Search results for: Images in Performances
2993 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 662992 Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant
Authors: E. Benga, T. Tengen, A. Alugongo
Abstract:
Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions.Keywords: periodic inventory, continuous inventory, hybrid inventory, optimization, manufacturing plant
Procedia PDF Downloads 3822991 Remote Sensing Application in Environmental Researches: Case Study of Iran Mangrove Forests Quantitative Assessment
Authors: Neda Orak, Mostafa Zarei
Abstract:
Environmental assessment is an important session in environment management. Since various methods and techniques have been produces and implemented. Remote sensing (RS) is widely used in many scientific and research fields such as geology, cartography, geography, agriculture, forestry, land use planning, environment, etc. It can show earth surface objects cyclical changes. Also, it can show earth phenomena limits on basis of electromagnetic reflectance changes and deviations records. The research has been done on mangrove forests assessment by RS techniques. Mangrove forests quantitative analysis in Basatin and Bidkhoon estuaries was the aim of this research. It has been done by Landsat satellite images from 1975- 2013 and match to ground control points. This part of mangroves are the last distribution in northern hemisphere. It can provide a good background to improve better management on this important ecosystem. Landsat has provided valuable images to earth changes detection to researchers. This research has used MSS, TM, +ETM, OLI sensors from 1975, 1990, 2000, 2003-2013. Changes had been studied after essential corrections such as fix errors, bands combination, georeferencing on 2012 images as basic image, by maximum likelihood and IPVI Index. It was done by supervised classification. 2004 google earth image and ground points by GPS (2010-2012) was used to compare satellite images obtained changes. Results showed mangrove area in bidkhoon was 1119072 m2 by GPS and 1231200 m2 by maximum likelihood supervised classification and 1317600 m2 by IPVI in 2012. Basatin areas is respectively: 466644 m2, 88200 m2, 63000 m2. Final results show forests have been declined naturally. It is due to human activities in Basatin. The defect was offset by planting in many years. Although the trend has been declining in recent years again. So, it mentioned satellite images have high ability to estimation all environmental processes. This research showed high correlation between images and indexes such as IPVI and NDVI with ground control points.Keywords: IPVI index, Landsat sensor, maximum likelihood supervised classification, Nayband National Park
Procedia PDF Downloads 2932990 The Excess Loop Delay Calibration in a Bandpass Continuous-Time Delta Sigma Modulators Based on Q-Enhanced LC Filter
Authors: Sorore Benabid
Abstract:
The Q-enhanced LC filters are the most used architecture in the Bandpass (BP) Continuous-Time (CT) Delta-Sigma (ΣΔ) modulators, due to their: high frequencies operation, high linearity than the active filters and a high quality factor obtained by Q-enhanced technique. This technique consists of the use of a negative resistance that compensate the ohmic losses in the on-chip inductor. However, this technique introduces a zero in the filter transfer function which will affect the modulator performances in term of Dynamic Range (DR), stability and in-band noise (Signal-to-Noise Ratio (SNR)). In this paper, we study the effect of this zero and we demonstrate that a calibration of the excess loop delay (ELD) is required to ensure the best performances of the modulator. System level simulations are done for a 2ndorder BP CT (ΣΔ) modulator at a center frequency of 300MHz. Simulation results indicate that the optimal ELD should be reduced by 13% to achieve the maximum SNR and DR compared to the ideal LC-based ΣΔ modulator.Keywords: continuous-time bandpass delta-sigma modulators, excess loop delay, on-chip inductor, Q-enhanced LC filter
Procedia PDF Downloads 3292989 Assessment of Breeding Soundness by Comparative Radiography and Ultrasonography of Rabbit Testes
Authors: Adenike O. Olatunji-Akioye, Emmanual B Farayola
Abstract:
In order to improve the animal protein recommended daily intake of Nigerians, there is an upsurge in breeding of hitherto shunned food animals one of which is the rabbit. Radiography and ultrasonography are tools for diagnosing disease and evaluating the anatomical architecture of parts of the body non-invasively. As the rabbit is becoming a more important food animal, to achieve improved breeding of these animals, the best of the species form a breeding stock and will usually depend on breeding soundness which may be evaluated by assessment of the male reproductive organs by these tools. Four male intact rabbits weighing between 1.2 to 1.5 kg were acquired and acclimatized for 2 weeks. Dorsoventral views of the testes were acquired using a digital radiographic machine and a 5 MHz portable ultrasound scanner was used to acquire images of the testes in longitudinal, sagittal and transverse planes. Radiographic images acquired revealed soft tissue images of the testes in all rabbits. The testes lie in individual scrotal sacs sides on both sides of the midline at the level of the caudal vertebrae and thus are superimposed by caudal vertebrae and the caudal limits of the pelvic girdle. The ultrasonographic images revealed mostly homogenously hypoechogenic testes and a hyperechogenic mediastinum testis. The dorsal and ventral poles of the testes were heterogeneously hypoechogenic and correspond to the epididymis and spermatic cord. The rabbit is unique in the ability to retract the testes particularly when stressed and so careful and stressless handling during the procedures is of paramount importance. The imaging of rabbit testes can be safely done using both imaging methods but ultrasonography is a better method of assessment and evaluation of soundness for breeding.Keywords: breeding soundness, rabbit, radiography, ultrasonography
Procedia PDF Downloads 1322988 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors
Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang
Abstract:
Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.Keywords: feature matching, k-means clustering, SIFT, RANSAC
Procedia PDF Downloads 3582987 Digital Development of Cultural Heritage: Construction of Traditional Chinese Pattern Database
Authors: Shaojian Li
Abstract:
The traditional Chinese patterns, as an integral part of Chinese culture, possess unique values in history, culture, and art. However, with the passage of time and societal changes, many of these traditional patterns are at risk of being lost, damaged, or forgotten. To undertake the digital preservation and protection of these traditional patterns, this paper will collect and organize images of traditional Chinese patterns. It will provide exhaustive and comprehensive semantic annotations, creating a resource library of traditional Chinese pattern images. This will support the digital preservation and application of traditional Chinese patterns.Keywords: digitization of cultural heritage, traditional Chinese patterns, digital humanities, database construction
Procedia PDF Downloads 592986 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution
Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone
Abstract:
The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder
Procedia PDF Downloads 1132985 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner
Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura
Abstract:
Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.Keywords: EEG scanner, eye-detector, mammography, observers
Procedia PDF Downloads 2152984 King versus God: An Introduction to Dhanujatra of Odisha
Authors: Kailash Pattanaik, Giribala Mohanty
Abstract:
Dhanujatra is a folk performance of ODISHA, India, that transports the participants, on lookers and all alike into a mythical atmosphere for eleven days and nights as well. In this performance the whole town becomes stage. The uniqueness of the festival lies in the fact that all the episodes of this Jatra enacted in different parts of the town making it the largest open air theatre in the world. The paper would emphasize on the uniqueness and the impact of this performance.Different episodes are enacted at different places in the regime. So, Dhanujatra does not confine itself to a fixed static or dead stage, as in case of other Jatra’s; it rather becomes the stage for the world at large. For that, it is said that, Worlds biggest open air theatre held in the tiny town called Bargarh in the western part of Orissa. The play moves sequentially day after day and the audience moves from locale to locale. Here it is analogues to the Ramleela of Ramnagar of Benars. Parallal enactment is a significant feature of this Jatra. From the second day, parallal performances take place in both Bargarh town and Ambapalli epitomising ‘Mathura’ and ‘Gokul’ respectively. Krishna is born in the prison on the second day of the jatra. Basudeb exchanges the child with the Nanda’s newborn baby in Gokul. In this way, parallal performances go on both in Mathura and Gokul. The ordinary persons who act as the mythological characters, or become historical heroes or the legendary Saints or Bhaktas in a Jatra in the evening, lead the lives of ordinary persons during day time. The dramatic personas of those individuals are shed with the end of the Jatra. On the contrary, the persons who act as the main characters of Dhanujatra are exceptions in this regard. They are identified as the characters they enact for the whole period of performance, both in the evenings and during daytime. It is worth mentioning that generally in the folk performances there is an ample scope to touch upon or interpret or comment or satirize the issues of contemporary relevance with the sole purpose to convey some specific message. Dhanujatra is no exception to that.Keywords: folk performance, Jatra, parallel enactment, open-air stage, Odisha
Procedia PDF Downloads 2862983 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging
Authors: O. Abusaeeda, J. P. O. Evans, D. Downes
Abstract:
We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.Keywords: X-ray, kinetic depth, KDE, view synthesis
Procedia PDF Downloads 2652982 Detecting Manipulated Media Using Deep Capsule Network
Authors: Joseph Uzuazomaro Oju
Abstract:
The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media
Procedia PDF Downloads 1342981 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing
Authors: Jackson Parker Galvan, Wenxuan Guo
Abstract:
Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains
Procedia PDF Downloads 952980 Depth Estimation in DNN Using Stereo Thermal Image Pairs
Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge
Abstract:
Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation
Procedia PDF Downloads 2792979 Speed up Vector Median Filtering by Quasi Euclidean Norm
Authors: Vinai K. Singh
Abstract:
For reducing impulsive noise without degrading image contours, median filtering is a powerful tool. In multiband images as for example colour images or vector fields obtained by optic flow computation, a vector median filter can be used. Vector median filters are defined on the basis of a suitable distance, the best performing distance being the Euclidean. Euclidean distance is evaluated by using the Euclidean norms which is quite demanding from the point of view of computation given that a square root is required. In this paper an optimal piece-wise linear approximation of the Euclidean norm is presented which is applied to vector median filtering.Keywords: euclidean norm, quasi euclidean norm, vector median filtering, applied mathematics
Procedia PDF Downloads 4742978 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 112977 A Case Study of Deep Learning for Disease Detection in Crops
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
In the precision agriculture area, one of the main tasks is the automated detection of diseases in crops. Machine Learning algorithms have been studied in recent decades for such tasks in view of their potential for improving economic outcomes that automated disease detection may attain over crop fields. The latest generation of deep learning convolution neural networks has presented significant results in the area of image classification. In this way, this work has tested the implementation of an architecture of deep learning convolution neural network for the detection of diseases in different types of crops. A data augmentation strategy was used to meet the requirements of the algorithm implemented with a deep learning framework. Two test scenarios were deployed. The first scenario implemented a neural network under images extracted from a controlled environment while the second one took images both from the field and the controlled environment. The results evaluated the generalisation capacity of the neural networks in relation to the two types of images presented. Results yielded a general classification accuracy of 59% in scenario 1 and 96% in scenario 2.Keywords: convolutional neural networks, deep learning, disease detection, precision agriculture
Procedia PDF Downloads 2592976 Communication About Health and Fitness in Media and Its Hidden Message About Objectification
Authors: Emiko Suzuki
Abstract:
Although fitness is defined as the body’s ability to respond to the demand of physical activity without undue fatigue in health science, in media oftentimes physical activity is presented as means to an attractive body rather than a fit and healthy one. Of all types of media, Instagram is becoming an increasingly persuasive source of information and advice on health and fitness, where individuals conceptualize what health and fitness mean for them. However, this user-generated and unregulated platform can be problematic, as it can communicate misleading information about health and fitness and possibly leading individuals to psychological problems such as eating disorders. In fact, previous research has shown that some messages that were posted with a tag that related to inspire others to do fitness, in fact, encouraged distancing the self from the internal needs of the body. For this reason, this present study aims to explore how health and fitness are communicated on Instagram by analyzing images and texts. A content analysis of images that were labeled with particular hashtags was performed, followed by a thematic analysis of texts from the same set of images. The result shows an interesting insight about messages about how health and fitness are communicated from companies through media, then digested and further shared among communities on Instagram. The study explores how the use of visual focused way of communicating health and fitness can lead to the dehumanization of human bodies.Keywords: Instagram, fitness, dehumanization, body image, embodiment
Procedia PDF Downloads 1382975 Image Enhancement of Histological Slides by Using Nonlinear Transfer Function
Authors: D. Suman, B. Nikitha, J. Sarvani, V. Archana
Abstract:
Histological slides provide clinical diagnostic information about the subjects from the ancient times. Even with the advent of high resolution imaging cameras the image tend to have some background noise which makes the analysis complex. A study of the histological slides is done by using a nonlinear transfer function based image enhancement method. The method processes the raw, color images acquired from the biological microscope, which, in general, is associated with background noise. The images usually appearing blurred does not convey the intended information. In this regard, an enhancement method is proposed and implemented on 50 histological slides of human tissue by using nonlinear transfer function method. The histological image is converted into HSV color image. The luminance value of the image is enhanced (V component) because change in the H and S components could change the color balance between HSV components. The HSV image is divided into smaller blocks for carrying out the dynamic range compression by using a linear transformation function. Each pixel in the block is enhanced based on the contrast of the center pixel and its neighborhood. After the processing the V component, the HSV image is transformed into a colour image. The study has shown improvement of the characteristics of the image so that the significant details of the histological images were improved.Keywords: HSV space, histology, enhancement, image
Procedia PDF Downloads 3292974 The States of Stage Indigenous Operatic Production in Nigeria
Authors: David Bolaji
Abstract:
Operatic production in Nigeria emanates from the traditional theatrical performances rooted in the ritual festival and traditional religious ceremonies among different cultures in Nigeria. The existence and the performative continuum of opera in Nigeria have been in the limelight of stage productions and diverse performances before the presence of Europeans in Nigeria. However, the transformation of this musical genre evolved from an indigenous concept into an art form that is acceptable within the circumference theatrical platform globally. The present state of stage operatic production has gone into extinction as the result of diverse factors, which include: a lack of scripted operatic works by Nigerian art composers, disconnection and lack of continuation from the artistic, theatrical contributions of the foremost folk operatic practitioners in Nigeria and lack of progressive transformation of stage operatic production into screen production in Nigeria. The bibliography method was employed in this study. Also, the use of interviews and questionnaires was adopted. Findings reveal that the extinction of operatic production can be corrected through the intentional act of composing scripted operatic works by Nigerian art composers; by establishing a collaborative effort between the scriptwriters (librettists) and the Nigerian art composers, operatic stage performance could be transformed in screen production to create more awareness of it in the society.Keywords: operatic production, extinction, nigerian art music, and nigerian art composers
Procedia PDF Downloads 982973 An Extraction of Cancer Region from MR Images Using Fuzzy Clustering Means and Morphological Operations
Authors: Ramandeep Kaur, Gurjit Singh Bhathal
Abstract:
Cancer diagnosis is very difficult task. Magnetic resonance imaging (MRI) scan is used to produce image of any part of the body and provides an efficient way for diagnosis of cancer or tumor. In existing method, fuzzy clustering mean (FCM) is used for the diagnosis of the tumor. In the proposed method FCM is used to diagnose the cancer of the foot. FCM finds the centroids of the clusters of the foot cancer obtained from MRI images. FCM thresholding result shows the extract region of the cancer. Morphological operations are applied to get extracted region of cancer.Keywords: magnetic resonance imaging (MRI), fuzzy C mean clustering, segmentation, morphological operations
Procedia PDF Downloads 3992972 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 1382971 Thermal Performance Investigation on Cross V-Shape Solar Air Collectors
Authors: Xi Luo, Xu Ji, Yunfeng Wang, Guoliang Li, Chongqiang Yan, Ming Li
Abstract:
Two different kinds of cross V-shape solar air collectors are designed and constructed. In the transverse cross V-shape collector, the V-shape bottom plate is along the air flow direction and the absorbing plate is perpendicular to the air flow direction. In the lengthway cross V-shape collector, the V-shape absorbing plate is along the air flow direction and the bottom plate is perpendicular to the air flow direction. Based on heat balance, the mathematical model is built to evaluate their performances. These thermal performances of the two cross V-shape solar air collectors and an extra traditional flat-plate solar air collector are characterized under various operating conditions by experiments. The experimental results agree well with the calculation values. The experimental results prove that the thermal efficiency of transverse cross V-shape collector precedes that of others. The air temperature at any point along the flow direction of the transverse cross V-shape collector is higher than that of the lengthway cross V-shape collector. For the transverse cross V-shape collector, the most effective length of flow channel is 0.9m. For the lengthway cross V-shape collector, a longer flow channel is necessary to achieve a good thermal performance.Keywords: cross v-shape, performance, solar air collector, thermal efficiency
Procedia PDF Downloads 3142970 Self-Tuning-Filter and Fuzzy Logic Control for Shunt Active Power Filter
Authors: Kaddari Faiza, Mazari Benyounes, Mihoub Youcef, Safa Ahmed
Abstract:
Active filtering of electric power has now become a mature technology for reactive power and harmonic compensation caused by the proliferation of power electronics devices used for industrial, commercial and residential purposes. The aim of this study is to enhance the power quality by improving the performances of shunt active power filter in harmonic mitigation to obtain sinusoidal source currents with very weak ripples. A power circuit configuration and control scheme for shunt active power filter are described with an improved method for harmonics compensation using self-tuning-filter for harmonics identification and fuzzy logic control to generate reference current. Simulation results (using MATLAB/SIMULINK) illustrates the compensation characteristics of the proposed control strategy. Analysis of these results proves the feasibility and effectiveness of this method to improve the power quality and also show the performances of fuzzy logic control which provides flexibility, high precision and fast response. The total harmonic distortion (THD %) for the simulations found to be within the recommended imposed IEEE 519-1992 harmonic standard.Keywords: Active Powers Filter (APF), Self-Tuning-Filter (STF), fuzzy logic control, hysteresis-band control
Procedia PDF Downloads 7392969 Archetypes in the Rorschach Inkblots: Imparting Universal Meaning in the Face of Ambiguity
Authors: Donna L. Roberts
Abstract:
The theory of archetypes contends that themes based on universal foundational images reside in and are transmitted generationally through the collective unconscious, which is referenced throughout an individual’s experience in order to make sense of that experience. There is then, a profoundly visceral and instinctive agreement on the gestalt of these universal themes and how they apply to the human condition throughout space and time. The inherent nature of projective tests, such as the Rorschach Inkblot, necessitates that the stimulus is ambiguous and thus elicits responses that reflect the unconscious inner psyche of the respondent. As the development of the Rorschach inkblots was relatively random and serendipitous - i.e., the inkblots were not engineered to elicit a specifically defined response - it would stand to reason that without a collective unconscious, every individual would interpret the inkblots in an individualized and unique way. Yet this is not the case. Instead, common themes appear in the images of the inkblots and their interpretation that reflect this deeper iconic understanding. This study analyzed the ten Rorschach inkblots in terms of Jungian archetypes, both with respect to the form of images on each plate and the commonly observed themes in responses. Examples of the archetypes were compared to each of the inkblots, with subsequent descriptions matched to the standard responses. The findings yielded clear and distinct instances of the universal symbolism intrinsic in the inkblot images as well as ubiquitous throughout the responses. This project illustrates the influence of the theories of psychologist Carl Gustav Jung on the interpretation of the ambiguous stimuli. It further serves to demonstrate the merit of Jungian psychology as a valuable tool with which to understand the nature of projective tests in general, Rorschach’s work specifically, and ultimately the broader implications for our collective unconscious and common humanity.Keywords: archetypes, inkblots, projective tests, Rorschach
Procedia PDF Downloads 1062968 An Experiment of Three-Dimensional Point Clouds Using GoPro
Authors: Jong-Hwa Kim, Mu-Wook Pyeon, Yang-dam Eo, Ill-Woong Jang
Abstract:
Construction of geo-spatial information recently tends to develop as multi-dimensional geo-spatial information. People constructing spatial information is also expanding its area to the general public from some experts. As well as, studies are in progress using a variety of devices, with the aim of near real-time update. In this paper, getting the stereo images using GoPro device used widely also to the general public as well as experts. And correcting the distortion of the images, then by using SIFT, DLT, is acquired the point clouds. It presented a possibility that on the basis of this experiment, using a video device that is readily available in real life, to create a real-time digital map.Keywords: GoPro, SIFT, DLT, point clouds
Procedia PDF Downloads 4692967 Secure Image Encryption via Enhanced Fractional Order Chaotic Map
Authors: Ismail Haddad, Djamel Herbadji, Aissa Belmeguenai, Selma Boumerdassi
Abstract:
in this paper, we provide a novel approach for image encryption that employs the Fibonacci matrix and an enhanced fractional order chaotic map. The enhanced map overcomes the drawbacks of the classical map, especially the limited chaotic range and non-uniform distribution of chaotic sequences, resulting in a larger encryption key space. As a result, this strategy improves the encryption system's security. Our experimental results demonstrate that our proposed algorithm effectively encrypts grayscale images with exceptional efficiency. Furthermore, our technique is resistant to a wide range of potential attacks, including statistical and entropy attacks.Keywords: image encryption, logistic map, fibonacci matrix, grayscale images
Procedia PDF Downloads 3182966 Designing Agricultural Irrigation Systems Using Drone Technology and Geospatial Analysis
Authors: Yongqin Zhang, John Lett
Abstract:
Geospatial technologies have been increasingly used in agriculture for various applications and purposes in recent years. Unmanned aerial vehicles (drones) fit the needs of farmers in farming operations, from field spraying to grow cycles and crop health. In this research, we conducted a practical research project that used drone technology to design and map optimal locations and layouts of irrigation systems for agriculture farms. We flew a DJI Mavic 2 Pro drone to acquire aerial remote sensing images over two agriculture fields in Forest, Mississippi, in 2022. Flight plans were first designed to capture multiple high-resolution images via a 20-megapixel RGB camera mounted on the drone over the agriculture fields. The Drone Deploy web application was then utilized to develop flight plans and subsequent image processing and measurements. The images were orthorectified and processed to estimate the area of the area and measure the locations of the water line and sprinkle heads. Field measurements were conducted to measure the ground targets and validate the aerial measurements. Geospatial analysis and photogrammetric measurements were performed for the study area to determine optimal layout and quantitative estimates for irrigation systems. We created maps and tabular estimates to demonstrate the locations, spacing, amount, and layout of sprinkler heads and water lines to cover the agricultural fields. This research project provides scientific guidance to Mississippi farmers for a precision agricultural irrigation practice.Keywords: drone images, agriculture, irrigation, geospatial analysis, photogrammetric measurements
Procedia PDF Downloads 762965 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 4202964 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images
Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir
Abstract:
The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.Keywords: altitude estimation, drone, image processing, trajectory planning
Procedia PDF Downloads 113