Search results for: image detection
1354 UEMG-FHR Coupling Analysis in Pregnancies Complicated by Pre-Eclampsia and Small for Gestational Age
Authors: Kun Chen, Yan Wang, Yangyu Zhao, Shufang Li, Lian Chen, Xiaoyue Guo, Jue Zhang, Jing Fang
Abstract:
The coupling strength between uterine electromyography (UEMG) and Fetal heart rate (FHR) signals during peripartum reflects the fetal biophysical activities. Therefore, UEMG-FHR coupling characterization is instructive in assessing placenta function. This study introduced a physiological marker named elevated frequency of UEMG-FHR coupling (E-UFC) and explored its predictive value for pregnancies complicated by pre-eclampsia and small for gestational age (SGA). Placental insufficiency patients (n=12) and healthy volunteers (n=24) were recruited and participated. UEMG and FHR were recorded non-invasively by a trans-abdominal device in women at term with singleton pregnancy (32-37 weeks) from 10:00 pm to 8:00 am. The product of the wavelet coherence and the wavelet cross-spectral power between UEMG and FHR was used to weight these two effects in order to quantify the degree of the UEMG-FHR coupling. E-UFC was exacted from the resultant spectrogram by calculating the mean value of the high-coherence (r > 0.5) frequency band. Results showed the high-coherence between UEMG and FHR was observed in the frequency band (1/512-1/16Hz). In addition, E-UFC in placental insufficiency patients was weaker compared to healthy controls (p < 0.001) at group level. These findings suggested the proposed approach could be used to quantitatively characterize the fetal biophysical activities, which is beneficial for early detection of placental insufficiency and reduces the occurrence of adverse pregnancy.Keywords: uterine electromyography, fetal heart rate, coupling analysis, wavelet analysis
Procedia PDF Downloads 2001353 Society and Cinema in Iran
Authors: Seyedeh Rozhano Azimi Hashemi
Abstract:
There is no doubt that ‘Art’ is a social phenomena and cinema is the most social kind of art. Hence, it’s clear that we can analyze the relation’s of cinema and art from different aspects. In this paper sociological cinema will be investigated which, is a subdivision of sociological art. This term will be discussed by two main approaches. One of these approaches is focused on the effects of cinema on the society, which is known as “Effects Theory” and the second one, which is dealing with the reflection of social issues in cinema is called ” Reflection Theory”. "Reflect theory" approach, unlike "Effects theory" is considering movies as documents, in which social life is reflected, and by analyzing them, the changes and tendencies of a society are understood. Criticizing these approaches to cinema and society doesn’t mean that they are not real. Conversely, it proves the fact that for better understanding of cinema and society’s relation, more complicated models are required, which should consider two aspects. First, they should be bilinear and they should provide a dynamic and active relation between cinema and society, as for the current concept social life and cinema have bi-linear effects on each other, and that’s how they fit in a dialectic and dynamic process. Second, it should pay attention to the role of inductor elements such as small social institutions, marketing, advertisements, cultural pattern, art’s genres and popular cinema in society. In the current study, image of middle class in cinema of Iran and changing the role of women in cinema and society which were two bold issue that cinema and society faced since 1979 revolution till 80s are analyzed. Films as an artwork on one hand, are reflections of social changes and with their effects on the society on the other hand, are trying to speed up the trends of these changes. Cinema by the illustration of changes in ideologies and approaches in exaggerated ways and through it’s normalizing functions, is preparing the audiences and public opinions for the acceptance of these changes. Consequently, audience takes effect from this process, which is a bi-linear and interactive process.Keywords: Iranian Cinema, Cinema and Society, Middle Class, Woman’s Role
Procedia PDF Downloads 3401352 A Deep Learning Approach to Online Social Network Account Compromisation
Authors: Edward K. Boahen, Brunel E. Bouya-Moko, Changda Wang
Abstract:
The major threat to online social network (OSN) users is account compromisation. Spammers now spread malicious messages by exploiting the trust relationship established between account owners and their friends. The challenge in detecting a compromised account by service providers is validating the trusted relationship established between the account owners, their friends, and the spammers. Another challenge is the increase in required human interaction with the feature selection. Research available on supervised learning (machine learning) has limitations with the feature selection and accounts that cannot be profiled, like application programming interface (API). Therefore, this paper discusses the various behaviours of the OSN users and the current approaches in detecting a compromised OSN account, emphasizing its limitations and challenges. We propose a deep learning approach that addresses and resolve the constraints faced by the previous schemes. We detailed our proposed optimized nonsymmetric deep auto-encoder (OPT_NDAE) for unsupervised feature learning, which reduces the required human interaction levels in the selection and extraction of features. We evaluated our proposed classifier using the NSL-KDD and KDDCUP'99 datasets in a graphical user interface enabled Weka application. The results obtained indicate that our proposed approach outperformed most of the traditional schemes in OSN compromised account detection with an accuracy rate of 99.86%.Keywords: computer security, network security, online social network, account compromisation
Procedia PDF Downloads 1151351 IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases
Authors: Daudi S. Simbeye, Mbazingwa E. Mkiramweni
Abstract:
Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand.Keywords: early identification, guava plants, fruit diseases, deep learning
Procedia PDF Downloads 741350 Impact of Self-Concept on Performance and Mental Wellbeing of Preservice Teachers
Authors: José María Agugusto-landa, Inmaculada García-Martínez, Lara Checa Domene, Óscar Gavín Chocano
Abstract:
Self-concept is the perception that a person has of himself, of his abilities, skills, traits, and values. Self-concept is composed of different dimensions, such as academic self-concept, physical self-concept, social self-concept, emotional self-concept, and family self-concept. The relationship between the dimensions of self-concept and mental health and academic performance among future teachers is a topic of interest for educational psychology. Some studies have found that: (i) There is a positive relationship between general self-concept, academic self-concept and academic performance, that is, students who have a more positive image of themselves tend to get better grades and be more motivated to learn. (ii) There is a positive relationship between emotional intelligence, physical self-concept and healthy habits, that is, students who regulate and understand their emotions better have a higher satisfaction with their physical appearance and follow a more balanced diet and a higher physical activity. As for gender differences in the dimensions of self-concept among future teachers, some studies have found that: (i) Girls tend to have a higher self-concept in the social, family and verbal dimensions, that is, they perceive themselves as more capable of relating to others, communicating effectively and receiving support from their family. (ii) Boys tend to have a higher self-concept in the physical, emotional and mathematical dimensions, that is, they perceive themselves as more capable of performing physical activities, controlling their emotions and solving mathematical problems. (iii) There are no significant differences between general self-concept and academic self-concept according to gender, that is, both girls and boys have a similar perception of their global worth and academic competence.Keywords: preservice teachers, self-concept, academic performance, mental wellbeing
Procedia PDF Downloads 771349 Psychosocial Determinants of Quality of Life After Treatment For Colorectal Cancer - A Systematic Review
Authors: Lakmali Anthony, Madeline Gillies
Abstract:
Purpose: Long-term survivorship in colorectal cancer (CRC) is increasing as mortality decreases, leading to increased focus on patient-reported outcomes such as quality of life (QoL). CRC patients often have decreased QoL even after treatment is complete. This systematic review of the literature aims to identify psychosocial factors associated with decreased QoL in post-treatment CRC patients. Methodology: This systematic review was performed in accordance with the 2020 Preferred Reporting Items for Systematic Reviews and Meta-Analyses recommendations. The search was conducted in MEDLINE, EMBASE, and PsychINFO using MeSH headings. The two authors screened studies for relevance and extracted data. Results: Seventeen studies were identified, including 6,272 total participants (mean = 392, 58% male) with a mean age of 60.6 years. The European Organisation for Research and Treatment of Cancer QLQ-C30 was the most common measure of QoL (n=14, 82.3%). Most studies (n=15, 88.2%) found that emotional distress correlated with poor global QoL. This was most commonly measured with the Hospital Anxiety & Depression Scale (n=11, 64.7%). Other psychosocial factors associated with QoL were lack of social support, body image, and financial difficulties. Clinicopathologic determinants included presence of stoma and metastasis. Conclusion: This systematic review provides a summary of the psychosocial determinants of poor QoL in post-treatment CRC patients, as well as the most commonly reported measures of these. An understanding of these potentially modifiable determinants of poor outcome is pivotal to the provision of quality, patient-centred care in surgical oncology.Keywords: colorectal cancer, cancer surgery, quality of life, oncology, social determinants
Procedia PDF Downloads 871348 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure
Authors: Y. L. Hor, H. S. Chu, V. P. Bui
Abstract:
Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization
Procedia PDF Downloads 1731347 Biochemical Characteristics and Microstructure of Ice Cream Prepared from Fresh Cream
Authors: S. Baississe, S. Godbane, A. Lekbir
Abstract:
The objective of our work is to develop an ice cream from a fermented cream, skim milk and other ingredients and follow the evolution of its physicochemical properties, biochemical and microstructure of the products obtained. Our cream is aerated with the manufacturing steps start with a homogenizing follow different ingredients by heating to 40°C emulsion, the preparation is then subjected to a heat treatment at 65°C for 30 min, before being stored in the cold at 4°C for a few hours. This conservation promotes crystallization of the material during the globular stage of maturation of the cream. The emulsifying agent moves gradually absorbed on the surface of fat globules homogeneous, which results in reduced protein stability. During the expansion, the collusion of destabilizing fat globules in the aqueous phase favours their coalescence. During the expansion, the collusion of destabilized fat globules in the aqueous phase favours their coalescence. The stabilizing agent increases the viscosity of the aqueous phase and the drainage limit interaction with the proteins of the aqueous phase and the protein absorbed on fat globules. The cutting improved organoleptic property of our cream is made by the use of three dyes and aromas. The products obtained undergo physicochemical analyses (pH, conductivity and acidity), biochemical (moisture, % dry matter and fat in %), and finally in the microscopic observation of the microstructure and the results obtained by analysis of the image processing software. The results show a remarkable evolution of physicochemical properties (pH, conductivity and acidity), biochemical (moisture, fat and non-fat) and microstructure of the products developed in relation to the raw material (skim milk) and the intermediate product (fermented cream).Keywords: ice cream, sour cream, physicochemical, biochemical, microstructure
Procedia PDF Downloads 2071346 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics
Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih
Abstract:
Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability
Procedia PDF Downloads 1551345 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 911344 Report of Candida Auris: An Emerging Fungal Pathogen in a Tertiary Healthcare Facility in Ekiti State, Nigeria
Authors: David Oluwole Moses, Odeyemi Adebowale Toba, Olawale Adetunji Kola
Abstract:
Candida auris, an emerging fungus, has been reported in more than 30 countries around the world since its first detection in 2009. Due to its several virulence factors, resistance to antifungals, and persistence in hospital settings, Candida auris has been reported to cause treatment-failure infections. This study was therefore carried out to determine the incidence of Candida auris in a tertiary hospital in Ekiti State, Nigeria. In this study, a total of 115 samples were screened for Candida species using cultural and molecular methods. The carriage of virulence factors and antifungal resistance among C. auris was detected using standard microbiological methods. Candida species isolated from the samples were 15 (30.0%) in clinical samples and 22 (33.85%) in hospital equipment screened. Non-albicans Candida accounted for 3 (20%) and 8 (36.36%) among the isolates from the clinical samples and equipment, respectively. Only five of the non-albicans Candida isolates were C. auris. All the isolates produced biofilm, gelatinase, and hemolysin, while none produced germ tubes. Two of the isolates were resistant to all the antifungals tested. Also, all the isolates were resistant to fluconazole and itraconazole. Nystatin appeared to be the most effective among the tested antifungals. The isolation of Candida auris is being reported for the second time in Nigeria, further confirming that the fungus has spread beyond Lagos and Ibadan, where it was first reported. The extent of the spread of the nosocomial fungus needed to be further investigated and curtailed in Nigeria before its outbreak in healthcare facilities.Keywords: candida auris, virulence factors, antifungals, pathogen, hospital, infection
Procedia PDF Downloads 431343 Rapid and Efficient Removal of Lead from Water Using Chitosan/Magnetite Nanoparticles
Authors: Othman M. Hakami, Abdul Jabbar Al-Rajab
Abstract:
Occurrence of heavy metals in water resources increased in the recent years albeit at low concentrations. Lead (PbII) is among the most important inorganic pollutants in ground and surface water. However, removal of this toxic metal efficiently from water is of public and scientific concern. In this study, we developed a rapid and efficient removal method of lead from water using chitosan/magnetite nanoparticles. A simple and effective process has been used to prepare chitosan/magnetite nanoparticles (NPs) (CS/Mag NPs) with effect on saturation magnetization value; the particles were strongly responsive to an external magnetic field making separation from solution possible in less than 2 minutes using a permanent magnet and the total Fe in solution was below the detection limit of ICP-OES (<0.19 mg L-1). The hydrodynamic particle size distribution increased from an average diameter of ~60 nm for Fe3O4 NPs to ~75 nm after chitosan coating. The feasibility of the prepared NPs for the adsorption and desorption of Pb(II) from water were evaluated using Chitosan/Magnetite NPs which showed a high removal efficiency for Pb(II) uptake, with 90% of Pb(II) removed during the first 5 minutes and equilibrium in less than 10 minutes. Maximum adsorption capacities for Pb(II) occurred at pH 6.0 and under room temperature were as high as 85.5 mg g-1, according to Langmuir isotherm model. Desorption of adsorbed Pb on CS/Mag NPs was evaluated using deionized water at different pH values ranged from 1 to 7 which was an effective eluent and did not result the destruction of NPs, then, they could subsequently be reused without any loss of their activity in further adsorption tests. Overall, our results showed the high efficiency of chitosan/magnetite nanoparticles (NPs) in lead removal from water in controlled conditions, and further studies should be realized in real field conditions.Keywords: chitosan, magnetite, water, treatment
Procedia PDF Downloads 4011342 Improving Waste Recycling and Resource Productivity by Integrating Smart Resource Tracking System
Authors: Atiq Zaman
Abstract:
The high contamination rate in the recycling waste stream is one of the major problems in Australia. In addition, a lack of reliable waste data makes it even more difficult for designing and implementing an effective waste management plan. This article conceptualizes the opportunity to improve resource productivity by integrating smart resource tracking system (SRTS) into the Australian household waste management system. The application of the smart resource tracking system will be implemented through the following ways: (i) mobile application-based resource tracking system used to measure the household’s material flow; (ii) RFID, smart image and weighing system used to track waste generation, recycling and contamination; (iii) informing and motivating manufacturer and retailers to improve their problematic products’ packaging; and (iv) ensure quality and reliable data through open-sourced cloud data for public use. The smart mobile application, imaging, radio-frequency identification (RFID) and weighing technologies are not new, but the very straightforward idea of using these technologies in the household resource consumption, waste bins and collection trucks will open up a new era of accurately measuring and effectively managing our waste. The idea will bring the most urgently needed reliable, data and clarity on household consumption, recycling behaviour and waste management practices in the context of available local infrastructure and policies. Therefore, the findings of this study would be very important for decision makers to improve resource productivity in the waste industry by using smart resource tracking system.Keywords: smart devices, mobile application, smart sensors, resource tracking, waste management, resource productivity
Procedia PDF Downloads 1431341 Cultural Heritage, Manga, and Film: Japanese Tourism at Petit Trianon, Versailles
Authors: Denise C. I. Maior-Barron
Abstract:
This conference presentation proposes to discuss the Japanese tourist perception of Marie Antoinette, at the heritage site which represents the home par excellence of the last Queen of France: Petit Trianon, Versailles. The underpinning analysis has a two-fold aim of firstly identifying the elements that contributed at the said perception and secondly of placing this in the wider context of tabi (travel) culture. The contribution of the presentation lies in its relevance to the analysis of postmodern trends of Japanese travel culture in relation to the consumption of European cultural heritage, through an insight into Japanese contemporary perception of heritage sites and their associated historical figures subject to controversy. Based upon the author’s doctoral studies field research at Petit Trianon - survey led in situ between 2010-2012, applied with the questionnaire method on a total of 307 respondents out of which 53 Japanese nationals - the media sources that were revealed to have had a direct influence on these nationals’ perception of Marie Antoinette, were Riyoko Ikeda’s shōjo manga La Rose de Versailles (1972) and Sofia Coppola’s film Marie-Antoinette (2006). The interpretation of the survey results through an assessment of visitor discourse determined the research methodology to be qualitative as opposed to quantitative, thus what confirmed the empirical hypothesis of the survey was a pattern of perception instead of percentages. Consequently, the interpretation focused on the answers to the questions relating to the image of Marie Antoinette in relation to historical knowledge, cultural background and last but not least media influences.Keywords: cultural heritage, manga, film, tabi
Procedia PDF Downloads 4341340 Revitalization of Industrial Brownfields in Historical Districts
Authors: Adel Menchawy, Noha Labib
Abstract:
Many cities have quarters that confer on them sense of identity and place through its cultural history. They are often vital part of the cities charm and appeal, their functional and visual qualities are important to the city’s image and identity. Brownfield sites present an important part of our built landscape. They provide tangible and intangible links to our past and have great potential to play significant roles in the future of our cities, towns and rural environments. Brownfield sites are places that were previously industrial factories or areas that might have had waste kept at that location or been exposed to many types of hazards. Thus its redevelopment revitalizes and strengthens towns and communities as it helps in economic growth, builds community pride and protects public health and the environment Three case studies are discussed in this paper; the first one is the city of Sterling which was developed and revitalized entirely and became a city with identity after it was derelict, the Second is the city of Castlefield with was a place no one was eager to visit now it became a touristic area. And finally the city of Cleveland which adopted a strategy that transferred it from being a polluted, derelict place into a mixed use development city Brownfield revitalization offers a great opportunity to transfer the city from being derelict, useless and contaminated into a place where tourists would love to come. Also it will increase the economy of the place, increase the social level, it can improve energy efficiency, reduce natural consumption, clean air, water and land and take advantage of existing buildings and sites and transfers them into an adaptive reuse after being remediatedKeywords: Brownfield Revitalization, Sustainable Brownfield, Historical conservation, Adaptive reuse
Procedia PDF Downloads 2651339 Planning for Brownfield Regeneration in Malaysia: An Integrated Approach in Creating Sustainable Ex-Landfill Redevelopment
Authors: Mazifah Simis, Azahan Awang, Kadir Arifin
Abstract:
The brownfield regeneration is being implemented in developped countries. However, as a group 1 developing country in the South East Asia, the rapid development and increasing number of urban population in Malaysia have urged the needs to incorporate the brownfield regeneration into its physical planning development. The increasing number of urban ex-landfills is seen as a new resource that could overcome the issues of inadequate urban green space provisions. With regards to the new development approach in urban planning, this perception study aims to identify the sustainable planning approach based on what the stakeholders have in mind. Respondents consist of 375 local communities within four urban ex-landfill areas and 61 landscape architect and town planner officers in the Malaysian Local Authorities. Three main objectives are set to be achieved, which are (i) to identify ex-landfill issues that need to be overcome prior to the ex-landfill redevelopment (ii) to identify the most suitable types of ex-landfill redevelopment, and (iii) to identify the priority function for ex-landfill redevelopment as the public parks. From the data gathered through the survey method, the order of priorities based on stakeholders' perception was produced. The results show different perception among the stakeholders, but they agreed to the development of the public park as the main development. Hence, this study attempts to produce an integrated approach as a model for sustainable ex-landfill redevelopment that could be accepted by the stakeholders as a beneficial future development that could change the image of 296 ex-landfills in Malaysia into the urban public parks by the year 2020.Keywords: brownfield regeneration, ex-landfill redevelopment, integrated approach, stakeholders' perception
Procedia PDF Downloads 3521338 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 1521337 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach
Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed
Abstract:
Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model
Procedia PDF Downloads 4601336 Using Predictive Analytics to Identify First-Year Engineering Students at Risk of Failing
Authors: Beng Yew Low, Cher Liang Cha, Cheng Yong Teoh
Abstract:
Due to a lack of continual assessment or grade related data, identifying first-year engineering students in a polytechnic education at risk of failing is challenging. Our experience over the years tells us that there is no strong correlation between having good entry grades in Mathematics and the Sciences and excelling in hardcore engineering subjects. Hence, identifying students at risk of failure cannot be on the basis of entry grades in Mathematics and the Sciences alone. These factors compound the difficulty of early identification and intervention. This paper describes the development of a predictive analytics model in the early detection of students at risk of failing and evaluates its effectiveness. Data from continual assessments conducted in term one, supplemented by data of student psychological profiles such as interests and study habits, were used. Three classification techniques, namely Logistic Regression, K Nearest Neighbour, and Random Forest, were used in our predictive model. Based on our findings, Random Forest was determined to be the strongest predictor with an Area Under the Curve (AUC) value of 0.994. Correspondingly, the Accuracy, Precision, Recall, and F-Score were also highest among these three classifiers. Using this Random Forest Classification technique, students at risk of failure could be identified at the end of term one. They could then be assigned to a Learning Support Programme at the beginning of term two. This paper gathers the results of our findings. It also proposes further improvements that can be made to the model.Keywords: continual assessment, predictive analytics, random forest, student psychological profile
Procedia PDF Downloads 1331335 Grating Assisted Surface Plasmon Resonance Sensor for Monitoring of Hazardous Toxic Chemicals and Gases in an Underground Mines
Authors: Sanjeev Kumar Raghuwanshi, Yadvendra Singh
Abstract:
The objective of this paper is to develop and optimize the Fiber Bragg (FBG) grating based Surface Plasmon Resonance (SPR) sensor for monitoring the hazardous toxic chemicals and gases in underground mines or any industrial area. A fully cladded telecommunication standard FBG is proposed to develop to produce surface plasmon resonance. A thin few nm gold/silver film (subject to optimization) is proposed to apply over the FBG sensing head using e-beam deposition method. Sensitivity enhancement of the sensor will be done by adding a composite nanostructured Graphene Oxide (GO) sensing layer using the spin coating method. Both sensor configurations suppose to demonstrate high responsiveness towards the changes in resonance wavelength. The GO enhanced sensor may show increased sensitivity of many fold compared to the gold coated traditional fibre optic sensor. Our work is focused on to optimize GO, multilayer structure and to develop fibre coating techniques that will serve well for sensitive and multifunctional detection of hazardous chemicals. This research proposal shows great potential towards future development of optical fiber sensors using readily available components such as Bragg gratings as highly sensitive chemical sensors in areas such as environmental sensing.Keywords: surface plasmon resonance, fibre Bragg grating, sensitivity, toxic gases, MATRIX method
Procedia PDF Downloads 2651334 Study of Cathodic Protection for Trunk Pipeline of Al-Garraf Oil Field
Authors: Maysoon Khalil Askar
Abstract:
The delineation of possible areas of corrosion along the external face of an underground oil pipeline in Trunk line of Al- Garraf oil field was investigated using the horizontal electrical resistivity profiling technique and study the contribution of pH, Moisture Content in Soil and Presence chlorides, sulfates and total dissolve salts in soil and water. The test sites represent a physical and chemical properties of soils. The hydrogen-ion concentration of soil and groundwater range from 7.2 to 9.6, and the resistivity values of the soil along the pipeline were obtained using the YH302B model resistivity meter having values between 1588 and 720 Ohm-cm. the chloride concentration in soil and groundwater is high (more than 1000 ppm), total soulable salt is more than 5000 ppm, and sulphate range from 0.17% and 0.98% in soil and more than 600 ppm in groundwater. The soil is poor aeration, the soil texture is fine (clay and silt soil), the water content is high (the groundwater is close to surface), the chloride and sulphate is high in the soil and groundwater, the total soulable salt is high in ground water and finally the soil electric resistivity is low that the soil is very corrosive and there is the possibility of the pipeline failure. These methods applied in the study are quick, economic and efficient for detecting along buried pipelines which need to be protected. Routine electrical geophysical investigations along buried oil pipelines should be undertaken for the early detection and prevention of pipeline failure with its attendant environmental, human and economic consequences.Keywords: soil resistivity, corrosion, cathodic protection, chloride concentration, water content
Procedia PDF Downloads 4361333 Reconstruction Spectral Reflectance Cube Based on Artificial Neural Network for Multispectral Imaging System
Authors: Iwan Cony Setiadi, Aulia M. T. Nasution
Abstract:
The multispectral imaging (MSI) technique has been used for skin analysis, especially for distant mapping of in-vivo skin chromophores by analyzing spectral data at each reflected image pixel. For ergonomic purpose, our multispectral imaging system is decomposed in two parts: a light source compartment based on LED with 11 different wavelenghts and a monochromatic 8-Bit CCD camera with C-Mount Objective Lens. The software based on GUI MATLAB to control the system was also developed. Our system provides 11 monoband images and is coupled with a software reconstructing hyperspectral cubes from these multispectral images. In this paper, we proposed a new method to build a hyperspectral reflectance cube based on artificial neural network algorithm. After preliminary corrections, a neural network is trained using the 32 natural color from X-Rite Color Checker Passport. The learning procedure involves acquisition, by a spectrophotometer. This neural network is then used to retrieve a megapixel multispectral cube between 380 and 880 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. As hyperspectral cubes contain spectra for each pixel; comparison should be done between the theoretical values from the spectrophotometer and the reconstructed spectrum. To evaluate the performance of reconstruction, we used the Goodness of Fit Coefficient (GFC) and Root Mean Squared Error (RMSE). To validate reconstruction, the set of 8 colour patches reconstructed by our MSI system and the one recorded by the spectrophotometer were compared. The average GFC was 0.9990 (standard deviation = 0.0010) and the average RMSE is 0.2167 (standard deviation = 0.064).Keywords: multispectral imaging, reflectance cube, spectral reconstruction, artificial neural network
Procedia PDF Downloads 3191332 Field Evaluation of Fusarium Head Blight in Durum Wheat Caused by Fusarium culmorum in Algeria
Authors: Salah Hadjout, Mohamed Zouidi
Abstract:
In Algeria, several works carried out in recent years have shown the importance of fusarium head blight in durum wheat. Indeed, this disease is caused by a complex of Fusarium genus pathogens. The research carried out reports that F. culmorum is the main species infecting cereals. These informations motivated our interest in the field evaluation of the behavior of some durum wheat genotypes (parental varieties and lines) with regard to fusarium head blight, mainly caused by four F. culmorum isolates. Our research work focused on following the evolution of symptom development throughout the grain filling, after artificial inoculation of ears by Fusarium isolates in order to establish a first image on the differences in genotype behavior to fusarium haed blight. Field disease assessment criteria are: disease assessment using a grading scale, thousand grain weight measurement and AUDPC. The results obtained revealed that the varieties and lines resulting from crosses had a quite different level of sensitivity to F. culmorum species and no genotype showed complete resistance in our culture conditions. Among the material tested, some lines showed higher resistance than their parents. The results also show a slight behavioral variability also linked to the aggressiveness of the Fusarium species studied in this work. Our results open very important research perspectives on fusarium head blight, in particular the search for toxins produced by Fusarium species.Keywords: fusarium head blight, durum wheat, Fusarium culmorum, field disease assessment criteria, Algeria
Procedia PDF Downloads 981331 Challenges in the Characterization of Black Mass in the Recovery of Graphite from Spent Lithium Ion Batteries
Authors: Anna Vanderbruggen, Kai Bachmann, Martin Rudolph, Rodrigo Serna
Abstract:
Recycling of lithium-ion batteries has attracted a lot of attention in recent years and focuses primarily on valuable metals such as cobalt, nickel, and lithium. Despite the growth in graphite consumption and the fact that it is classified as a critical raw material in the European Union, USA, and Australia, there is little work focusing on graphite recycling. Thus, graphite is usually considered waste in recycling treatments, where graphite particles are concentrated in the “black mass”, a fine fraction below 1mm, which also contains the foils and the active cathode particles such as LiCoO2 or LiNiMnCoO2. To characterize the material, various analytical methods are applied, including X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Atomic Absorption Spectrometry (AAS), and SEM-based automated mineralogy. The latter consists of the combination of a scanning electron microscopy (SEM) image analysis and energy-dispersive X-ray spectroscopy (EDS). It is a powerful and well-known method for primary material characterization; however, it has not yet been applied to secondary material such as black mass, which is a challenging material to analyze due to fine alloy particles and to the lack of an existing dedicated database. The aim of this research is to characterize the black mass depending on the metals recycling process in order to understand the liberation mechanisms of the active particles from the foils and their effect on the graphite particle surfaces and to understand their impact on the subsequent graphite flotation. Three industrial processes were taken into account: purely mechanical, pyrolysis-mechanical, and mechanical-hydrometallurgy. In summary, this article explores various and common challenges for graphite and secondary material characterization.Keywords: automated mineralogy, characterization, graphite, lithium ion battery, recycling
Procedia PDF Downloads 2461330 Molecular Profiles of Microbial Etiologic Agents Forming Biofilm in Urinary Tract Infections of Pregnant Women by RTPCR Assay
Authors: B. Nageshwar Rao
Abstract:
Urinary tract infection (UTI) represents the most commonly acquired bacterial infection worldwide, with substantial morbidity, mortality, and economic burden. The objective of the study is to characterize the microbial profiles of uropathogenic in the obstetric population by RTPCR. Study design: An observational cross-sectional study was performed at a single tertiary health care hospital among 50 pregnant women with UTIs, including asymptomatic and symptomatic patients attending the outpatient department and inpatient department of Obstetrics and Gynaecology.Methods: Serotyping and genes detection of various uropathogens were studied using RTPCR. Pulse filed gel electrophoresis methods were used to determine the various genetic profiles. Results: The present study shows that CsgD protein, involved in biofilm formation in Escherichia coli, VIM1, IMP1 genes for Klebsiella were identified by using the RTPCR method. Our results showed that the prevalence of VIM1 and IMP1 genes and CsgD protein in E.coli showed a significant relationship between strong biofilm formation, and this may be due to the prevalence of specific genes. Finally, the genetic identification of RTPCR results for both bacteria was correlated with each other and concluded that the above uropathogens were common isolates in producing Biofilm in the pregnant woman suffering from urinary tract infection in our hospital observational study.Keywords: biofilms, Klebsiella, E.coli, urinary tract infection
Procedia PDF Downloads 1251329 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification
Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectivelyKeywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm
Procedia PDF Downloads 4791328 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.Keywords: conditional generative adversarial net, market and credit risk management, neural network, time series
Procedia PDF Downloads 1431327 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 531326 Using Cyclic Structure to Improve Inference on Network Community Structure
Authors: Behnaz Moradijamei, Michael Higgins
Abstract:
Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.Keywords: hypothesis testing, RNBRW, network inference, community structure
Procedia PDF Downloads 1501325 Non-Destructive Testing of Selective Laser Melting Products
Authors: Luca Collini, Michele Antolotti, Diego Schiavi
Abstract:
At present, complex geometries within production time shrinkage, rapidly increasing demand, and high-quality standard requirement make the non-destructive (ND) control of additively manufactured components indispensable means. On the other hand, a technology gap and the lack of standards regulating the methods and the acceptance criteria indicate the NDT of these components a stimulating field to be still fully explored. Up to date, penetrant testing, acoustic wave, tomography, radiography, and semi-automated ultrasound methods have been tested on metal powder based products so far. External defects, distortion, surface porosity, roughness, texture, internal porosity, and inclusions are the typical defects in the focus of testing. Detection of density and layers compactness are also been tried on stainless steels by the ultrasonic scattering method. In this work, the authors want to present and discuss the radiographic and the ultrasound ND testing on additively manufactured Ti₆Al₄V and inconel parts obtained by the selective laser melting (SLM) technology. In order to test the possibilities given by the radiographic method, both X-Rays and γ-Rays are tried on a set of specifically designed specimens realized by the SLM. The specimens contain a family of defectology, which represent the most commonly found, as cracks and lack of fusion. The tests are also applied to real parts of various complexity and thickness. A set of practical indications and of acceptance criteria is finally drawn.Keywords: non-destructive testing, selective laser melting, radiography, UT method
Procedia PDF Downloads 145