, professionals

Procedia PDF Downloads 291
20222 Adaptability of Steel-Framed Industrialized Building System In Post-Service Life

Authors: Alireza Taghdiri, Sara Ghanbarzade Ghomi

Abstract:

Existing buildings are permanently subjected to change, continuously renovated and repaired in their long service life. Old buildings are destroyed and their material and components are recycled or reused for constructing new ones. In this process, the importance of sustainability principles for building construction is obviously known and great significance must be attached to the consumption of resources, resulting effects on the environment and economic costs. Utilization strategies for extending buildings service life and delay in destroying have a positive effect on environment protection. In addition, simpler alterability or expandability of buildings’ structures and reducing energy and natural resources consumption have benefits for users, producers and the environment. To solve these problems, by applying theories of open building, structural components of some conventional building systems have been analyzed and then, a new geometry adaptive building system is developed which can transform and support different imposed loads. In order to achieve this goal, various research methods and tools such as professional and scientific literatures review, comparative analysis, case study and computer simulation were applied and data interpretation was implemented using descriptive statistics and logical arguments. Therefore, hypothesis and proposed strategies were evaluated and an adaptable and reusable 2-dimensional building system was presented which can respond appropriately to dwellers and end-users needs and provide reusability of structural components of building system in new construction or function. Investigations showed that this incremental building system can be successfully applied in achieving the architectural design objectives and by small modifications on components and joints, it is easy to obtain different and adaptable load-optimized component alternatives for flexible spaces.

Keywords: adaptability, durability, open building, service life, structural building system

Procedia PDF Downloads 430