Search results for: Taguchi techniques and engineering application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16376

Search results for: Taguchi techniques and engineering application

15956 A Classical Method of Optimizing Manufacturing Systems Using a Number of Industrial Engineering Techniques

Authors: John M. Ikome, Martha E. Ikome, Therese Van Wyk

Abstract:

Productivity optimization of a company can significantly increase the company’s output and productivity which can be in the form of corrective actions of ineffective activities, process simplification, and reduction of variations, responsiveness, and reduction of set-up-time which are all under the classification of waste within the manufacturing environment. Deriving a means to eliminate a number of these issues has a key importance for manufacturing organization. This paper focused on a number of industrial engineering techniques which include a cause and effect diagram, to identify and optimize the method or systems being used. Based on our results, it shows that there are a number of variations within the production processes that can significantly disrupt the expected output.

Keywords: optimization, fishbone, diagram, productivity

Procedia PDF Downloads 312
15955 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors

Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira

Abstract:

The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.

Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance

Procedia PDF Downloads 351
15954 Virtual Reality Application for Neurorehabilitation

Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present a virtual reality application for neurorehabilitation. This application was developed using the Unity SDK integrating the Oculus Rift and Leap Motion devices. Essentially, it consists of three stages according to the kind of rehabilitation to carry on: ocular rehabilitation, head/neck rehabilitation, and eye-hand coordination. We build three scenes for each task; for ocular and head/neck rehabilitation, there are different objects moving in the field of view and extended field of view of the user according to some patterns relative to the therapy. In the third stage the user must try to touch with the hand some objects guided by its view. We report the primer results of the use of the application with healthy people.

Keywords: virtual reality, interactive technologies, video games, neurorehabilitation

Procedia PDF Downloads 413
15953 Usability Evaluation of a Mobile Application to Enhance the Use of Smartphone, by Visually Impaired Users in Indonesia

Authors: Johanna Renny Octavia, Kamila Okta Saarah

Abstract:

Smartphone nowadays is widely used by many people all over the world. However, people with vision impairment may experience difficulties that interfere with the proper usage of the smartphone. In Indonesia, the population of visually impaired is about 13 million people (estimated 285 million people worldwide). There are a number of mobile applications developed to enhance the use of smartphone by visually impaired. This paper discusses the usability evaluation of a mobile application, namely Ray Vision, designed to help visually impaired in using smartphone. A series of usability testing with a number of Indonesian visually impaired revealed 28 usability problems in the mobile application that led to 14 design recommendations. The redesigned application was then re-evaluated through another usability testing series. The results showed that all five usability criteria assessed were increased (usefulness by 13%, effectiveness by 27%, efficiency by 27%, satisfaction by 23%, and learnability by 12%). The System Usability Score (SUS) was also increased by 14.92%.

Keywords: mobile application, smartphone, usability evaluation, vision impaired

Procedia PDF Downloads 314
15952 Comparative Performance Analysis of Nonlinearity Cancellation Techniques for MOS-C Realization in Integrator Circuits

Authors: Hasan Çiçekli, Ahmet Gökçen, Uğur Çam

Abstract:

In this paper, a comparative performance analysis of mostly used four nonlinearity cancellation techniques used to realize the passive resistor by MOS transistors is presented. The comparison is done by using an integrator circuit which is employing sequentially Op-amp, OTRA and ICCII as active element. All of the circuits are implemented by MOS-C realization and simulated by PSPICE program using 0.35 µm process TSMC MOSIS model parameters. With MOS-C realization, the circuits became electronically tunable and fully integrable which is very important in IC design. The output waveforms, frequency responses, THD analysis results and features of the nonlinearity cancellation techniques are also given.

Keywords: integrator circuits, MOS-C realization, nonlinearity cancellation, tuneable resistors

Procedia PDF Downloads 534
15951 Cultivating Responsible AI: For Cultural Heritage Preservation in India

Authors: Varsha Rainson

Abstract:

Artificial intelligence (AI) has great potential and can be used as a powerful tool of application in various domains and sectors. But with the application of AI, there comes a wide spectrum of concerns around bias, accountability, transparency, and privacy. Hence, there is a need for responsible AI, which can uphold ethical and accountable practices to ensure that things are transparent and fair. The paper is a combination of AI and cultural heritage preservation, with a greater focus on India because of the rich cultural legacy that it holds. India’s cultural heritage in itself contributes to its identity and the economy. In this paper, along with discussing the impact culture holds on the Indian economy, we will discuss the threats that the cultural heritage is exposed to due to pollution, climate change and urbanization. Furthermore, the paper reviews some of the exciting applications of AI in cultural heritage preservation, such as 3-D scanning, photogrammetry, and other techniques which have led to the reconstruction of cultural artifacts and sites. The paper eventually moves into the potential risks and challenges that AI poses in cultural heritage preservation. These include ethical, legal, and social issues which are to be addressed by organizations and government authorities. Overall, the paper strongly argues the need for responsible AI and the important role it can play in preserving India’s cultural heritage while holding importance to value and diversity.

Keywords: responsible AI, cultural heritage, artificial intelligence, biases, transparency

Procedia PDF Downloads 187
15950 Corrosion and Microstructural Properties of Vanadium-Microalloyed High-Manganese Steels

Authors: Temitope Olumide Olugbade

Abstract:

Low resistance and delayed fracture to corrosion, especially in harsh environmental conditions, often limit the wide application of high-manganese (high-Mn) steels. To address this issue, the present work investigates the influence of microalloying on the corrosion properties of high-Mn steels. Microalloyed and base high-Mn steels were synthesized through an arc melting process under an argon atmosphere. To generate different microstructures, the temperature and duration were varied via thermal homogenization treatments. The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques were used to determine the corrosion properties in 0.6 M NaCl aqueous solution at room temperature. The relationship between the microstructures and corrosion properties was investigated via Scanning Kelvin Probe Microscopy (SKPFM), energy dispersive X-ray spectroscopy (EDX), and Scanning electron microscopy (SEM) techniques. The local corrosion properties were investigated via in situ atomic force spectroscopy (AFM), considering the homogenization treatments. The results indicate that microalloying is a successful technique for enhancing the corrosion behavior of high-Mn steels. Compared to other alloying elements, Vanadium has shown improvement in corrosion properties for both general and local corrosion in chloride environments.

Keywords: corrosion, high-manganese steel, homogenization, microalloying, vanadium

Procedia PDF Downloads 94
15949 Literature Review: Application of Artificial Intelligence in EOR

Authors: Masoumeh Mofarrah, Amir NahanMoghadam

Abstract:

Higher oil prices and increasing oil demand are main reasons for great attention to Enhanced Oil Recovery (EOR). Comprehensive researches have been accomplished to develop, appraise and improve EOR methods and their application. Recently Artificial Intelligence (AI) gained popularity in petroleum industry that can help petroleum engineers to solve some fundamental petroleum engineering problems such as reservoir simulation, EOR project risk analysis, well log interpretation and well test model selection. This study presents a historical overview of most popular AI tools including neural networks, genetic algorithms, fuzzy logic and expert systems in petroleum industry and discusses two case studies to represent the application of two mentioned AI methods for selecting an appropriate EOR method based on reservoir characterization in feasible and effective way.

Keywords: artificial intelligence, EOR, neural networks, expert systems

Procedia PDF Downloads 410
15948 The Intersection of Artificial Intelligence and Mathematics

Authors: Mitat Uysal, Aynur Uysal

Abstract:

Artificial Intelligence (AI) is fundamentally driven by mathematics, with many of its core algorithms rooted in mathematical principles such as linear algebra, probability theory, calculus, and optimization techniques. This paper explores the deep connection between AI and mathematics, highlighting the role of mathematical concepts in key AI techniques like machine learning, neural networks, and optimization. To demonstrate this connection, a case study involving the implementation of a neural network using Python is presented. This practical example illustrates the essential role that mathematics plays in training a model and solving real-world problems.

Keywords: AI, mathematics, machine learning, optimization techniques, image processing

Procedia PDF Downloads 18
15947 Teachers and Learners Perceptions on the Impact of Different Test Procedures on Reading: A Case Study

Authors: Bahloul Amel

Abstract:

The main aim of this research was to investigate the perspectives of English language teachers and learners on the effect of test techniques on reading comprehension, test performance and assessment. The research has also aimed at finding the differences between teacher and learner perspectives, specifying the test techniques which have the highest effect, investigating the other factors affecting reading comprehension, and comparing the results with the similar studies. In order to achieve these objectives, perspectives and findings of different researchers were reviewed, two different questionnaires were prepared to collect data for the perspectives of teachers and learners, the questionnaires were applied to 26 learners and 8 teachers from the University of Batna (Algeria), and quantitative and qualitative data analysis of the results were done. The results and analysis of the results show that different test techniques affect reading comprehension, test performance and assessment at different percentages rates.

Keywords: reading comprehension, reading assessment, test performance, test techniques

Procedia PDF Downloads 460
15946 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN

Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar

Abstract:

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.

Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis

Procedia PDF Downloads 381
15945 Keypoints Extraction for Markerless Tracking in Augmented Reality Applications: A Case Study in Dar As-Saraya Museum

Authors: Jafar W. Al-Badarneh, Abdalkareem R. Al-Hawary, Abdulmalik M. Morghem, Mostafa Z. Ali, Rami S. Al-Gharaibeh

Abstract:

Archeological heritage is at the heart of each country’s national glory. Moreover, it could develop into a source of national income. Heritage management requires socially-responsible marketing that achieves high visitor satisfaction while maintaining high site conservation. We have developed an Augmented Reality (AR) experience for heritage and cultural reservation at Dar-As-Saraya museum in Jordan. Our application of this notion relied on markerless-based tracking approach. This approach uses keypoints extraction technique where features of the environment are identified and defined into the system as keypoints. A set of these keypoints forms a tracker for an augmented object to be displayed and overlaid with a real scene at Dar As-Saraya museum. We tested and compared several techniques for markerless tracking and then applied the best technique to complete a mosaic artifact with AR content. The successful results from our application open the door for applications in open archeological sites where markerless tracking is mostly needed.

Keywords: augmented reality, cultural heritage, keypoints extraction, virtual recreation

Procedia PDF Downloads 337
15944 Application of XRF and Other Principal Component Analysis for Counterfeited Gold Coin Characterization in Forensic Science

Authors: Somayeh Khanjani, Hamideh Abolghasemi, Hadi Shirzad, Samaneh Nabavi

Abstract:

At world market can be currently encountered a wide range of gemological objects that are incorrectly declared, treated, or it concerns completely different materials that try to copy precious objects more or less successfully. Counterfeiting of precious commodities is a problem faced by governments in most countries. Police have seized many counterfeit coins that looked like the real coins and because the feeling to the touch and the weight were very similar to those of real coins. Most people were fooled and believed that the counterfeit coins were real ones. These counterfeit coins may have been made by big criminal organizations. To elucidate the manufacturing process, not only the quantitative analysis of the coins but also the comparison of their morphological characteristics was necessary. Several modern techniques have been applied to prevent counterfeiting of coins. The objective of this study was to demonstrate the potential of X-ray Fluorescence (XRF) technique and the other analytical techniques for example SEM/EDX/WDX, FT-IR/ATR and Raman Spectroscopy. Using four elements (Cu, Ag, Au and Zn) and obtaining XRF for several samples, they could be discriminated. XRF technique and SEM/EDX/WDX are used for study of chemical composition. XRF analyzers provide a fast, accurate, nondestructive method to test the purity and chemistry of all precious metals. XRF is a very promising technique for rapid and non destructive counterfeit coins identification in forensic science.

Keywords: counterfeit coins, X-ray fluorescence, forensic, FT-IR

Procedia PDF Downloads 494
15943 The Application of Conceptual Metaphor Theory to the Treatment of Depression

Authors: Uma Kanth, Amy Cook

Abstract:

Conceptual Metaphor Theory (CMT) proposes that metaphor is fundamental to human thought. CMT utilizes embodied cognition, in that emotions are conceptualized as effects on the body because of a coupling of one’s bodily experiences and one’s somatosensory system. Time perception is a function of embodied cognition and conceptual metaphor in that one’s experience of time is inextricably dependent on one’s perception of the world around them. A hallmark of depressive disorders is the distortion in one’s perception of time, such as neurological dysfunction and psychomotor retardation, and yet, to the author’s best knowledge, previous studies have not before linked CMT, embodied cognition, and depressive disorders. Therefore, the focus of this paper is the investigation of how the applications of CMT and embodied cognition (especially regarding time perception) have promise in improving current techniques to treat depressive disorders. This paper aimed to extend, through a thorough review of literature, the theoretical basis required to further research into CMT and embodied cognition’s application in treating time distortion related symptoms of depressive disorders. Future research could include the development of brain training technologies that capitalize on the principles of CMT, with the aim of promoting cognitive remediation and cognitive activation to mitigate symptoms of depressive disorder.

Keywords: depression, conceptual metaphor theory, embodied cognition, time

Procedia PDF Downloads 162
15942 The Influence of Zinc Applications from Soil and Foliar at Different Levels on Some Quality Characteristics of Sultana Raisins

Authors: Harun Çoban, Aydın Akın

Abstract:

In this study, the effects of different dose zinc application from soil and foliar on drying yield and some quality characters of raisins ‘Sultana’ were investigated. The experiment was conducted in randomized blocks with four replications, zinc treatment was used at one time (before pre- bloom) and from foliar in three times (pre-bloom, fruit set, and veraison). At harvest, both soil and foliar zinc sulphate applications increased the amount of fresh grapes per vine. Fresh grapes were dried on the drying place. However, the most efficient applications for drying yield and quality of raisins were observed from foliar. Therefore, it was preferred that foliar application dosage level at 0.10 %.

Keywords: zinc, raisins, soil application, foliar application, sultana, expertise value

Procedia PDF Downloads 315
15941 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: coupled dynamics, geometric complexity, proper orthogonal decomposition (POD), thin walled beams

Procedia PDF Downloads 419
15940 Tools and Techniques in Risk Assessment in Public Risk Management Organisations

Authors: Atousa Khodadadyan, Gabe Mythen, Hirbod Assa, Beverley Bishop

Abstract:

Risk assessment and the knowledge provided through this process is a crucial part of any decision-making process in the management of risks and uncertainties. Failure in assessment of risks can cause inadequacy in the entire process of risk management, which in turn can lead to failure in achieving organisational objectives as well as having significant damaging consequences on populations affected by the potential risks being assessed. The choice of tools and techniques in risk assessment can influence the degree and scope of decision-making and subsequently the risk response strategy. There are various available qualitative and quantitative tools and techniques that are deployed within the broad process of risk assessment. The sheer diversity of tools and techniques available to practitioners makes it difficult for organisations to consistently employ the most appropriate methods. This tools and techniques adaptation is rendered more difficult in public risk regulation organisations due to the sensitive and complex nature of their activities. This is particularly the case in areas relating to the environment, food, and human health and safety, when organisational goals are tied up with societal, political and individuals’ goals at national and international levels. Hence, recognising, analysing and evaluating different decision support tools and techniques employed in assessing risks in public risk management organisations was considered. This research is part of a mixed method study which aimed to examine the perception of risk assessment and the extent to which organisations practise risk assessment’ tools and techniques. The study adopted a semi-structured questionnaire with qualitative and quantitative data analysis to include a range of public risk regulation organisations from the UK, Germany, France, Belgium and the Netherlands. The results indicated the public risk management organisations mainly use diverse tools and techniques in the risk assessment process. The primary hazard analysis; brainstorming; hazard analysis and critical control points were described as the most practiced risk identification techniques. Within qualitative and quantitative risk analysis, the participants named the expert judgement, risk probability and impact assessment, sensitivity analysis and data gathering and representation as the most practised techniques.

Keywords: decision-making, public risk management organisations, risk assessment, tools and techniques

Procedia PDF Downloads 283
15939 Modeling and Simulation of Ship Structures Using Finite Element Method

Authors: Javid Iqbal, Zhu Shifan

Abstract:

The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.

Keywords: dynamic analysis, finite element methods, ship structure, vibration analysis

Procedia PDF Downloads 137
15938 Factors Affecting the Results of in vitro Gas Production Technique

Authors: O. Kahraman, M. S. Alatas, O. B. Citil

Abstract:

In determination of values of feeds which, are used in ruminant nutrition, different methods are used like in vivo, in vitro, in situ or in sacco. Generally, the most reliable results are taken from the in vivo studies. But because of the disadvantages like being hard, laborious and expensive, time consuming, being hard to keep the experiment conditions under control and too much samples are needed, the in vitro techniques are more preferred. The most widely used in vitro techniques are two-staged digestion technique and gas production technique. In vitro gas production technique is based on the measurement of the CO2 which is released as a result of microbial fermentation of the feeds. In this review, the factors affecting the results obtained from in vitro gas production technique (Hohenheim Feed Test) were discussed. Some factors must be taken into consideration when interpreting the findings obtained in these studies and also comparing the findings reported by different researchers for the same feeds. These factors were discussed in 3 groups: factors related to animal, factors related to feeds and factors related with differences in the application of method. These factors and their effects on the results were explained. Also it can be concluded that the use of in vitro gas production technique in feed evaluation routinely can be contributed to the comprehensive feed evaluation, but standardization is needed in this technique to attain more reliable results.

Keywords: In vitro, gas production technique, Hohenheim feed test, standardization

Procedia PDF Downloads 600
15937 The Effects of Yield and Yield Components of Some Quality Increase Applications on Razakı Grape Variety

Authors: Şehri Çınar, Aydın Akın

Abstract:

This study was conducted Razakı grape variety (Vitis vinifera L.) and its vine which was aged 19 was grown on 5 BB rootstock in a vegetation period of 2014 in Afyon province in Turkey. In this research, it was investigated whether the applications of Control (C), 1/3 Cluster Tip Reduction (1/3 CTR), Shoot Tip Reduction (STR), 1/3 CTR + STR, Boric Acid (BA), 1/3 CTR + BA, STR + BA, 1/3 CTR + STR + BA on yield and yield components of Razakı grape variety. The results were obtained as the highest fresh grape yield (7.74 kg/vine) with C application, as the highest cluster weight (244.62 g) with STR application, as the highest 100 berry weight (504.08 g) with C application, as the highest maturity index (36.89) with BA application, as the highest must yield (695.00 ml) with BA and (695.00 ml) with 1/3 CTR + STR + BA applications, as the highest intensity of L* color (46.93) with STR and (46.10) with 1/3 CTR + STR + BA applications, as the highest intensity of a* color (-5.37) with 1/3 CTR + STR and (-5.01) with STR, as the highest intensity of b* color (12.59) with STR application. The shoot tip reduction to increase cluster weight and boric acid application to increase maturity index of Razakı grape variety can be recommended.

Keywords: razakı, 1/3 cluster tip reduction, shoot tip reduction, boric acid, yield and yield components

Procedia PDF Downloads 474
15936 Mountain Photo Sphere: An Android Application of Mountain Hiking Street View

Authors: Yanto Budisusanto, Aulia Rachmawati

Abstract:

Land navigation technology that is being developed is Google Street View to provide 360° street views, enabling the user to know the road conditions physically with the photo display. For climbers, especially beginners, detail information of climbing terrain is needed so climbers can prepare supplies and strategies before climbing. Therefore, we built a mountaineer guide application named Mountain Photo Sphere. This application displays a 360̊ panoramic view of mountain hiking trail and important points along the hiking path and its surrounding conditions. By combining panoramic photos 360̊ and tracking paths from coordinate data, a virtual tour will be formed. It is built using Java language and Android Studio. The hiking trail map composed by Google Maps API (Gaining access to google maps), Google GEO API (Gaining access to google maps), and OpenStreetMap API (Getting map files to be accessed offline on the Application). This application can be accessed offline so that climbers can use the application during climbing activities.

Keywords: google street view, panoramic photo 360°, mountain hiking, mountain photo sphere

Procedia PDF Downloads 166
15935 Advanced Stability Criterion for Time-Delayed Systems of Neutral Type and Its Application

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper investigates stability problem for linear systems of neutral type with time-varying delay. By constructing various Lyapunov-Krasovskii functional, and utilizing some mathematical techniques, the sufficient stability conditions for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Finally, some illustrative examples are given to show the effectiveness of the proposed criterion.

Keywords: neutral systems, time-delay, stability, Lyapnov method, LMI

Procedia PDF Downloads 348
15934 Augmenting Cultural Heritage Through 4.0 Technologies: A Research on the Archival Jewelry of the Gianfranco Ferré Research Center

Authors: Greta Rizzi, Ashley Gallitto, Federica Vacca

Abstract:

Looking at design artifacts as bearers and disseminators of material knowledge and intangible socio-cultural meanings, the significance of archival jewelry was investigated following digital cultural heritage research streams. The application of the reverse engineering concept guided the research path: starting with the study of Gianfranco Ferré's archival jewelry and analyzing its technical heritage and symbolic value, the digitalization, dematerialization, and rematerialization of the artifact were carried out. According to that, the proposed paper results from research conducted within the residency program between the Gianfranco Ferré Research Center (GFRC) and Massachusetts Institute of Technology (MIT), involving both the Design and Mechanical Engineering Departments of Politecnico di Milano. The paper will discuss the analysis of traditional design manufacturing techniques, re-imagined through 3D scanning, 3D modeling, and 3D printing technical knowledge while emphasizing the significance of the designer's role as an explorer of socio-cultural meanings and technological mediators in the analog-digital-analog transition.

Keywords: Archival jewelry, cultural heritage, rematerialization, reverse engineering.

Procedia PDF Downloads 56
15933 Numerical Modeling for Water Engineering and Obstacle Theory

Authors: Mounir Adal, Baalal Azeddine, Afifi Moulay Larbi

Abstract:

Numerical analysis is a branch of mathematics devoted to the development of iterative matrix calculation techniques. We are searching for operations optimization as objective to calculate and solve systems of equations of order n with time and energy saving for computers that are conducted to calculate and analyze big data by solving matrix equations. Furthermore, this scientific discipline is producing results with a margin of error of approximation called rates. Thus, the results obtained from the numerical analysis techniques that are held on computer software such as MATLAB or Simulink offers a preliminary diagnosis of the situation of the environment or space targets. By this we can offer technical procedures needed for engineering or scientific studies exploitable by engineers for water.

Keywords: numerical analysis methods, obstacles solving, engineering, simulation, numerical modeling, iteration, computer, MATLAB, water, underground, velocity

Procedia PDF Downloads 465
15932 Sustainable Technologies for Decommissioning of Nuclear Facilities

Authors: Ahmed Stifi, Sascha Gentes

Abstract:

The German nuclear industry, while implementing the German policy, believes that the journey towards the green-field, namely phasing out of nuclear energy, should be achieved through green techniques. The most important techniques required for the wide range of decommissioning activities are decontamination techniques, cutting techniques, radioactivity measuring techniques, remote control techniques, techniques for worker and environmental protection and techniques for treating, preconditioning and conditioning nuclear waste. Many decontamination techniques are used for removing contamination from metal, concrete or other surfaces like the scales inside pipes. As the pipeline system is one of the important components of nuclear power plants, the process of decontamination in tubing is of more significance. The development of energy sectors like oil sector, gas sector and nuclear sector, since the middle of 20th century, increased the pipeline industry and the research in the decontamination of tubing in each sector is found to serve each other. The extraction of natural products and material through the pipeline can result in scale formation. These scales can be radioactively contaminated through an accumulation process especially in the petrochemical industry when oil and gas are extracted from the underground reservoir. The radioactivity measured in these scales can be significantly high and pose a great threat to people and the environment. At present, the decontamination process involves using high pressure water jets with or without abrasive material and this technology produces a high amount of secondary waste. In order to overcome it, the research team within Karlsruhe Institute of Technology developed a new sustainable method to carry out the decontamination of tubing without producing any secondary waste. This method is based on vibration technique which removes scales and also does not require any auxiliary materials. The outcome of the research project proves that the vibration technique used for decontamination of tubing is environmental friendly in other words a sustainable technique.

Keywords: sustainable technologies, decontamination, pipeline, nuclear industry

Procedia PDF Downloads 303
15931 Understanding Evolutionary Algorithms through Interactive Graphical Applications

Authors: Javier Barrachina, Piedad Garrido, Manuel Fogue, Julio A. Sanguesa, Francisco J. Martinez

Abstract:

It is very common to observe, especially in Computer Science studies that students have difficulties to correctly understand how some mechanisms based on Artificial Intelligence work. In addition, the scope and limitations of most of these mechanisms are usually presented by professors only in a theoretical way, which does not help students to understand them adequately. In this work, we focus on the problems found when teaching Evolutionary Algorithms (EAs), which imitate the principles of natural evolution, as a method to solve parameter optimization problems. Although this kind of algorithms can be very powerful to solve relatively complex problems, students often have difficulties to understand how they work, and how to apply them to solve problems in real cases. In this paper, we present two interactive graphical applications which have been specially designed with the aim of making Evolutionary Algorithms easy to be understood by students. Specifically, we present: (i) TSPS, an application able to solve the ”Traveling Salesman Problem”, and (ii) FotEvol, an application able to reconstruct a given image by using Evolution Strategies. The main objective is that students learn how these techniques can be implemented, and the great possibilities they offer.

Keywords: education, evolutionary algorithms, evolution strategies, interactive learning applications

Procedia PDF Downloads 338
15930 Design a Network for Implementation a Hospital Information System

Authors: Abdulqader Rasool Feqi Mohammed, Ergun Erçelebi̇

Abstract:

A large number of hospitals from developed countries are adopting hospital information system to bring efficiency in hospital information system. The purpose of this project is to research on new network security techniques in order to enhance the current network security structure of save a hospital information system (HIS). This is very important because, it will avoid the system from suffering any attack. Security architecture was optimized but there are need to keep researching on best means to protect the network from future attacks. In this final project research, security techniques were uncovered to produce best network security results when implemented in an integrated framework.

Keywords: hospital information system, HIS, network security techniques, internet protocol, IP, network

Procedia PDF Downloads 440
15929 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 471
15928 Business Domain Modelling Using an Integrated Framework

Authors: Mohammed Hasan Salahat, Stave Wade

Abstract:

This paper presents an application of a “Systematic Soft Domain Driven Design Framework” as a soft systems approach to domain-driven design of information systems development. The framework combining techniques from Soft Systems Methodology (SSM), the Unified Modeling Language (UML), and an implementation pattern knows as ‘Naked Objects’. This framework have been used in action research projects that have involved the investigation and modeling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, and a real case study ‘Information Retrieval System for Academic Research’ is used, in this paper, to show further practice and evaluation of the framework in different business domain. We argue that there are advantages from combining and using techniques from different methodologies in this way for business domain modeling. The framework is overviewed and justified as multi-methodology using Mingers Multi-Methodology ideas.

Keywords: SSM, UML, domain-driven design, soft domain-driven design, naked objects, soft language, information retrieval, multimethodology

Procedia PDF Downloads 560
15927 Application Quality Function Deployment (QFD) Tool in Design of Aero Pumps Based on System Engineering

Authors: Z. Soleymani, M. Amirzadeh

Abstract:

Quality Function Deployment (QFD) was developed in 1960 in Japan and introduced in 1983 in America and Europe. The paper presents a real application of this technique in a way that the method of applying QFD in design and production aero fuel pumps has been considered. While designing a product and in order to apply system engineering process, the first step is identification customer needs then its transition to engineering parameters. Since each change in deign after production process leads to extra human costs and also increase in products quality risk, QFD can make benefits in sale by meeting customer expectations. Since the needs identified as well, the use of QFD tool can lead to increase in communications and less deviation in design and production phases, finally it leads to produce the products with defined technical attributes.

Keywords: customer voice, engineering parameters, gear pump, QFD

Procedia PDF Downloads 249