Search results for: array electronic scanning
4068 The Effectiveness of Electronic Local Financial Management Information System (ELFMIS) in Mempawah Regency, West Borneo Province, Indonesia
Authors: Muhadam Labolo, Afdal R. Anwar, Sucia Miranti Sipisang
Abstract:
Electronic Local Finance Management Information System (ELFMIS) is integrated application that was used as a tool for local governments to improve the effectiveness of the implementation of the various areas of financial management regulations. Appropriate With Exceptions Opinion (WDP) of Indonesia Audit Agency (BPK) for local governments Mempawah is a financial management problem that must be improved to avoid mistakes in decision-making. The use of Electronic Local Finance Management Information System (ELFMIS) by Mempawah authority has not yet performed maximally. These problems became the basis for research in measuring the effectiveness LFMIS in Mempawah regency. This research uses an indicator variable for measuring information systems effectiveness proposed by Bodnar. This research made use descriptive with inductive approach. Data collection techniques were mixed from qualitative and quantitative techniques, used questionnaires, interviews and documentation. The obstacles in Local Finance Board (LFB) for the application of ELFMIS such as connection, the quality and quantity of human resources, realization of financial resources, absence of maintenance and another facilities of ELFMIS and verification for financial information.Keywords: effectiveness, E-LFMIS, finance, local government, system
Procedia PDF Downloads 2194067 Chaotic Electronic System with Lambda Diode
Authors: George Mahalu
Abstract:
The Chua diode has been configured over time in various ways, using electronic structures like as operational amplifiers (OAs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paper-work proposed here uses in the modeling a lambda diode type configuration consisting of two Junction Field Effect Transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.Keywords: chaos, lambda diode, strange attractor, nonlinear system
Procedia PDF Downloads 894066 A Study of Environmental Test Sequences for Electrical Units
Authors: Jung Ho Yang, Yong Soo Kim
Abstract:
Electrical units are operated by electrical and electronic components. An environmental test sequence is useful for testing electrical units to reduce reliability issues. This study introduces test sequence guidelines based on relevant principles and considerations for electronic testing according to international standard IEC-60068-1 and the United States military standard MIL-STD-810G. Then, test sequences were proposed based on the descriptions for each test. Finally, General Motors (GM) specification GMW3172 was interpreted and compared to IEC-60068-1 and MIL-STD-810G.Keywords: reliability, environmental test sequence, electrical units, IEC 60068-1, MIL-STD-810G
Procedia PDF Downloads 5054065 Scanning Electron Microscopy of the Erythrocytes of Channa punctatus (Bloch) Exposed to Mercuric Chloride
Authors: Shweta Maheshwari, Anish Dua
Abstract:
Hematological changes reflect the adverse effects of heavy metals on fish. Hematology is a valuable tool to evaluate pathological condition of the fish. It helps in diagnosing the structural and functional status of fish exposed to toxicants. Morphological alteration in erythrocytes due to environmental stress can be studied through ultra-structural analysis. The aim of the present study was to assess the toxicity of mercuric chloride on red blood cells of an air breathing fish, Channa punctatus. Fish were subjected to chronic experiments using three sublethal concentration of mercuric chloride (0.020mg/L, 0.027mg/L, 0.040mg/L) for a period of 15, 30 and 60 days. Exposed fish of all the three concentrations were subjected to a recovery period of 30 days. A control was maintained in tap water simultaneously. For SEM analysis, blood from caudal vein of fish was taken and examined at an accelerating voltage of 20kV. Scanning electron micrographs revealed elliptical shaped erythrocytes of control fish. Alterations in the erythrocyte morphology such as presence of spherocytes, membrane internalization, crenation of membrane and development of lobopodial projections were observed in the exposed fish. The study revealed that ultra-structural analysis appears to be a sensitive method to evaluate the toxicity of various toxicants to fish.Keywords: Channa punctatus, erythrocytes, mercuric chloride, scanning electron microscopy
Procedia PDF Downloads 3724064 Regenerated Cellulose Prepared by Using NaOH/Urea
Authors: Lee Chiau Yeng, Norhayani Othman
Abstract:
Regenerated cellulose fiber is fabricated in the NaOH/urea aqueous solution. In this work, cellulose is dissolved in 7 .wt% NaOH/12 .wt% urea in the temperature of -12 °C to prepare regenerated cellulose. Thermal and structure properties of cellulose and regenerated cellulose was compared and investigated by Field Emission Scanning Electron Microscopy (FeSEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric analysis (TGA), and Differential Scanning Calorimetry. Results of FeSEM revealed that the regenerated cellulose fibers showed a more circular shape with irregular size due to fiber agglomeration. FTIR showed the difference in between the structure of cellulose and the regenerated cellulose fibers. In this case, regenerated cellulose fibers have a cellulose II crystalline structure with lower degree of crystallinity. Regenerated cellulose exhibited better thermal stability than the cellulose.Keywords: regenerated cellulose, cellulose, NaOH, urea
Procedia PDF Downloads 4314063 Response Evaluation of Electronic Nose with Polymer-Composite and Metal Oxide Semiconductor Sensor towards Microbiological Quality of Rapeseed
Authors: Marcin Tadla, Robert Rusinek, Jolanta Wawrzyniak, Marzena Gawrysiak-Witulska, Agnieszka Nawrocka, Marek Gancarz
Abstract:
Rapeseeds were evaluated and classified by the static-headspace sampling method using electronic noses during the 25 days spoilage period. The Cyranose 320 comprising 32 polymer-composite sensors and VCA (Volatile Compound Analyzer - made in Institute of Agrophysics) built of 8 metal-oxide semiconductor (MOS) sensors were used to obtain sensor response (∆R/R). Each sample of spoiled material was divided into three parts and the degree of spoilage was measured four ways: determination of ergosterol content (ERG), colony forming units (CFU) and measurement with both e-noses. The study showed that both devices responsive to changes in the fungal microflora. Cyranose and VCA registered the change of domination microflora of fungi. After 7 days of storage, typical fungi for soil disappeared and appeared typical for storeroom was observed. In both cases, response ∆R/R decreased to the end of experiment, while ERG and JTK increased. The research was supported by the National Centre for Research and Development (NCBR), Grant No. PBS2/A8/22/2013.Keywords: electronic nose, fungal microflora, metal-oxide sensor, polymer-composite sensors
Procedia PDF Downloads 3034062 Design of Functional Safe Motor Control Systems in Automotive Applications
Authors: Jae-Woo Kim, Kyung-Jung Lee, Hyun-Sik Ahn
Abstract:
This paper presents a design methodology for the motor driven automotive subsystems with the consideration of the functional safety. There are many such modules in vehicles which use DC/AC motors for an electronic throttle control system, a motor driven power steering, a motor driven seat belt systems and for HVAC systems. The functional safety for the automotive electrical and electronic parts are standardized as ISO 26262, but the development procedure is very complex to be followed. We focus on the functional safe motor controller design process and show the designed motor controller hardware satisfies the required safety integrity level by using metric calculations with the safety mechanism.Keywords: AUTOSAR, MDPS, Simulink, software component
Procedia PDF Downloads 4144061 The Development of Competency with a Training Curriculum via Electronic Media for Condominium Managers
Authors: Chisakan Papapankiad
Abstract:
The purposes of this research were 1) to study the competency of condominium managers, 2) to create the training curriculum via electronic media for condominium managers, and 3) to evaluate the training curriculum for condominium managers. The research methods included document analysis, interview, questionnaire, and a try-out. A total of 20 experts were selected to collect data by using Delphi technique. The designed curriculum was tried out with 30 condominium managers. The important steps of conducting this research included analyzing and synthesizing, creating interview questions, conducting factor analysis and developing the training curriculum, editing by experts, and trying out with sample groups. The findings revealed that there were five core competencies: leadership, human resources management, management, communication, and self-development. The training curriculum was designed and all the learning materials were put into a CD. The evaluation of the training curriculum was performed by five experts and the training curriculum was found to be cohesive and suitable for use in the real world. Moreover, the findings also revealed three important issues: 1) the competencies of the respondents after the experiment were higher than before the experiment and this had a level of significance of 0.01, 2) the competencies remained with the respondents at least 12 weeks and this also had a level of significance of 0.01, and 3) the overall level of satisfaction from the respondents were 'the highest level'.Keywords: competency training curriculum, condominium managers, electronic media
Procedia PDF Downloads 2864060 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures
Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa
Abstract:
The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.Keywords: Carrier-charge-separation, nickel, photoluminescence, sulphur, zinc oxide
Procedia PDF Downloads 3084059 Long Distance Aspirating Smoke Detection for Large Radioactive Areas
Authors: Michael Dole, Pierre Ninin, Denis Raffourt
Abstract:
Most of the CERN’s facilities hosting particle accelerators are large, underground and radioactive areas. All fire detection systems installed in such areas, shall be carefully studied to cope with the particularities of this stringent environment. The detection equipment usually chosen by CERN to secure these underground facilities are based on air sampling technology. The electronic equipment is located in non-radioactive areas whereas air sampling networks are deployed in radioactive areas where fire detection is required. The air sampling technology provides very good detection performances and prevent the "radiation-to-electronic" effects. In addition, it reduces the exposure to radiations of maintenance workers and is permanently available during accelerator operation. In order to protect the Super Proton Synchrotron and its 7 km tunnels, a specific long distance aspirating smoke detector has been developed to detect smoke at up to 700 meters between electronic equipment and the last air sampling hole. This paper describes the architecture, performances and return of experience of the long distance fire detection system developed and installed to secure the CERN Super Proton Synchrotron tunnels.Keywords: air sampling, fire detection, long distance, radioactive areas
Procedia PDF Downloads 1644058 3D Interferometric Imaging Using Compressive Hardware Technique
Authors: Mor Diama L. O., Matthieu Davy, Laurent Ferro-Famil
Abstract:
In this article, inverse synthetic aperture radar (ISAR) is combined with compressive imaging techniques in order to perform 3D interferometric imaging. Interferometric ISAR (InISAR) imaging relies on a two-dimensional antenna array providing diversities in the elevation and azimuth directions. However, the signals measured over several antennas must be acquired by coherent receivers resulting in costly and complex hardware. This paper proposes to use a chaotic cavity as a compressive device to encode the signals arising from several antennas into a single output port. These signals are then reconstructed by solving an inverse problem. Our approach is demonstrated experimentally with a 3-elements L-shape array connected to a metallic compressive enclosure. The interferometric phases estimated from a unique broadband signal are used to jointly estimate the target’s effective rotation rate and the height of the dominant scattering centers of our target. Our experimental results show that the use of the compressive device does not adversely affect the performance of our imaging process. This study opens new perspectives to reduce the hardware complexity of high-resolution ISAR systems.Keywords: interferometric imaging, inverse synthetic aperture radar, compressive device, computational imaging
Procedia PDF Downloads 1604057 Structural and Electrical Properties of VO₂/ZnO Nanostructures
Authors: Sang-Wook Han, Zhenlan Jin, In-Hui Hwang, Chang-In Park
Abstract:
We examined structural and electrical properties of uniformly-oriented VO₂/ZnO nanostructures. VO₂ was deposited on ZnO templates by using a direct current-sputtering deposition. Scanning electron microscope and transmission electron microscope measurements indicated that b-oriented VO₂ were uniformly crystallized on ZnO templates with different lengths. VO₂/ZnO formed nanorods on ZnO nanorods with length longer than 250 nm. X-ray absorption fine structure at V K edge of VO₂/ZnO showed M1 and R phases of VO₂ at 30 and 100 ℃, respectively, suggesting structural phase transition between temperatures. Temperature-dependent resistance measurements of VO₂/ZnO nanostructures revealed metal-to-insulator transition at 65 ℃ and 55 ℃ during heating and cooling, respectively, regardless of ZnO length. The bond lengths of V-O and V-V pairs in VO₂/ZnO nanorods were somewhat distorted, and a substantial amount of structural disorder existed in the atomic pairs, compared to those of VO₂ films without ZnO. Resistance from VO₂/ZnO nanorods revealed a sharp MIT near 65 ℃ during heating and a hysteresis behavior. The resistance results suggest that microchannel for charge carriers exist nearly room temperature during cooling. VO₂/ZnO nanorods are quite stable and reproducible so that they can be widely used for practical applications to electronic devices, gas sensors, and ultra-fast switches, as examples.Keywords: metal-to-insulator transition, VO₂, ZnO, XAFS, structural-phase transition
Procedia PDF Downloads 4834056 Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements
Authors: M. Linek
Abstract:
This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements.Keywords: scanning electron microscope, computed tomography, cement concrete, airfield pavements
Procedia PDF Downloads 3394055 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3
Authors: Mouna Mesbahi, M. Loutfi Benkhedir
Abstract:
In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K
Procedia PDF Downloads 5614054 First Principle study of Electronic Structure of Silicene Doped with Galium
Authors: Mauludi Ariesto Pamungkas, Wafa Maftuhin
Abstract:
Gallium with three outer electrons commonly are used as dopants of silicon to make it P type and N type semiconductor respectively. Silicene, one-atom-thick silicon layer is one of emerging two dimension materials after the success of graphene. The effects of Gallium doping on electronic structure of silicine are investigated by using first principle calculation based on Density Functional Theory (DFT) calculation and norm conserving pseudopotential method implemented in ABINIT code. Bandstructure of Pristine silicene is similar to that of graphene. Effect of Ga doping on bandstructure of silicene depend on the position of Ga adatom on siliceneKeywords: silicene, effects of Gallium doping, Density Functional Theory (DFT), graphene
Procedia PDF Downloads 4354053 First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO
Authors: G. P. Abdel Rahim, M. María Guadalupe Moreno Armenta, Jairo Arbey Rodriguez
Abstract:
We investigated the structure and electronic properties of the compound Mg1-xBixO with varying concentrations of 0, ¼, ½, and ¾ x bismuth in the the NaCl (rock-salt) and WZ (wurtzite) phases. The calculations were performed using the first-principles pseudo-potential method within the framework of spin density functional theory (DFT). Our calculations predict that for Bi concentrations greater than ~70%, the WZ structure is more favorable than the NaCl one and that for x = 0 (pure MgO), x = 0.25 and x = 0.50 of Bi concentration the NaCl structure is more favorable than the WZ one. For x = 0.75 of Bi, a transition from wurtzite towards NaCl is possible, when the pressure is about 22 GPa. Also It has been observed the crystal lattice constant closely follows Vegard’s law, that the bulk modulus and the cohesion energy decrease with the concentration x of Bi.Keywords: DFT, Mg1-xBixO, pseudo-potential, rock-salt, wurtzite
Procedia PDF Downloads 5264052 Theoretical Investigation of Electronic, Structural and Thermoelectric Properties of Mg₂SiSn (110) Surface
Authors: M. Ramesh, Manish K. Niranjan
Abstract:
The electronic, structural and thermoelectric properties of Mg₂SiSn (110) surface are investigated within the framework of first principle density functional theory and semi classical Boltzmann approach. In particular, directional dependent thermoelectric properties such as electrical conductivity, thermal conductivity, Seebeck coefficient and figure of merit are explored. The (110)-oriented Mg₂SiSn surface exhibits narrow indirect band gap of ~0.17 eV. The thermoelectric properties are found to be significant along the y-axis at 300 K and along x-axis at 500 K. The figure of merit (ZT) for hole carrier concentration is found to be significantly large having magnitude 0.83 (along x-axis) at 500 K and 0.26 (y-axis) at 300 K. Our results suggest that Mg₂SiSn (110) surface is promising for various thermoelectric applications due to its overall good thermoelectric properties.Keywords: thermoelectric, surface science, semiconducting silicide, first principles calculations
Procedia PDF Downloads 2264051 Effect of Cr and Fe Doping on the Structural and Optical Properties of ZnO Nanostructures
Authors: Prakash Chand, Anurag Gaur, Ashavani Kumar
Abstract:
In the present study, we have synthesized Cr and Fe doped zinc oxide (ZnO) nano-structures (Zn1-δCraFebO; where δ= a + b=20%, a = 5, 6, 8 & 10% and b=15, 14, 12 & 10%) via sol-gel method at different doping concentrations. The synthesized samples were characterized for structural properties by X-ray diffractometer and field emission scanning electron microscope and the optical properties were carried out through photoluminescence and UV-visible spectroscopy. The particle size calculated through field emission scanning electron microscope varies from 41 to 96 nm for the samples synthesized at different doping concentrations. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 3.27 to 3.02 eV as the doping concentration of Cr increases and Fe decreases.Keywords: nano-structures, optical properties, sol-gel method, zinc oxide
Procedia PDF Downloads 3204050 Effect of Electronic Banking on the Performance of Deposit Money Banks in Nigeria: Using ATM and Mobile Phone as a Case Study
Authors: Charity Ifunanya Osakwe, Victoria Ogochuchukwu Obi-Nwosu, Chima Kenneth Anachedo
Abstract:
The study investigates how automated teller machines (ATM) and mobile banking affect deposit money banks in the Nigerian economy. The study made use of time series data which were obtained from the Central Bank of Nigeria Statistical Bulletin from 2009 to 2021. The Central Bank of Nigeria (CBN) data on automated teller machine and mobile phones were used to proxy electronic banking while total deposit in banks proxied the performance of deposit money banks. The analysis for the study was done using ordinary least square econometric technique with the aid of economic view statistical package. The results show that the automated teller machine has a positive and significant effect on the total deposits of deposit money banks in Nigeria and that making use of deposits of deposit money banks in Nigeria. It was concluded in the study that e-banking has equally increased banking access to customers and also created room for banks to expand their operations to more customers. The study recommends that banks in Nigeria should prioritize the expansion and maintenance of ATM networks as well as continue to invest in and develop more mobile banking services.Keywords: electronic, banking, automated teller machines, mobile, deposit
Procedia PDF Downloads 554049 Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application
Authors: S. Nqayi
Abstract:
Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis.Keywords: nanostructures, multiferroic materials, pyrochlores, spintronics
Procedia PDF Downloads 564048 Influence of Shield Positions on Thermo/Fluid Performance of Pin Fin Heat Sink
Authors: Ramy H. Mohammed
Abstract:
In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, I present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43 where energy is saved.Keywords: shield, fin array, performance evaluation, heat transfer, energy
Procedia PDF Downloads 3074047 Advancements in Electronic Sensor Technologies for Tea Quality Evaluation
Authors: Raana Babadi Fathipour
Abstract:
Tea, second only to water in global consumption rates, holds a significant place as the beverage of choice for many around the world. The process of fermenting tea leaves plays a crucial role in determining its ultimate quality, traditionally assessed through meticulous observation by tea tasters and laboratory analysis. However, advancements in technology have paved the way for innovative electronic sensing platforms like the electronic nose (e-nose), electronic tongue (e-tongue), and electronic eye (e-eye). These cutting-edge tools, coupled with sophisticated data processing algorithms, not only expedite the assessment of tea's sensory qualities based on consumer preferences but also establish new benchmarks for this esteemed bioactive product to meet burgeoning market demands worldwide. By harnessing intricate data sets derived from electronic signals and deploying multivariate statistical techniques, these technological marvels can enhance accuracy in predicting and distinguishing tea quality with unparalleled precision. In this contemporary exploration, a comprehensive overview is provided of the most recent breakthroughs and viable solutions aimed at addressing forthcoming challenges in the realm of tea analysis. Utilizing bio-mimicking Electronic Sensory Perception systems (ESPs), researchers have developed innovative technologies that enable precise and instantaneous evaluation of the sensory-chemical attributes inherent in tea and its derivatives. These sophisticated sensing mechanisms are adept at deciphering key elements such as aroma, taste, and color profiles, transitioning valuable data into intricate mathematical algorithms for classification purposes. Through their adept capabilities, these cutting-edge devices exhibit remarkable proficiency in discerning various teas with respect to their distinct pricing structures, geographic origins, harvest epochs, fermentation processes, storage durations, quality classifications, and potential adulteration levels. While voltammetric and fluorescent sensor arrays have emerged as promising tools for constructing electronic tongue systems proficient in scrutinizing tea compositions, potentiometric electrodes continue to serve as reliable instruments for meticulously monitoring taste dynamics within different tea varieties. By implementing a feature-level fusion strategy within predictive models, marked enhancements can be achieved regarding efficiency and accuracy levels. Moreover, by establishing intrinsic linkages through pattern recognition methodologies between sensory traits and biochemical makeup found within tea samples, further strides are made toward enhancing our understanding of this venerable beverage's complex nature.Keywords: classifier system, tea, polyphenol, sensor, taste sensor
Procedia PDF Downloads 04046 Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface
Authors: Jipeng Yan, Xingchen Yang, Xiaowei Zhou, Mengxing Tang, Honghai Liu
Abstract:
Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices.Keywords: shear elastic modulus, skeletal muscle, ultrasound, wearable human-machine interface
Procedia PDF Downloads 1624045 Design Dual Band Band-Pass Filter by Using Stepped Impedance
Authors: Fawzia Al-Sakeer, Hassan Aldeeb
Abstract:
Development in the communications field is proceeding at an amazing speed, which has led researchers to improve and develop electronic circuits by increasing their efficiency and reducing their size to reduce the weight of electronic devices. One of the most important of these circuits is the band-pass filter, which is what made us carry out this research, which aims to use an alternate technology to design a dual band-pass filter by using a stepped impedance microstrip transmission line. We designed a filter that works at two center frequency bands by designing with the ADS program, and the results were excellent, as we obtained the two design frequencies, which are 1 and 3GHz, and the values of insertion loss S11, which was more than 21dB with a small area.Keywords: band pass filter, dual band band-pass filter, ADS, microstrip filter, stepped impedance
Procedia PDF Downloads 694044 Effect of Yttrium Doping on Properties of Bi2Sr1.9Ca0.1-xYxCu2O7+δ (Bi-2202) Cuprate Ceramics
Authors: Y. Boudjadja, A. Amira, A. Saoudel, A. Varilci, S. P. Altintas, C. Terzioglu
Abstract:
In this work, we report the effect of Y3+ doping on structural, mechanical and electrical properties of Bi-2202 phase. Samples of Bi2Sr1.9Ca0.1-xYxCu2O7+δ with x = 0, 0.025, 0.05, 0.075 and 0.1 are elaborated in air by conventional solid state reaction and characterized by X-Ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) combined with EDS spectroscopy, density, Vickers micro-hardness and resistivity measurements. A good correlation between the variations of the bulk density and the Vickers micro-hardness with doping is obtained. The SEM photograph shows that the samples are composed of grains with a flat shape that characterizes the Bi-based cuprates. Quantitative EDS analysis confirms the reduction of Ca content and the increase of Y content when x is increased. The variation of resistivity with temperature shows that only samples with x = 0, 0.025 and 0.05 present an onset transition to the superconducting state. The higher onset transition temperature is obtained for x = 0.025 and is about 93.62 K. The transition is wide and is realized in two steps confirming then the presence of the low Tc Bi-2201 phase in the samples. For x = 0.075 and 0.1, a transition to a semiconducting state is seen at low temperatures. Some physical parameters are extracted from these curves and discussed.Keywords: Bi-2202 phase, doping, structure, mechanical and electrical properties
Procedia PDF Downloads 3234043 Synthesis of KCaVO4:Sm³⁺/PMMA Luminescent Nanocomposites and Their Optical Property Measurements
Authors: Sumara Khursheed, Jitendra Sharma
Abstract:
The present work reports synthesis of nanocomposites (NCs) of phosphor (KCaVO4:Sm3+) embedded poly(methylmethacrylate) (PMMA) using solution casting method and their optical properties measurements for their possible application in making flexible luminescent films. X-ray diffraction analyses were employed to obtain the structural parameters as crystallinity, shape and size of the obtained NCs. The emission and excitation spectra were obtained using Photoluminescence spectroscopy to quantify the spectral properties of these fluorescent polymer/phosphor films. Optical energy gap has been estimated using UV-VIS spectroscopy while differential scanning calorimetry (DSC) was exploited to measure the thermal properties of the NC films in terms of their thermal stability, glass transition temperature and degree of crystallinity etc.Keywords: nanocomposites, luminescence, XRD, differential scanning calorimetry, PMMA
Procedia PDF Downloads 1704042 Release of PVA from PVA/PA Compounds into Water Solutions
Authors: J. Klofac, P. Bazant, I. Kuritka
Abstract:
This work is focused on the preparation of polymeric blend composed of polyamide (PA) and polyvinyl alcohol (PVA) with the intention to explore its basic characteristics important for potential use in medicine, especially for drug delivery systems. PA brings brilliant mechanical properties to the blend while PVA is inevitable due to its water solubility. Blend with different PA/PVA ratios were prepared and the release study of PVA into the water was carried out in a time interval 0-48 hours via the gravimetric method. The weight decrease is caused by the leaching of PVA domains what can be also followed by the optical and scanning electron microscopy. In addition, the thermal properties and the miscibility of blend components were evaluated by the differential scanning calorimeter. On the bases of performed experiments, it was found that the kinetics, continuity development and micro structure features of PA/PVA blends is strongly dependent on the blend composition and miscibility of its components.Keywords: releas study, polyvinyl alcohol, polyamide morphology, polymeric blend
Procedia PDF Downloads 3974041 Influence of Titanium Oxide on Crystallization, Microstructure and Mechanical Behavior of Barium Fluormica Glass-Ceramics
Authors: Amit Mallik, Anil K. Barik, Biswajit Pal
Abstract:
The galloping advancement of research work on glass-ceramics stems from their wide applications in electronic industry and also to some extent in application oriented medical dentistry. TiO2, even in low concentration has been found to strongly influence the physical and mechanical properties of the glasses. Glass-ceramics is a polycrystalline ceramic material produced through controlled crystallization of glasses. Crystallization is accomplished by subjecting the suitable parent glasses to a regulated heat treatment involving the nucleation and growth of crystal phases in the glass. Mica glass-ceramics is a new kind of glass-ceramics based on the system SiO2•MgO•K2O•F. The predominant crystalline phase is synthetic fluormica, named fluorophlogopite. Mica containing glass-ceramics flaunt an exceptional feature of machinability apart from their unique thermal and chemical properties. Machinability arises from the randomly oriented mica crystals with a 'house of cards' microstructures allowing cracks to propagate readily along the mica plane but hindering crack propagation across the layers. In the present study, we have systematically investigated the crystallization, microstructure and mechanical behavior of barium fluorophlogopite mica-containing glass-ceramics of composition BaO•4MgO•Al2O3•6SiO2•2MgF2 nucleated by addition of 2, 4, 6 and 8 wt% TiO2. The glass samples were prepared by the melting technique. After annealing, different batches of glass samples for nucleation were fired at 730°C (2wt% TiO2), 720°C (4 wt% TiO2), 710°C (6 wt% TiO2) and 700°C (8 wt% TiO2) batches respectively for 2 h and ultimately heated to corresponding crystallization temperatures. The glass batches were analyzed by differential thermal analysis (DTA) and x-ray diffraction (XRD), scanning electron microscopy (SEM) and micro hardness indenter. From the DTA study, it is found that the fluorophlogopite mica crystallization exotherm appeared in the temperature range 886–903°C. Glass transition temperature (Tg) and crystallization peak temperature (Tp) increased with increasing TiO2 content up to 4 wt% beyond this weight% the glass transition temperature (Tg) and crystallization peak temperature (Tp) start to decrease with increasing TiO2 content up to 8 wt%. Scanning electron microscopy confirms the development of an interconnected ‘house of cards’ microstructure promoted by TiO2 as a nucleating agent. The increase in TiO2 content decreases the vicker’s hardness values in glass-ceramics.Keywords: crystallization, fluormica glass, ‘house of cards’ microstructure, hardness
Procedia PDF Downloads 2404040 Electronic and Computer-Assisted Refreshable Braille Display Developed for Visually Impaired Individuals
Authors: Ayşe Eldem, Fatih Başçiftçi
Abstract:
Braille alphabet is an important tool that enables visually impaired individuals to have a comfortable life like those who have normal vision. For this reason, new applications related to the Braille alphabet are being developed. In this study, a new Refreshable Braille Display was developed to help visually impaired individuals learn the Braille alphabet easier. By means of this system, any text downloaded on a computer can be read by the visually impaired individual at that moment by feeling it by his/her hands. Through this electronic device, it was aimed to make learning the Braille alphabet easier for visually impaired individuals with whom the necessary tests were conducted.Keywords: visually impaired individual, Braille, Braille display, refreshable Braille display, USB
Procedia PDF Downloads 3464039 Morphological Characterization and Gas Permeation of Commercially Available Alumina Membrane
Authors: Ifeyinwa Orakwe, Ngozi Nwogu, Edward Gobina
Abstract:
This work presents experimental results relating to the structural characterization of a commercially available alumina membrane. A γ-alumina mesoporous tubular membrane has been used. Nitrogen adsorption-desorption, scanning electron microscopy and gas permeability test has been carried out on the alumina membrane to characterize its structural features. Scanning electron microscopy (SEM) was used to determine the pore size distribution of the membrane. Pore size, specific surface area and pore size distribution were also determined with the use of the Nitrogen adsorption-desorption instrument. Gas permeation tests were carried out on the membrane using a variety of single and mixed gases. The permeabilities at different pressure between 0.05-1 bar and temperature range of 25-200oC were used for the single and mixed gases: nitrogen (N2), helium (He), oxygen (O2), carbon dioxide (CO2), 14%CO₂/N₂, 60%CO₂/N₂, 30%CO₂/CH4 and 21%O₂/N₂. Plots of flow rate verses pressure were obtained. Results got showed the effect of temperature on the permeation rate of the various gases. At 0.5 bar for example, the flow rate for N2 was relatively constant before decreasing with an increase in temperature, while for O2, it continuously decreased with an increase in temperature. In the case of 30%CO₂/CH4 and 14%CO₂/N₂, the flow rate showed an increase then a decrease with increase in temperature. The effect of temperature on the membrane performance of the various gases is presented and the influence of the trans membrane pressure drop will be discussed in this paper.Keywords: alumina membrane, Nitrogen adsorption-desorption, scanning electron microscopy, gas permeation, temperature
Procedia PDF Downloads 324