Search results for: Deep mixed column
5076 Comparison of Carcass Weight of Pure and Mixed Races Namebar 30-Day Squabs
Authors: Sepehr Moradi, Mehdi Asadi Rad
Abstract:
The aim of this study is to evaluate and compare carcass weight of pure and mixed races Namebar 30-day pigeons to investigate about their sex, race, and some auxiliary variables. In this paper, 68 pieces of pigeons as 34 male and female pairs with equal age are studied randomly. A natural incubation was done from each pair. All produced chickens were slaughtered at 30 days age after 12 hours hunger. Then their carcasses were weighted by a scale with one gram precision. A covariance analysis was used since there were many auxiliary variables and unequal observations. SAS software was used for statistical analysis. Mean weight of carcass in pure race (Namebar-Namebar) with 8 records, 219.5±61.3 gr and mixed races of Kabood-Namebar, Parvazy-Namebar, Tizpar-Namebar, Namebar-Kabood, Namebar-Tizpar, and Namebar-Parvazy with 8, 10, 8, 12, 12, and 10 records were 369.9±54.6, 338.3±52.7, 224.5±73.6, 142.3±67.8, 155.6±56.2, and 170.2±55 gr, respectively.. Difference carcass weight of 30-day of Namebar-Namebar race with Namebar-Kabood, Namebar-Parvazy, Namebar-Tizpar, Parvazy-Namebar and Tizpar-Namebar mixed races was not significant, and was significant in level 5% with Kabood- Namebar (P < 0.05). Effect of sex and age were also significant in 1% level (P < 0.01), but mutual effect of sex and race was not significant. The results showed that most and least weights of carcass belonged to Kabood-Namebar and Namebar-Kabood.Keywords: squab, Namebar race, 30-day carcass weight, pigeons
Procedia PDF Downloads 1805075 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images
Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat
Abstract:
Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA
Procedia PDF Downloads 735074 Nowcasting Indonesian Economy
Authors: Ferry Kurniawan
Abstract:
In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination
Procedia PDF Downloads 3315073 Experimental Model of the Behaviour of Bolted Angles Connections with Stiffeners
Authors: Abdulkadir Cuneyt Aydin, Mahyar Maali, Mahmut Kılıç, Merve Sağıroğlu
Abstract:
The moment-rotation curves of semi-rigid connections are the visual expressions of the actual behaviour discovered in beam-to-column connections experiments. This research was to determine the behaviour of the connection using full-scale experiments under statically loaded. The stiffeners which are typically attached to beams web or flanges to control local buckling and to increase shear capacity in a beam web are almost always used in modern designs. They must also provide sufficient moment of inertia to control out of plane deformations. This study was undertaken to analyse the influence of stiffeners in the angles and beams on the behaviour of the beam-to-column joints. In addition, the aim was to provide necessary data to improve the Eurocode 3. The main parameters observed are the evolution of the resistance, the stiffness, the rotation capacity, the ductility of a joint and the Energy Dissipation. Experimental tests show that the plastic flexural resistance and the energy dissipation increased when thickness of stiffener beam, thickness of stiffener angles were increased in the test specimens. And also, while stiffness of joints, the bending moment capacity and the maximum bending moment increased with the increasing thickness of stiffener beam, these values decreased with the increasing thickness of stiffener angles. So, it is observed that the beam stiffener of angles are important in improving resistance moment of beam-to-column semi-rigid joints.Keywords: bolted angles connection, semi-rigid joints, ductility of a joint, angles and beams stiffeners
Procedia PDF Downloads 4605072 Single Species vs Mixed Microbial Culture Degradation of Pesticide in a Membrane Bioreactor
Authors: Karan R. Chavan, Srivats Gopalan, Kumudini V. Marathe
Abstract:
In the current work, the comparison of degradation of malathion by single species, Pseudomonas Stutzeri, and Activated Sludge/Mixed Microbial Culture is studied in a Membrane Bioreactor. Various parameters were considered to study the effect of single species degradation compared to degradation by activated sludge. The experimental results revealed 85-90% reduction in the COD of the Malathion containing synthetic wastewater. Complete reduction of malathion was observed within 24 hours in both the cases. The critical flux was 10 LMH for both the systems. Fouling propensity, Cake and Membrane resistances were calculated thus giving an insight regarding the working of Membrane Bioreactor-based on single species and activated sludge.Keywords: fouling, membrane bioreactor, mixed microbial culture, single species
Procedia PDF Downloads 3585071 Safe Disposal of Pyrite Rich Waste Rock Using Alkali Phosphate Treatment
Authors: Jae Gon Kim, Yongchan Cho, Jungwha Lee
Abstract:
Acid rock drainage (ARD) is generated by the oxidation of pyrite (FeS₂) contained in the excavated rocks upon its exposure to atmosphere and is an environmental concern at construction site due to its high acidity and high concentration of toxic elements. We developed the safe disposal method with the reduction of ARD generation by an alkali phosphate treatment. A pyrite rich andesite was collected from a railway construction site. The collected rock sample was crushed to be less than 3/8 inches in diameter using a jaw crusher. The crushed rock was filled in an acryl tube with 20 cm in diameter and 40 cm in height. Two treatments for the ARD reduction were conducted with duplicates: 1) the addition of 10mM KH₂PO₄_3% NaHCO₃ and 2) the addition of 10mM KH₂PO₄_3% NaHCO₃ and ordinary portland cement (OPC) on the top of the column. After the treatments, 500 ml of distilled water added to each column for every week for 3 weeks and then the column was flushed with 1,500 ml of distilled water in the 4th week. The pH, electrical conductivity (EC), concentrations of anions and cations of the leachates were monitored for 10 months. The pH of the leachates from the untreated column showed 2.1-3.7, but the leachates from the columns treated with the alkali phosphate solution with or without the OPC addition showed pH 6.7–8.9. The leachates from the treated columns had much lower concentrations of SO₄²⁻ and toxic elements such as Al, Mn, Fe and heavy metals than those from the untreated columns. However, the leachates from the treated columns had a higher As concentration than those from the untreated columns. There was no significant difference in chemical property between the leachates from the treated columns with and without the OPC addition. The chemistry of leachates indicates that the alkali phosphate treatment decreased the oxidation of sulfide and neutralized the acidic pore water. No significant effect of the OPC addition on the leachate chemistry has shown during 10-month experiment. However, we expect a positive effect of the OPC addition on the reduction of ARD generation in terms of long period. According to the results of this experiment, the alkali phosphate treatment of sulfide rich rock can be a promising technology for the safe disposal method with the ARD reduction.Keywords: acid rock drainage, alkali phosphate treatment, pyrite rich rock, safe disposal
Procedia PDF Downloads 1555070 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 895069 The Effect of Particle Porosity in Mixed Matrix Membrane Permeation Models
Authors: Z. Sadeghi, M. R. Omidkhah, M. E. Masoomi
Abstract:
The purpose of this paper is to examine gas transport behavior of mixed matrix membranes (MMMs) combined with porous particles. Main existing models are categorized in two main groups; two-phase (ideal contact) and three-phase (non-ideal contact). A new coefficient, J, was obtained to express equations for estimating effect of the particle porosity in two-phase and three-phase models. Modified models evaluates with existing models and experimental data using Matlab software. Comparison of gas permeability of proposed modified models with existing models in different MMMs shows a better prediction of gas permeability in MMMs.Keywords: mixed matrix membrane, permeation models, porous particles, porosity
Procedia PDF Downloads 3845068 A Deep Learning Based Integrated Model For Spatial Flood Prediction
Authors: Vinayaka Gude Divya Sampath
Abstract:
The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.Keywords: deep learning, disaster management, flood prediction, urban flooding
Procedia PDF Downloads 1465067 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion
Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro
Abstract:
Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.Keywords: basketball, deep learning, feature extraction, single-camera, tracking
Procedia PDF Downloads 1385066 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 1775065 How to Guide Students from Surface to Deep Learning: Applied Philosophy in Management Education
Authors: Lihong Wu, Raymond Young
Abstract:
The ability to learn is one of the most critical skills in the information age. However, many students do not have a clear understanding of what learning is, what they are learning, and why they are learning. Many students study simply to pass rather than to learn something useful for their career and their life. They have a misconception about learning and a wrong attitude towards learning. This research explores student attitudes to study in management education and explores how to intercede to lead students from shallow to deeper modes of learning.Keywords: knowledge, surface learning, deep learning, education
Procedia PDF Downloads 5015064 Upconversion Nanomaterials for Applications in Life Sciences and Medicine
Authors: Yong Zhang
Abstract:
Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues.Keywords: upconversion, fluorescent, nanoparticle, bioimaging, photodynamic therapy
Procedia PDF Downloads 1605063 Trading off Accuracy for Speed in Powerdrill
Authors: Filip Buruiana, Alexander Hall, Reimar Hofmann, Thomas Hofmann, Silviu Ganceanu, Alexandru Tudorica
Abstract:
In-memory column-stores make interactive analysis feasible for many big data scenarios. PowerDrill is a system used internally at Google for exploration in logs data. Even though it is a highly parallelized column-store and uses in memory caching, interactive response times cannot be achieved for all datasets (note that it is common to analyze data with 50 billion records in PowerDrill). In this paper, we investigate two orthogonal approaches to optimize performance at the expense of an acceptable loss of accuracy. Both approaches can be implemented as outer wrappers around existing database engines and so they should be easily applicable to other systems. For the first optimization we show that memory is the limiting factor in executing queries at speed and therefore explore possibilities to improve memory efficiency. We adapt some of the theory behind data sketches to reduce the size of particularly expensive fields in our largest tables by a factor of 4.5 when compared to a standard compression algorithm. This saves 37% of the overall memory in PowerDrill and introduces a 0.4% relative error in the 90th percentile for results of queries with the expensive fields. We additionally evaluate the effects of using sampling on accuracy and propose a simple heuristic for annotating individual result-values as accurate (or not). Based on measurements of user behavior in our real production system, we show that these estimates are essential for interpreting intermediate results before final results are available. For a large set of queries this effectively brings down the 95th latency percentile from 30 to 4 seconds.Keywords: big data, in-memory column-store, high-performance SQL queries, approximate SQL queries
Procedia PDF Downloads 2595062 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation
Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen
Abstract:
The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation
Procedia PDF Downloads 2315061 Comparative Study of Numerical and Analytical Buckling Analysis of a Steel Column with Various Slenderness Ratios
Authors: Lahlou Dahmani, Warda Mekiri, Ahmed Boudjemia
Abstract:
This scientific paper explores the comparison between the ultimate buckling load obtained through the Eurocode 3 methodology and the ultimate buckling load obtained through finite element simulations for steel columns under compression. The study aims to provide insights into the adequacy of the design rules proposed in Eurocode 3 for different slenderness ratios. The finite element simulations with the Ansys commercial program involve a geometrical and material non-linear analysis of the columns with imperfections. The loss of equilibrium is generally caused by the geometrically nonlinear effects where the column begins to buckle and lose its stability when the load reaches a certain critical value. The linear buckling analysis predicts the theoretical buckling strength of an elastic structure but the nonlinear one is more accurate with taking into account the initial imperfection.Keywords: Ansys, linear buckling, eigen value, nonlinear buckling, slenderness ratio, Eurocode 3
Procedia PDF Downloads 185060 WO₃-SnO₂ Sensors for Selective Detection of Volatile Organic Compounds for Breath Analysis
Authors: Arpan Kumar Nayak, Debabrata Pradhan
Abstract:
A simple, single-step and one-pot hydrothermal method was employed to synthesize WO₃-SnO₂ mixed nanostructured metal oxides at 200°C in 12h. The SnO₂ nanoparticles were found to be uniformly decorated on the WO₃ nanoplates. Though it is widely known that noble metals such as Pt, Pd doping or decoration on metal oxides improve the sensing response and sensitivity, we varied the SnO₂ concentration in the WO₃-SnO₂ mixed oxide and demonstrated their performance in ammonia, ethanol and acetone sensing. The sensing performance of WO₃-(x)SnO₂ [x = 0.27, 0.54, 1.08] mixed nanostructured oxides was found to be not only superior to that of pristine oxides but also higher/better than that of reported noble metal-based sensors. The sensing properties (selectivity, limit of detection, response and recovery times) are measured as a function of operating temperature (150-350°C). In particular, the gas selectivity is found to be highly temperature-dependent with optimum performance obtained at 200°C, 300°C and 350°C for ammonia, ethanol, and acetone, respectively. The present results on cost effective WO₃-SnO₂ sensors can find potential application in human breath analysis by noninvasive detection.Keywords: gas sensing, mixed oxides, nanoplates, ammonia, ethanol, acetone
Procedia PDF Downloads 2405059 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 2505058 Application of Deep Eutectic Solvent in the Extraction of Ferulic Acid from Palm Pressed Fibre
Authors: Ng Mei Han, Nu'man Abdul Hadi
Abstract:
Extraction of ferulic acid from palm pressed fiber using deep eutectic solvent (DES) of choline chloride-acetic acid (ChCl-AA) and choline chloride-citric acid (ChCl-CA) are reported. Influence of water content in DES on the extraction efficiency was investigated. ChCl-AA and ChCl-CA experienced a drop in viscosity from 9.678 to 1.429 and 22.658 ± 1.655 mm2/s, respectively as the water content in the DES increased from 0 to 50 wt% which contributed to higher extraction efficiency for the ferulic acid. Between 41,155 ± 940 mg/kg ferulic acid was obtained after 6 h reflux when ChCl-AA with 30 wt% water was used for the extraction compared to 30,940 ± 621 mg/kg when neat ChCl-AA was used. Although viscosity of the DES could be improved with the addition of water, there is a threshold where the DES could tolerate the presence of water without changing its solvent behavior. The optimum condition for extraction of ferulic acid from palm pressed fiber was heating for 6 h with DES containing 30 wt% water.Keywords: deep eutectic solvent, extraction, ferulic acid, palm fibre
Procedia PDF Downloads 825057 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model
Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi
Abstract:
Laminar mixed convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviours of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.Keywords: buoyancy force, laminar mixed convection, mixture model, nano-fluid, two-phase
Procedia PDF Downloads 4695056 Deep Routing Strategy: Deep Learning based Intelligent Routing in Software Defined Internet of Things.
Authors: Zabeehullah, Fahim Arif, Yawar Abbas
Abstract:
Software Defined Network (SDN) is a next genera-tion networking model which simplifies the traditional network complexities and improve the utilization of constrained resources. Currently, most of the SDN based Internet of Things(IoT) environments use traditional network routing strategies which work on the basis of max or min metric value. However, IoT network heterogeneity, dynamic traffic flow and complexity demands intelligent and self-adaptive routing algorithms because traditional routing algorithms lack the self-adaptions, intelligence and efficient utilization of resources. To some extent, SDN, due its flexibility, and centralized control has managed the IoT complexity and heterogeneity but still Software Defined IoT (SDIoT) lacks intelligence. To address this challenge, we proposed a model called Deep Routing Strategy (DRS) which uses Deep Learning algorithm to perform routing in SDIoT intelligently and efficiently. Our model uses real-time traffic for training and learning. Results demonstrate that proposed model has achieved high accuracy and low packet loss rate during path selection. Proposed model has also outperformed benchmark routing algorithm (OSPF). Moreover, proposed model provided encouraging results during high dynamic traffic flow.Keywords: SDN, IoT, DL, ML, DRS
Procedia PDF Downloads 1105055 Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens
Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi
Abstract:
Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.Keywords: fracture criterion, mixed mode loading, damage zone, micro cracks
Procedia PDF Downloads 2985054 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst
Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong
Abstract:
Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide
Procedia PDF Downloads 1525053 Reliability of Slender Reinforced Concrete Columns: Part 1
Authors: Metwally Abdel Aziz Ahmed, Ahmed Shaban Abdel Hay Gabr, Inas Mohamed Saleh
Abstract:
The main objective of structural design is to ensure safety and functional performance requirements of a structural system for its target reliability levels. In this study, the reliability index for the reinforcement concrete slender columns with rectangular cross section is studied. The variable parameters studied include the loads, the concrete compressive strength, the steel yield strength, the dimensions of concrete cross-section, the reinforcement ratio, and the location of steel placement. Risk analysis program was used to perform the analytical study. The effect of load eccentricity on the reliability index of reinforced concrete slender column was studied and presented. The results of this study indicate that the good quality control improve the performance of slender reinforced columns through increasing the reliability index β.Keywords: reliability, reinforced concrete, safety, slender column
Procedia PDF Downloads 4535052 Hydrogeological Study of Shallow and Deep Aquifers in Balaju-Boratar Area, Kathmandu, Central Nepal
Authors: Hitendra Raj Joshi, Bipin Lamichhane
Abstract:
Groundwater is the main source of water for the industries of Balaju Industrial District (BID) and the denizens of Balaju-Boratar area. The quantity of groundwater is in a fatal condition in the area than earlier days. Water levels in shallow wells have highly lowered and deep wells are not providing an adequate amount of water as before because of higher extraction rate than the recharge rate. The main recharge zone of the shallow aquifer lies at the foot of Nagarjuna mountain, where recent colluvial debris are accumulated. Urbanization in the area is the main reason for decreasing water table. Recharge source for the deep aquifer in the region is aquiclude leakage. Sand layer above the Kalimati clay is the shallow aquifer zone, which is limited only in Balaju and eastern part of the Boratar, while the layer below the Kalimati clay spreading around Gongabu, Machhapohari, and Balaju area is considered as a potential area of deep aquifer. Over extraction of groundwater without considering water balance in the aquifers may dry out the source and can initiate the land subsidence problem. Hence, all the responsible of the industries in BID area and the denizens of Balaju-Boratar area should be encouraged to practice artificial groundwater recharge.Keywords: aquiclude leakage, Kalimati clay, groundwater recharge
Procedia PDF Downloads 5065051 Study of Syntactic Errors for Deep Parsing at Machine Translation
Authors: Yukiko Sasaki Alam, Shahid Alam
Abstract:
Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.Keywords: syntactic parsing, error analysis, machine translation, deep parsing
Procedia PDF Downloads 5605050 A Dynamic Column Adsorption Study of Methyl Blue on Synthesis onto Synthesized Chitosan Immobilized Sawdust Cellulose Nanocrystals
Authors: Opeyemi A. Oyewo, Seshibe Makgato
Abstract:
This paper presents the synthesis, characterization, and application of pelletized chitosan immobilized sawdust cellulose nanocrystals (PCCN) in a fixed-bed column for the continuous adsorption of methyl blue (MB) from water. The product was characterized using FT-IR, XRD, and SEM analysis. Microstructural examination revealed that the pellets are porous and spherical. XRD examination revealed phases that can be attributed to the presence of chitosan in PCCN. The effects of starting concentration, bed depth, and flow rate on synthetic water were explored. To identify MB breakthrough behaviour, performance indices such as bed volume, adsorbent exhaustion rate, and service time were investigated. Furthermore, the breakthrough data were incorporated into both the Thomas and Bohart-Adams models. The Thomas model was suitable for describing MB breakthrough curves. However, more research with diverse water matrices may be required to assess the resilience of PCCN.Keywords: adsorption, dynamic, methyl blue, pelletization
Procedia PDF Downloads 305049 Biochar - A Multi-Beneficial and Cost-Effective Amendment to Clay Soil for Stormwater Runoff Treatment
Authors: Mohammad Khalid, Mariya Munir, Jacelyn Rice Boyaue
Abstract:
Highways are considered a major source of pollution to storm-water, and its runoff can introduce various contaminants, including nutrients, Indicator bacteria, heavy metals, chloride, and phosphorus compounds, which can have negative impacts on receiving waters. This study assessed the ability of biochar for contaminants removal and to improve the water holding capacity of soil biochar mixture. For this, ten commercially available biochar has been strategically selected. Lab scale batch testing was done at 3% and 6% by the weight of the soil to find the preliminary estimate of contaminants removal along with hydraulic conductivity and water retention capacity. Furthermore, from the above-conducted studies, six best performing candidate and an application rate of 6% has been selected for the column studies. Soil biochar mixture was filled in 7.62 cm assembled columns up to a fixed height of 76.2 cm based on hydraulic conductivity. A total of eight column experiments have been conducted for nutrient, heavy metal, and indicator bacteria analysis over a period of one year, which includes a drying as well as a deicing period. The saturated hydraulic conductivity was greatly improved, which is attributed to the high porosity of the biochar soil mixture. Initial data from the column testing shows that biochar may have the ability to significantly remove nutrients, indicator bacteria, and heavy metals. The overall study demonstrates that biochar could be efficiently applied with clay soil to improve the soil's hydraulic characteristics as well as remove the pollutants from the stormwater runoff.Keywords: biochar, nutrients, indicator bacteria, storm-water treatment, sustainability
Procedia PDF Downloads 1205048 Settlement Performance of Soft Clay Reinforced with Granular Columns
Authors: Muneerah Jeludin, V. Sivakumar
Abstract:
Numerous laboratory-based research studies on the behavior of ground improved with granular columns with respect to bearing capacity have been well-documented. However, information on its settlement performance is still scarce. Laboratory model study on the settlement behavior of soft clay reinforced with granular columns was conducted and results are presented. The investigation uses a soft kaolin clay sample of 300 mm in diameter and 400 mm in length. The clay samples were reinforced with single and multiple granular columns of various lengths using the displacement and replacement installation method. The results indicated that that no settlement reduction was achieved for a short single floating column. The settlement reduction factors reported for L/d ratios of 5.0, 7.5 and 10.0 are in the range of 1 to 2. The findings obtained in this research showed that the reduction factors are considerably less and that load-sharing mechanism between columns and surrounding clay is complex, particularly for column groups and is affected by other factors such as negative skin friction.Keywords: ground improvement, model test, reinforced soil, settlement
Procedia PDF Downloads 4665047 Modelling of Moisture Loss and Oil Uptake during Deep-Fat Frying of Plantain
Authors: James A. Adeyanju, John O. Olajide, Akinbode A. Adedeji
Abstract:
A predictive mathematical model based on the fundamental principles of mass transfer was developed to simulate the moisture content and oil content during Deep-Fat Frying (DFF) process of dodo. The resulting governing equation, that is, partial differential equation that describes rate of moisture loss and oil uptake was solved numerically using explicit Finite Difference Technique (FDT). Computer codes were written in MATLAB environment for the implementation of FDT at different frying conditions and moisture loss as well as oil uptake simulation during DFF of dodo. Plantain samples were sliced into 5 mm thickness and fried at different frying oil temperatures (150, 160 and 170 ⁰C) for periods varying from 2 to 4 min. The comparison between the predicted results and experimental data for the validation of the model showed reasonable agreement. The correlation coefficients between the predicted and experimental values of moisture and oil transfer models ranging from 0.912 to 0.947 and 0.895 to 0.957, respectively. The predicted results could be further used for the design, control and optimization of deep-fat frying process.Keywords: frying, moisture loss, modelling, oil uptake
Procedia PDF Downloads 447