Search results for: multivariate regression tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4441

Search results for: multivariate regression tree

91 Healthcare Utilization and Costs of Specific Obesity Related Health Conditions in Alberta, Canada

Authors: Sonia Butalia, Huong Luu, Alexis Guigue, Karen J. B. Martins, Khanh Vu, Scott W. Klarenbach

Abstract:

Obesity-related health conditions impose a substantial economic burden on payers due to increased healthcare use. Estimates of healthcare resource use and costs associated with obesity-related comorbidities are needed to inform policies and interventions targeting these conditions. Methods: Adults living with obesity were identified (a procedure-related body mass index code for class 2/3 obesity between 2012 and 2019 in Alberta, Canada; excluding those with bariatric surgery), and outcomes were compared over 1-year (2019/2020) between those who had and did not have specific obesity-related comorbidities. The probability of using a healthcare service (based on the odds ratio of a zero [OR-zero] cost) was compared; 95% confidence intervals (CI) were reported. Logistic regression and a generalized linear model with log link and gamma distribution were used for total healthcare cost comparisons ($CDN); cost ratios and estimated cost differences (95% CI) were reported. Potential socio-demographic and clinical confounders were adjusted for, and incremental cost differences were representative of a referent case. Results: A total of 220,190 adults living with obesity were included; 44% had hypertension, 25% had osteoarthritis, 24% had type-2 diabetes, 17% had cardiovascular disease, 12% had insulin resistance, 9% had chronic back pain, and 4% of females had polycystic ovarian syndrome (PCOS). The probability of hospitalization, ED visit, and ambulatory care was higher in those with a following obesity-related comorbidity versus those without: chronic back pain (hospitalization: 1.8-times [OR-zero: 0.57 [0.55/0.59]] / ED visit: 1.9-times [OR-zero: 0.54 [0.53/0.56]] / ambulatory care visit: 2.4-times [OR-zero: 0.41 [0.40/0.43]]), cardiovascular disease (2.7-times [OR-zero: 0.37 [0.36/0.38]] / 1.9-times [OR-zero: 0.52 [0.51/0.53]] / 2.8-times [OR-zero: 0.36 [0.35/0.36]]), osteoarthritis (2.0-times [OR-zero: 0.51 [0.50/0.53]] / 1.4-times [OR-zero: 0.74 [0.73/0.76]] / 2.5-times [OR-zero: 0.40 [0.40/0.41]]), type-2 diabetes (1.9-times [OR-zero: 0.54 [0.52/0.55]] / 1.4-times [OR-zero: 0.72 [0.70/0.73]] / 2.1-times [OR-zero: 0.47 [0.46/0.47]]), hypertension (1.8-times [OR-zero: 0.56 [0.54/0.57]] / 1.3-times [OR-zero: 0.79 [0.77/0.80]] / 2.2-times [OR-zero: 0.46 [0.45/0.47]]), PCOS (not significant / 1.2-times [OR-zero: 0.83 [0.79/0.88]] / not significant), and insulin resistance (1.1-times [OR-zero: 0.88 [0.84/0.91]] / 1.1-times [OR-zero: 0.92 [0.89/0.94]] / 1.8-times [OR-zero: 0.56 [0.54/0.57]]). After fully adjusting for potential confounders, the total healthcare cost ratio was higher in those with a following obesity-related comorbidity versus those without: chronic back pain (1.54-times [1.51/1.56]), cardiovascular disease (1.45-times [1.43/1.47]), osteoarthritis (1.36-times [1.35/1.38]), type-2 diabetes (1.30-times [1.28/1.31]), hypertension (1.27-times [1.26/1.28]), PCOS (1.08-times [1.05/1.11]), and insulin resistance (1.03-times [1.01/1.04]). Conclusions: Adults with obesity who have specific disease-related health conditions have a higher probability of healthcare use and incur greater costs than those without specific comorbidities; incremental costs are larger when other obesity-related health conditions are not adjusted for. In a specific referent case, hypertension was costliest (44% had this condition with an additional annual cost of $715 [$678/$753]). If these findings hold for the Canadian population, hypertension in persons with obesity represents an estimated additional annual healthcare cost of $2.5 billion among adults living with obesity (based on an adult obesity rate of 26%). Results of this study can inform decision making on investment in interventions that are effective in treating obesity and its complications.

Keywords: administrative data, healthcare cost, obesity-related comorbidities, real world evidence

Procedia PDF Downloads 147
90 The Association between Attachment Styles, Satisfaction of Life, Alexithymia, and Psychological Resilience: The Mediational Role of Self-Esteem

Authors: Zahide Tepeli Temiz, Itir Tari Comert

Abstract:

Attachment patterns based on early emotional interactions between infant and primary caregiver continue to be influential in adult life, in terms of mental health and behaviors of individuals. Several studies reveal that infant-caregiver relationships have impressed the affect regulation, coping with stressful and negative situations, general satisfaction of life, and self image in adulthood, besides the attachment styles. The present study aims to examine the relationships between university students’ attachment style and their self-esteem, alexithymic features, satisfaction of life, and level of resilience. In line with this aim, the hypothesis of the prediction of attachment styles (anxious and avoidant) over life satisfaction, self-esteem, alexithymia, and psychological resilience was tested. Additionally, in this study Structural Equational Modeling was conducted to investigate the mediational role of self-esteem in the relationship between attachment styles and alexithymia, life satisfaction, and resilience. This model was examined with path analysis. The sample of the research consists of 425 university students who take education from several region of Turkey. The participants who sign the informed consent completed the Demographic Information Form, Experiences in Close Relationships-Revised, Rosenberg Self-Esteem Scale, The Satisfaction with Life Scale, Toronto Alexithymia Scale, and Resilience Scale for Adults. According to results, anxious, and avoidant dimensions of insecure attachment predicted the self-esteem score and alexithymia in positive direction. On the other hand, these dimensions of attachment predicted life satisfaction in negative direction. The results of linear regression analysis indicated that anxious and avoidant attachment styles didn’t predict the resilience. This result doesn’t support the theory and research indicating the relationship between attachment style and psychological resilience. The results of path analysis revealed the mediational role self esteem in the relation between anxious, and avoidant attachment styles and life satisfaction. In addition, SEM analysis indicated the indirect effect of attachment styles over alexithymia and resilience besides their direct effect. These findings support the hypothesis of this research relation to mediating role of self-esteem. Attachment theorists suggest that early attachment experiences, including supportive and responsive family interactions, have an effect on resilience to harmful situations in adult life, ability to identify, describe, and regulate emotions and also general satisfaction with life. Several studies examining the relationship between attachment styles and life satisfaction, alexithymia, and psychological resilience draw attention to mediational role of self-esteem. Results of this study support the theory of attachment patterns with the mediation of self-image influence the emotional, cognitive, and behavioral regulation of person throughout the adulthood. Therefore, it is thought that any intervention intended for recovery in attachment relationship will increase the self-esteem, life satisfaction, and resilience level, on the one side, decrease the alexithymic features, on the other side.

Keywords: alexithymia, anxious attachment, avoidant attachment, life satisfaction, path analysis, resilience, self-esteem, structural equation

Procedia PDF Downloads 194
89 Rumen Epithelium Development of Bovine Fetuses and Newborn Calves

Authors: Juliana Shimara Pires Ferrão, Letícia Palmeira Pinto, Francisco Palma Rennó, Francisco Javier Hernandez Blazquez

Abstract:

The ruminant stomach is a complex and multi-chambered organ. Although the true stomach (abomasum) is fully differentiated and functional at birth, the same does not occur with the rumen chamber. At this moment, rumen papillae are small or nonexistent. The papillae only fully develop after weaning and during calf growth. Papillae development and ruminal epithelium specialization during the fetus growth and at birth must be two interdependent processes that will prepare the rumen to adapt to ruminant adult feeding. The microscopic study of rumen epithelium at these early phases of life is important to understand how this structure prepares the rumen to deal with the following weaning processes and its functional activation. Samples of ruminal mucosa of bovine fetuses (110- and 150 day-old) and newborn calves were collected (dorsal and ventral portions) and processed for light and electron microscopy and immunohistochemistry. The basal cell layer of the stratified pavimentous epithelium present in different ruminal portions of the fetuses was thicker than the same portions of newborn calves. The superficial and intermediate epithelial layers of 150 day-old fetuses were thicker than those found in the other 2 studied ages. At this age (150 days), dermal papillae begin to invade the intermediate epithelial layer which gradually disappears in newborn calves. At birth, the ruminal papillae project from the epithelial surface, probably by regression of the epithelial cells (transitory cells) surrounding the dermal papillae. The PCNA cell proliferation index (%) was calculated for all epithelial samples. Fetuses 150 day-old showed increased cell proliferation in basal cell layer (Dorsal Portion: 84.2%; Ventral Portion: 89.8%) compared to other ages studied. Newborn calves showed an intermediate index (Dorsal Portion: 65.1%; Ventral Portion: 48.9%), whereas 110 day-old fetuses had the lowest proliferation index (Dorsal Portion: 57.2%; Ventral Portion: 20.6%). Regarding the transitory epithelium, 110 day-old fetuses showed the lowest proliferation index (Dorsal Portion: 44.6%; Ventral Portion: 20.1%), 150 day-old fetuses showed an intermediate proliferation index (Dorsal Portion: 57.5%; Ventral Portion: 71.1%) and newborn calves presented a higher proliferation index (Dorsal Portion: 75.1%; Ventral Portion: 19.6%). Under TEM, the 110- and 150 day-old fetuses presented thicker and poorly organized basal cell layer, with large nuclei and dense cytoplasm. In newborn calves, the basal cell layer was more organized and with fewer layers, but typically similar in both regions of the rumen. For the transitory epithelium, fetuses displayed larger cells than those found in newborn calves with less electrondense cytoplasm than that found in the basal cells. The ruminal dorsal portion has an overall higher cell proliferation rate than the ventral portion. Thus we can infer that the dorsal portion may have a higher cell activity than the ventral portion during ruminal development. Moreover, the basal cell layer is thicker in the 110- and 150 day-old fetuses than in the newborn calves. The transitory epithelium, which is much reduced, at birth may have a structural support function of the developing dermal papillae. When it regresses or is sheared off, the papillae are “carved out” from the surrounding epithelial layer.

Keywords: bovine, calf, epithelium, fetus, hematoxylin-eosin, immunohistochemistry, TEM, Rumen

Procedia PDF Downloads 385
88 Higher Education Benefits and Undocumented Students: An Explanatory Model of Policy Adoption

Authors: Jeremy Ritchey

Abstract:

Undocumented immigrants in the U.S. face many challenges when looking to progress in society, especially when pursuing post-secondary education. The majority of research done on state-level policy adoption pertaining to undocumented higher-education pursuits, specifically in-state resident tuition and financial aid eligibility policies, have framed the discussion on the potential and actual impacts which implementation can and has achieved. What is missing is a model to view the social, political and demographic landscapes upon which such policies (in their various forms) find a route to legislative enactment. This research looks to address this gap in the field by investigating the correlations and significant state-level variables which can be operationalized to construct a framework for adoption of these specific policies. In the process, analysis will show that past unexamined conceptualizations of how such policies come to fruition may be limited or contradictory when compared to available data. Circling on the principles of Policy Innovation and Policy Diffusion theory, this study looks to use variables collected via Michigan State University’s Correlates of State Policy Project, a collectively and ongoing compiled database project centered around annual variables (1900-2016) collected from all 50 states relevant to policy research. Using established variable groupings (demographic, political, social capital measurements, and educational system measurements) from the time period of 2000 to 2014 (2001 being when such policies began), one can see how this data correlates with the adoption of policies related to undocumented students and in-state college tuition. After regression analysis, the results will illuminate which variables appears significant and to what effect, as to help formulate a model upon which to explain when adoption appears to occur and when it does not. Early results have shown that traditionally held conceptions on conservative and liberal identities of the state, as they relate to the likelihood of such policies being adopted, did not fall in line with the collected data. Democratic and liberally identified states were, overall, less likely to adopt pro-undocumented higher education policies than Republican and conservatively identified states and vis versa. While further analysis is needed as to improve the model’s explanatory power, preliminary findings are showing promise in widening our understanding of policy adoption factors in this realm of policies compared to the gap of such knowledge in the publications of the field as it currently exists. The model also looks to serve as an important tool for policymakers in framing such potential policies in a way that is congruent with the relevant state-level determining factors while being sensitive to the most apparent sources of potential friction. While additional variable groups and individual variables will ultimately need to be added and controlled for, this research has already begun to demonstrate how shallow or unexamined reasoning behind policy adoption in the realm of this topic needs to be addressed or else the risk is erroneous conceptions leaking into the foundation of this growing and ever important field.

Keywords: policy adoption, in-state tuition, higher education, undocumented immigrants

Procedia PDF Downloads 112
87 Assessment of Very Low Birth Weight Neonatal Tracking and a High-Risk Approach to Minimize Neonatal Mortality in Bihar, India

Authors: Aritra Das, Tanmay Mahapatra, Prabir Maharana, Sridhar Srikantiah

Abstract:

In the absence of adequate well-equipped neonatal-care facilities serving rural Bihar, India, the practice of essential home-based newborn-care remains critically important for reduction of neonatal and infant mortality, especially among pre-term and small-for-gestational-age (Low-birth-weight) newborns. To improve the child health parameters in Bihar, ‘Very-Low-Birth-Weight (vLBW) Tracking’ intervention is being conducted by CARE India, since 2015, targeting public facility-delivered newborns weighing ≤2000g at birth, to improve their identification and provision of immediate post-natal care. To assess the effectiveness of the intervention, 200 public health facilities were randomly selected from all functional public-sector delivery points in Bihar and various outcomes were tracked among the neonates born there. Thus far, one pre-intervention (Feb-Apr’2015-born neonates) and three post-intervention (for Sep-Oct’2015, Sep-Oct’2016 and Sep-Oct’2017-born children) follow-up studies were conducted. In each round, interviews were conducted with the mothers/caregivers of successfully-tracked children to understand outcome, service-coverage and care-seeking during the neonatal period. Data from 171 matched facilities common across all rounds were analyzed using SAS-9.4. Identification of neonates with birth-weight ≤ 2000g improved from 2% at baseline to 3.3%-4% during post-intervention. All indicators pertaining to post-natal home-visits by frontline-workers (FLWs) improved. Significant improvements between baseline and post-intervention rounds were also noted regarding mothers being informed about ‘weak’ child – at the facility (R1 = 25 to R4 = 50%) and at home by FLW (R1 = 19%, to R4 = 30%). Practice of ‘Kangaroo-Mother-Care (KMC)’– an important component of essential newborn care – showed significant improvement in postintervention period compared to baseline in both facility (R1 = 15% to R4 = 31%) and home (R1 = 10% to R4=29%). Increasing trend was noted regarding detection and birth weight-recording of the extremely low-birth-weight newborns (< 1500 g) showed an increasing trend. Moreover, there was a downward trend in mortality across rounds, in each birth-weight strata (< 1500g, 1500-1799g and >= 1800g). After adjustment for the differential distribution of birth-weights, mortality was found to decline significantly from R1 (22.11%) to R4 (11.87%). Significantly declining trend was also observed for both early and late neonatal mortality and morbidities. Multiple regression analysis identified - birth during immediate post-intervention phase as well as that during the maintenance phase, birth weight > 1500g, children of low-parity mothers, receiving visit from FLW in the first week and/or receiving advice on extra care from FLW as predictors of survival during neonatal period among vLBW newborns. vLBW tracking was found to be a successful and sustainable intervention and has already been handed over to the Government.

Keywords: weak newborn tracking, very low birth weight babies, newborn care, community response

Procedia PDF Downloads 160
86 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
85 Tectono-Stratigraphic Architecture, Depositional Systems and Salt Tectonics to Strike-Slip Faulting in Kribi-Campo-Cameroon Atlantic Margin with an Unsupervised Machine Learning Approach (West African Margin)

Authors: Joseph Bertrand Iboum Kissaaka, Charles Fonyuy Ngum Tchioben, Paul Gustave Fowe Kwetche, Jeannette Ngo Elogan Ntem, Joseph Binyet Njebakal, Ribert Yvan Makosso-Tchapi, François Mvondo Owono, Marie Joseph Ntamak-Nida

Abstract:

Located in the Gulf of Guinea, the Kribi-Campo sub-basin belongs to the Aptian salt basins along the West African Margin. In this paper, we investigated the tectono-stratigraphic architecture of the basin, focusing on the role of salt tectonics and strike-slip faults along the Kribi Fracture Zone with implications for reservoir prediction. Using 2D seismic data and well data interpreted through sequence stratigraphy with integrated seismic attributes analysis with Python Programming and unsupervised Machine Learning, at least six second-order sequences, indicating three main stages of tectono-stratigraphic evolution, were determined: pre-salt syn-rift, post-salt rift climax and post-rift stages. The pre-salt syn-rift stage with KTS1 tectonosequence (Barremian-Aptian) reveals a transform rifting along NE-SW transfer faults associated with N-S to NNE-SSW syn-rift longitudinal faults bounding a NW-SE half-graben filled with alluvial to lacustrine-fan delta deposits. The post-salt rift-climax stage (Lower to Upper Cretaceous) includes two second-order tectonosequences (KTS2 and KTS3) associated with the salt tectonics and Campo High uplift. During the rift-climax stage, the growth of salt diapirs developed syncline withdrawal basins filled by early forced regression, mid transgressive and late normal regressive systems tracts. The early rift climax underlines some fine-grained hangingwall fans or delta deposits and coarse-grained fans from the footwall of fault scarps. The post-rift stage (Paleogene to Neogene) contains at least three main tectonosequences KTS4, KTS5 and KTS6-7. The first one developed some turbiditic lobe complexes considered as mass transport complexes and feeder channel-lobe complexes cutting the unstable shelf edge of the Campo High. The last two developed submarine Channel Complexes associated with lobes towards the southern part and braided delta to tidal channels towards the northern part of the Kribi-Campo sub-basin. The reservoir distribution in the Kribi-Campo sub-basin reveals some channels, fan lobes reservoirs and stacked channels reaching up to the polygonal fault systems.

Keywords: tectono-stratigraphic architecture, Kribi-Campo sub-basin, machine learning, pre-salt sequences, post-salt sequences

Procedia PDF Downloads 54
84 Fighting the Crisis with 4.0 Competences: Higher Education Projects in the Times of Pandemic

Authors: Jadwiga Fila, Mateusz Jezowski, Pawel Poszytek

Abstract:

The outbreak of the global COVID-19 pandemic started the times of crisis full of uncertainty, especially in the field of transnational cooperation projects based on the international mobility of their participants. This is notably the case of Erasmus+ Program for higher education, which is the flagship European initiative boosting cooperation between educational institutions, businesses, and other actors, enabling students and staff mobility, as well as strategic partnerships between different parties. The aim of this abstract is to study whether competences 4.0 are able to empower Erasmus+ project leaders in sustaining their international cooperation in times of global crisis, widespread online learning, and common project disruption or cancellation. The concept of competences 4.0 emerged from the notion of the industry 4.0, and it relates to skills that are fundamental for the current labor market. For the aim of the study presented in this abstract, four main 4.0 competences were distinguished: digital, managerial, social, and cognitive competence. The hypothesis for the study stipulated that the above-mentioned highly-developed competences may act as a protective shield against the pandemic challenges in terms of projects’ sustainability and continuation. The objective of the research was to assess to what extent individual competences are useful in managing projects in times of crisis. For this purpose, the study was conducted, involving, among others, 141 Polish higher education project leaders who were running their cooperation projects during the peak of the COVID-19 pandemic (Mar-Nov 2020). The research explored the self-perception of the above-mentioned competences among Erasmus+ project leaders and the contextual data regarding the sustainability of the projects. The quantitative character of data permitted validation of scales (Cronbach’s Alfa measure), and the use of factor analysis made it possible to create a distinctive variable for each competence and its dimensions. Finally, logistic regression was used to examine the association of competences and other factors on project status. The study shows that the project leaders’ competence profile attributed the highest score to digital competence (4.36 on the 1-5 scale). Slightly lower values were obtained for cognitive competence (3.96) and managerial competence (3.82). The lowest score was accorded to one specific dimension of social competence: adaptability and ability to manage stress (1.74), which proves that the pandemic was a real challenge which had to be faced by project coordinators. For higher education projects, 10% were suspended or prolonged because of the COVID-19 pandemic, whereas 90% were undisrupted (continued or already successfully finished). The quantitative analysis showed a positive relationship between the leaders’ levels of competences and the projects status. In the case of all competences, the scores were higher for project leaders who finished projects successfully than for leaders who suspended or prolonged their projects. The research demonstrated that, in the demanding times of the COVID-19 pandemic, competences 4.0, to a certain extent, do play a significant role in the successful management of Erasmus+ projects. The implementation and sustainability of international educational projects, despite mobility and sanitary obstacles, depended, among other factors, on the level of leaders’ competences.

Keywords: Competences 4.0, COVID-19 pandemic, Erasmus+ Program, international education, project sustainability

Procedia PDF Downloads 90
83 The Chinese Inland-Coastal Inequality: The Role of Human Capital and the Crisis Watershed

Authors: Iacopo Odoardi, Emanuele Felice, Dario D'Ingiullo

Abstract:

We investigate the role of human capital in the Chinese inland-coastal inequality and how the consequences of the 2007-2008 crisis may induce China to refocus its development path on human capital. We compare panel data analyses for two periods for the richer/coastal and the relatively poor/inland provinces. Considering the rapid evolution of the Chinese economy and the changes forced by the international crisis, we wonder if these events can lead to rethinking local development paths, fostering greater attention on the diffusion of higher education. We expect that the consequences on human capital may, in turn, have consequences on the inland/coastal dualism. The focus on human capital is due to the fact that the growing differences between inland and coastal areas can be explained by the different local endowments. In this respect, human capital may play a major role and should be thoroughly investigated. To assess the extent to which human capital has an effect on economic growth, we consider a fixed-effects model where differences among the provinces are considered parametric shifts in the regression equation. Data refer to the 31 Chinese provinces for the periods 1998-2008 and 2009-2017. Our dependent variable is the annual variation of the provincial gross domestic product (GDP) at the prices of the previous year. Among our regressors, we include two proxies of advanced human capital and other known factors affecting economic development. We are aware of the problem of conceptual endogeneity of variables related to human capital with respect to GDP; we adopt an instrumental variable approach (two-stage least squares) to avoid inconsistent estimates. Our results suggest that the economic strengths that influenced the Chinese take-off and the dualism are confirmed in the first period. These results gain relevance in comparison with the second period. An evolution in local economic endowments is taking place: first, although human capital can have a positive effect on all provinces after the crisis, not all types of advanced education have a direct economic effect; second, the development path of the inland area is changing, with an evolution towards more productive sectors which can favor higher returns to human capital. New strengths (e.g., advanced education, transport infrastructures) could be useful to foster development paths of inland-coastal desirable convergence, especially by favoring the poorer provinces. Our findings suggest that in all provinces, human capital can be useful to promote convergence in growth paths, even if investments in tertiary education seem to have a negative role, most likely due to the inability to exploit the skills of highly educated workers. Furthermore, we observe important changes in the economic characteristics of the less developed internal provinces. These findings suggest an evolution towards more productive economic sectors, a greater ability to exploit both investments in fixed capital and the available infrastructures. All these aspects, if connected with the improvement in the returns to human capital (at least at the secondary level), lead us to assume a better reaction (i.e., resilience) of the less developed provinces to the crisis effects.

Keywords: human capital, inland-coastal inequality, Great Recession, China

Procedia PDF Downloads 204
82 Changes in Rainfall and Temperature and Its Impact on Crop Production in Moyamba District, Southern Sierra Leone

Authors: Keiwoma Mark Yila, Mathew Lamrana Siaffa Gboku, Mohamed Sahr Lebbie, Lamin Ibrahim Kamara

Abstract:

Rainfall and temperature are the important variables which are often used to trace climate variability and change. A perception study and analysis of climatic data were conducted to assess the changes in rainfall and temperature and their impact on crop production in Moyamba district, Sierra Leone. For the perception study, 400 farmers were randomly selected from farmer-based organizations (FBOs) in 4 chiefdoms, and 30 agricultural extension workers (AWEs) in the Moyamba district were purposely selected as respondents. Descriptive statistics and Kendall’s test of concordance was used to analyze the data collected from the farmers and AEWs. Data for the analysis of variability and trends of rainfall and temperature from 1991 to 2020 were obtained from the Sierra Leone Meteorological Agency and Njala University and grouped into monthly, seasonal and annual time series. Regression analysis was used to determine the statistical values and trend lines for the seasonal and annual time series data. The Mann-Kendall test and Sen’s Slope Estimator were used to analyze the trends' significance and magnitude, respectively. The results of both studies show evidence of climate change in the Moyamba district. A substantial number of farmers and AEWs perceived a decrease in the annual rainfall amount, length of the rainy season, a late start and end of the rainy season, an increase in the temperature during the day and night, and a shortened harmattan period over the last 30 years. Analysis of the meteorological data shows evidence of variability in the seasonal and annual distribution of rainfall and temperature, a decreasing and non-significant trend in the rainy season and annual rainfall, and an increasing and significant trend in seasonal and annual temperature from 1991 to 2020. However, the observed changes in rainfall and temperature by the farmers and AEWs partially agree with the results of the analyzed meteorological data. The majority of the farmers perceived that; adverse weather conditions have negatively affected crop production in the district. Droughts, high temperatures, and irregular rainfall are the three major adverse weather events that farmers perceived to have contributed to a substantial loss in the yields of the major crops cultivated in the district. In response to the negative effects of adverse weather events, a substantial number of farmers take no action due to their lack of knowledge and technical or financial capacity to implement climate-sensitive agricultural (CSA) practices. Even though few farmers are practising some CSA practices in their farms, there is an urgent need to build the capacity of farmers and AEWs to adapt to and mitigate the negative impacts of climate change. The most priority support needed by farmers is the provision of climate-resilient crop varieties, whilst the AEWs need training on CSA practices.

Keywords: climate change, crop productivity, farmer’s perception, rainfall, temperature, Sierra Leone

Procedia PDF Downloads 68
81 Prevalence, Antimicrobial Susceptibility Pattern and Public Health Significance for Staphylococcus aureus of Isolated From Raw Red Meat at Butchery and Abattoir House in Mekelle, Northern Ethiopia

Authors: Haftay Abraha Tadesse

Abstract:

Background: Staphylococcus is a genus of worldwide distributed bacteria correlated to several infectious of different sites in human and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. Objective: The objective of this study was to determine the isolates, antimicrobial susceptibility patterns and public health significance for Staphylococcus aureus in raw meat from butchery and abattoir houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from April to October 2019. Sociodemographic data and public health significance were collected using predesigned questionnaire. The raw meat samples were collected aseptically in the butchery and abattoir houses and transported using ice box to Mekelle University, College of Veterinary Sciences for isolating and identification of Staphylococcus aureus. Antimicrobial susceptibility tests were determined by disc diffusion method. Data obtained were cleaned and entered in to STATA 22.0 and logistic regression model with odds ratio were calculated to assess the association of risk factors with bacterial contamination. P-value < 0.05 was considered as statistically significant. Results: In present study, 88 out of 250 (35.2%) were found to be contamination with Staphylococcus aureus. Among the raw meat specimens to be positivity rate of Staphylococcus aureus were 37.6% (n=47) and (32.8% (n=41), butchery and abattoir houses, respectively. Among the associated risk factories not using gloves reduces risk was found to (AOR=0.222; 95% CI: 0.104-0.473), Strict Separation b/n clean & dirty (AOR= 1.37; 95% CI: 0.66-2.86) and poor habit of hand washing (AOR=1.08; 95%CI: 0.35-3.35) were found to be statistically significant and ha ve associated with Staphylococcus aureus contamination. All isolates thirty sevevn of Staphyloco ccus aureus were checked displayed (100%) sensitive to doxycycline, trimethoprim, gentamicin, sulphamethoxazole, amikacin, CN, Co trimoxazole and nitrofurantoi. whereas the showed resistance of cefotaxime (100%), ampicillin (87.5%), Penicillin (75%), B (75%), and nalidixic acid (50%) from butchery houses. On the other hand, all isolates of Staphylococcus aur eu isolate 100% (n= 10) showed sensitive chloramphenicol, gentamicin and nitrofurantoin whereas the showed 100% resistance of Penicillin, B, AMX, ceftriaxone, ampicillin and cefotaxime from abattoirs houses. The overall multi drug resistance pattern for Staphylococcus aureus were 90% and 100% of butchery and abattoirs houses, respectively. Conclusion: 35.3% Staphylococcus aureus isolated were recovered from the raw meat samples collected from the butchery and abattoirs houses. More has to be done in the developed of hand washing behavior, and availability of safe water in the butchery houses to reduce burden of bacterial contamination. The results of the present finding highlight the need to implement protective measures against the levels of food contamination and alternative drug options. The development of antimicrobial resistance is nearly always as a result of repeated therapeutic and/or indiscriminate use of them. Regular antimicrobial sensitivity testing helps to select effective antibiotics and to reduce the problems of drug resistance development towards commonly used antibiotics. Key words: abattoir houses, antimicrobial resistance, butchery houses, Ethiopia,

Keywords: abattoir houses, antimicrobial resistance, butchery houses, Ethiopia, staphylococcus aureuse, MDR

Procedia PDF Downloads 71
80 The Influence of Leadership Styles on Organizational Performance and Innovation: Empirical Study in Information Technology Sector in Spain

Authors: Richard Mababu Mukiur

Abstract:

Leadership is an important drive that plays a key role in the success and development of organizations, particularly in the current context of digital transformation, highly competitivity and globalization. Leaders are persons that hold a dominant and privileged position within an organization, field, or sector of activities and are able to manage, motivate and exercise a high degree of influence over other in order to achieve the institutional goals. They achieve commitment and engagement of others to embrace change, and to make good decisions. Leadership studies in higher education institutions have examined how effective leaders hold their organizations, and also to find approaches which fit best in the organizations context for its better management, transformation and improvement. Moreover, recent studies have highlighted the impact of leadership styles on organizational performance and innovation capacities, since some styles give better results than others. Effective leadership is part of learning process that take place through day-to-day tasks, responsibilities, and experiences that influence the organizational performance, innovation and engagement of employees. The adoption of appropriate leadership styles can improve organization results and encourage learning process, team skills and performance, and employees' motivation and engagement. In the case of case of Information Technology sector, leadership styles are particularly crucial since this sector is leading relevant changes and transformations in the knowledge society. In this context, the main objective of this study is to analyze managers leadership styles with their relation to organizational performance and innovation that may be mediated by learning organization process and demographic variables. Therefore, it was hypothesized that the transformational and transactional leadership will be the main style adopted in Information Technology sector and will influence organizational performance and innovation capacity. A sample of 540 participants from Information technology sector has been determined in order to achieve the objective of this study. The Multifactor Leadership Questionnaire was administered as the principal instrument, Scale of innovation and Learning Organization Questionnaire. Correlations and multiple regression analysis have been used as the main techniques of data analysis. The findings indicate that leadership styles have a relevant impact on organizational performance and innovation capacity. The transformational and transactional leadership are predominant styles in Information technology sector. The effective leadership style tend to be characterized by the capacity of generating and sharing knowledge that improve organization performance and innovation capacity. Managers are adopting and adapting their leadership styles that respond to the new organizational, social and cultural challenges and realities of contemporary society. Managers who encourage innovation, foster learning process, share experience are useful to the organization since they contribute to its development and transformation. Learning process capacity and demographic variables (age, gender, and job tenure) mediate the relationship between leadership styles, innovation capacity and organizational performance. The transformational and transactional leadership tend to enhance the organizational performance due to their significant impact on team-building, employees' engagement and satisfaction. Some practical implications and future lines of research have been proposed.

Keywords: leadership styles, tranformational leadership, organisational performance, organisational innovation

Procedia PDF Downloads 216
79 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: erosion plot, rainfall simulator, soil properties, surface flow

Procedia PDF Downloads 60
78 Association between Physical Inactivity and Sedentary Behaviours with Risk of Hypertension among Sedentary Occupation Workers: A Cross-Sectional Study

Authors: Hanan Badr, Fahad Manee, Rao Shashidhar, Omar Bayoumy

Abstract:

Introduction: Hypertension is the major risk factor for cardiovascular diseases and stroke and a universe leading cause of disability-adjusted life years and mortality. Adopting an unhealthy lifestyle is thought to be associated with developing hypertension regardless of predisposing genetic factors. This study aimed to examine the association between recreational physical activity (RPA), and sedentary behaviors with a risk of hypertension among ministry employees, where there is no role for occupational physical activity (PA), and to scrutinize participants’ time spent in RPA and sedentary behaviors on the working and weekend days. Methods: A cross-sectional study was conducted among randomly selected 2562 employees working at ten randomly selected ministries in Kuwait. To have a representative sample, the proportional allocation technique was used to define the number of participants in each ministry. A self-administered questionnaire was used to collect data about participants' socio-demographic characteristics, health status, and their 24 hours’ time use during a regular working day and a weekend day. The time use covered a list of 20 different activities practiced by a person daily. The New Zealand Physical Activity Questionnaire-Short Form (NZPAQ-SF) was used to assess the level of RPA. The scale generates three categories according to the number of hours spent in RPA/week: relatively inactive, relatively active, and highly active. Gender-matched trained nurses performed anthropometric measurements (weight and height) and measuring blood pressure (two readings) using an automatic blood pressure monitor (95% accuracy level compared to a calibrated mercury sphygmomanometer). Results: Participants’ mean age was 35.3±8.4 years, with almost equal gender distribution. About 13% of the participants were smokers, and 75% were overweight. Almost 10% reported doctor-diagnosed hypertension. Among those who did not, the mean systolic blood pressure was 119.9±14.2 and the mean diastolic blood pressure was 80.9±7.3. Moreover, 73.9% of participants were relatively physically inactive and 18% were highly active. Mean systolic and diastolic blood pressure showed a significant inverse association with the level of RPA (means of blood pressure measures were: 123.3/82.8 among relatively inactive, 119.7/80.4 among relatively active, and 116.6/79.6 among highly active). Furthermore, RPA occupied 1.6% and 1.8% of working and weekend days, respectively, while sedentary behaviors (watching TV, using electronics for social media or entertaining, etc.) occupied 11.2% and 13.1%, respectively. Sedentary behaviors were significantly associated with high levels of systolic and diastolic blood pressure. Binary logistic regression revealed that physical inactivity (OR=3.13, 95% CI: 2.25-4.35) and sedentary behaviors (OR=2.25, CI: 1.45-3.17) were independent risk factors for high systolic and diastolic blood pressure after adjustment for other covariates. Conclusions: Physical inactivity and sedentary lifestyle were associated with a high risk of hypertension. Further research to examine the independent role of RPA in improving blood pressure levels and cultural and occupational barriers for practicing RPA are recommended. Policies should be enacted in promoting PA in the workplace that might help in decreasing the risk of hypertension among sedentary occupation workers.

Keywords: physical activity, sedentary behaviors, hypertension, workplace

Procedia PDF Downloads 177
77 Ethical Decision-Making by Healthcare Professionals during Disasters: Izmir Province Case

Authors: Gulhan Sen

Abstract:

Disasters could result in many deaths and injuries. In these difficult times, accessible resources are limited, demand and supply balance is distorted, and there is a need to make urgent interventions. Disproportionateness between accessible resources and intervention capacity makes triage a necessity in every stage of disaster response. Healthcare professionals, who are in charge of triage, have to evaluate swiftly and make ethical decisions about which patients need priority and urgent intervention given the limited available resources. For such critical times in disaster triage, 'doing the greatest good for the greatest number of casualties' is adopted as a code of practice. But there is no guide for healthcare professionals about ethical decision-making during disasters, and this study is expected to use as a source in the preparation of the guide. This study aimed to examine whether the qualities healthcare professionals in Izmir related to disaster triage were adequate and whether these qualities influence their capacity to make ethical decisions. The researcher used a survey developed for data collection. The survey included two parts. In part one, 14 questions solicited information about socio-demographic characteristics and knowledge levels of the respondents on ethical principles of disaster triage and allocation of scarce resources. Part two included four disaster scenarios adopted from existing literature and respondents were asked to make ethical decisions in triage based on the provided scenarios. The survey was completed by 215 healthcare professional working in Emergency-Medical Stations, National Medical Rescue Teams and Search-Rescue-Health Teams in Izmir. The data was analyzed with SPSS software. Chi-Square Test, Mann-Whitney U Test, Kruskal-Wallis Test and Linear Regression Analysis were utilized. According to results, it was determined that 51.2% of the participants had inadequate knowledge level of ethical principles of disaster triage and allocation of scarce resources. It was also found that participants did not tend to make ethical decisions on four disaster scenarios which included ethical dilemmas. They stayed in ethical dilemmas that perform cardio-pulmonary resuscitation, manage limited resources and make decisions to die. Results also showed that participants who had more experience in disaster triage teams, were more likely to make ethical decisions on disaster triage than those with little or no experience in disaster triage teams(p < 0.01). Moreover, as their knowledge level of ethical principles of disaster triage and allocation of scarce resources increased, their tendency to make ethical decisions also increased(p < 0.001). In conclusion, having inadequate knowledge level of ethical principles and being inexperienced affect their ethical decision-making during disasters. So results of this study suggest that more training on disaster triage should be provided on the areas of the pre-impact phase of disaster. In addition, ethical dimension of disaster triage should be included in the syllabi of the ethics classes in the vocational training for healthcare professionals. Drill, simulations, and board exercises can be used to improve ethical decision making abilities of healthcare professionals. Disaster scenarios where ethical dilemmas are faced should be prepared for such applied training programs.

Keywords: disaster triage, medical ethics, ethical principles of disaster triage, ethical decision-making

Procedia PDF Downloads 244
76 Border Security: Implementing the “Memory Effect” Theory in Irregular Migration

Authors: Iliuta Cumpanasu, Veronica Oana Cumpanasu

Abstract:

This paper focuses on studying the conjunction between the new emerged theory of “Memory Effect” in Irregular Migration and Related Criminality and the notion of securitization, and its impact on border management, bringing about a scientific advancement in the field by identifying the patterns corresponding to the linkage of the two concepts, for the first time, and developing a theoretical explanation, with respect to the effects of the non-military threats on border security. Over recent years, irregular migration has experienced a significant increase worldwide. The U.N.'s refugee agency reports that the number of displaced people is at its highest ever - surpassing even post-World War II numbers when the world was struggling to come to terms with the most devastating event in history. This is also the fresh reality within the core studied coordinate, the Balkan Route of Irregular Migration, which starts from Asia and Africa and continues to Turkey, Greece, North Macedonia or Bulgaria, Serbia, and ends in Romania, where thousands of migrants find themselves in an irregular situation concerning their entry to the European Union, with its important consequences concerning the related criminality. The data from the past six years was collected by making use of semi-structured interviews with experts in the field of migration and desk research within some organisations involved in border security, pursuing the gathering of genuine insights from the aforementioned field, which was constantly addressed the existing literature and subsequently subjected to the mixed methods of analysis, including the use of the Vector Auto-Regression estimates model. Thereafter, the analysis of the data followed the processes and outcomes in Grounded Theory, and a new Substantive Theory emerged, explaining how the phenomena of irregular migration and cross-border criminality are the decisive impetus for implementing the concept of securitization in border management by using the proposed pattern. The findings of the study are therefore able to capture an area that has not yet benefitted from a comprehensive approach in the scientific community, such as the seasonality, stationarity, dynamics, predictions, or the pull and push factors in Irregular Migration, also highlighting how the recent ‘Pandemic’ interfered with border security. Therefore, the research uses an inductive revelatory theoretical approach which aims at offering a new theory in order to explain a phenomenon, triggering a practically handy contribution for the scientific community, research institutes or Academia and also usefulness to organizational practitioners in the field, among which UN, IOM, UNHCR, Frontex, Interpol, Europol, or national agencies specialized in border security. The scientific outcomes of this study were validated on June 30, 2021, when the author defended his dissertation for the European Joint Master’s in Strategic Border Management, a two years prestigious program supported by the European Commission and Frontex Agency and a Consortium of six European Universities and is currently one of the research objectives of his pending PhD research at the West University Timisoara.

Keywords: migration, border, security, memory effect

Procedia PDF Downloads 91
75 Exploring the Influence of Maternal Self-Discrepancy on Psychological Well-Being: A Study of Middle-Aged Japanese Mothers

Authors: Chooi Fong Lee

Abstract:

Maternal psychological well-being has been investigated from various aspects, such as social support, employment status. However, a perspective from self-discrepancy theory has not been employed. Moreover, most were focused on young mothers. Less is understanding the middle-aged mother’s psychological well-being. This research examined the influence of maternal self-discrepancy between actual and ideal self on maternal role achievement, state anxiety, trait anxiety, and subjective well-being among Japanese middle-aged mothers across their employment status. A pilot study with 20 Japanese mother participants (aged 40-55, 9 regular-employed, 8 non-regular-employed, and 3 homemakers) was conducted to assess the viability of survey questionnaires (Maternal Role Achievement Scale, State-Trait Anxiety Inventory, Subjective Well-being Scale, and Self-report questionnaire). The self-report questionnaire prompted participants to list up to 3 ideal selves they aspired to be and rate the extent to which their actual selves deviated from their ideal selves on a 7-point scale (1= not at all; 4 = medium; 7 = extremely). Self-discrepancy scores were calculated by subtracting participants’ degree ratings from a 7-point scale, summing them up, and then dividing the total by 3. The final sample consisted of 241 participants, 97 regular-employed, 87 non-regular employed, and 57 homemaker mothers. We ensured participants were randomly selected to mitigate bias. The results show that regular-employed mothers tend to exhibit lower self-discrepancy scores compared to non-regular employed and homemaker mothers. Moreover, the discrepancy between actual and ideal self negatively correlated with maternal role achievement, state anxiety, and subjective well-being, while positively correlated with trait anxiety. Trait anxiety arises when one feels they did not meet their ideal self, as evidenced by higher levels in homemaker mothers, who experience lower state anxiety. Conversely, regular-employed mothers exhibit higher state anxiety but lower trait anxiety, suggesting satisfaction in their professional pursuits despite balancing work and family responsibilities. Full-time maternal roles contribute to lower state anxiety but higher trait anxiety among homemaker mothers due to a lack of personal identity achievement. Non-regular employed mothers show similarities to homemaker mothers. In self-reports, regular-employed mothers highlight support and devotion to their children’s development, while non-regular-employed mothers seek life fulfillment through part-time work alongside child-rearing duties. Homemaker mothers emphasize qualities like sociability, and communication skills, potentially influencing their self-discrepancy scores. Furthermore, the hierarchical multiple regression analysis revealed that the discrepancy between actual and ideal self significantly predicts subjective well-being. In conclusion, the findings offer valuable insights into the impact of maternal self-discrepancy on psychological well-being among middle-aged Japanese mothers across different employment statuses. Understanding these dynamics becomes crucial as contemporary women increasingly pursue higher education and depart from traditional motherhood norms. Working toward one ideal self might contribute to a mother psychological well-being. Acknowledgment: This project was made possible with funding support from the Japan ICU Foundation.

Keywords: maternal employment, maternal role, self-discrepancy, state-trait anxiety, subjective well-being

Procedia PDF Downloads 61
74 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 29
73 Assessment of Soil Quality Indicators in Rice Soil of Tamil Nadu

Authors: Kaleeswari R. K., Seevagan L .

Abstract:

Soil quality in an agroecosystem is influenced by the cropping system, water and soil fertility management. A valid soil quality index would help to assess the soil and crop management practices for desired productivity and soil health. The soil quality indices also provide an early indication of soil degradation and needy remedial and rehabilitation measures. Imbalanced fertilization and inadequate organic carbon dynamics deteriorate soil quality in an intensive cropping system. The rice soil ecosystem is different from other arable systems since rice is grown under submergence, which requires a different set of key soil attributes for enhancing soil quality and productivity. Assessment of the soil quality index involves indicator selection, indicator scoring and comprehensive score into one index. The most appropriate indicator to evaluate soil quality can be selected by establishing the minimum data set, which can be screened by linear and multiple regression factor analysis and score function. This investigation was carried out in intensive rice cultivating regions (having >1.0 lakh hectares) of Tamil Nadu viz., Thanjavur, Thiruvarur, Nagapattinam, Villupuram, Thiruvannamalai, Cuddalore and Ramanathapuram districts. In each district, intensive rice growing block was identified. In each block, two sampling grids (10 x 10 sq.km) were used with a sampling depth of 10 – 15 cm. Using GIS coordinates, and soil sampling was carried out at various locations in the study area. The number of soil sampling points were 41, 28, 28, 32, 37, 29 and 29 in Thanjavur, Thiruvarur, Nagapattinam, Cuddalore, Villupuram, Thiruvannamalai and Ramanathapuram districts, respectively. Principal Component Analysis is a data reduction tool to select some of the potential indicators. Principal Component is a linear combination of different variables that represents the maximum variance of the dataset. Principal Component that has eigenvalues equal or higher than 1.0 was taken as the minimum data set. Principal Component Analysis was used to select the representative soil quality indicators in rice soils based on factor loading values and contribution percent values. Variables having significant differences within the production system were used for the preparation of the minimum data set. Each Principal Component explained a certain amount of variation (%) in the total dataset. This percentage provided the weight for variables. The final Principal Component Analysis based soil quality equation is SQI = ∑ i=1 (W ᵢ x S ᵢ); where S- score for the subscripted variable; W-weighing factor derived from PCA. Higher index scores meant better soil quality. Soil respiration, Soil available Nitrogen and Potentially Mineralizable Nitrogen were assessed as soil quality indicators in rice soil of the Cauvery Delta zone covering Thanjavur, Thiruvavur and Nagapattinam districts. Soil available phosphorus could be used as a soil quality indicator of rice soils in the Cuddalore district. In rain-fed rice ecosystems of coastal sandy soil, DTPA – Zn could be used as an effective soil quality indicator. Among the soil parameters selected from Principal Component Analysis, Microbial Biomass Nitrogen could be used quality indicator for rice soils of the Villupuram district. Cauvery Delta zone has better SQI as compared with other intensive rice growing zone of Tamil Nadu.

Keywords: soil quality index, soil attributes, soil mapping, and rice soil

Procedia PDF Downloads 84
72 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application

Authors: R. P. Naik, A. K. Rakshit

Abstract:

In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.

Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing

Procedia PDF Downloads 110
71 Awareness and Willingness of Signing 'Consent Form in Palliative Care' in Elderly Patients with End Stage Renal Disease

Authors: Hsueh Ping Peng

Abstract:

End-stage renal disease most commonly occurs in the elderly population. Elderly people are approaching the end of their lives, and when facing major life-threatening situations, apart from aggressive medical treatment, they can also choose treatment methods such as hospice care to improve their quality of life. The purpose of this study was to investigate factors associated with the awareness and willingness to sign hospice and palliative care consent forms in elderly with end-stage renal disease. This study used both quantitative, cross-sectional study designs. In the quantitative section, 110 elderly patients (aged 65 or above) with end-stage renal disease receiving conventional hemodialysis were recruited as study participants from a medical center in Taipei City. Data were collected using structured questionnaires. Study tools included basic demographic data, questionnaires on the awareness and perception of hospice and palliative care, etc. After collecting the data, data analysis was conducted using SPSS 20.0 statistical software, including descriptive statistics, chi-square test, logistic regression, and other inferential statistics. The results showed that the average age of participants was 71.6 years old, more males than females, average years of dialysis was 6.1 years and most subjects rated their self-perceived health status as fair. Results of the study are summarized as follows: Elderly people with end-stage renal disease did not have sufficient knowledge and awareness about hospice and palliative care. Influencing factors included level of education, marital status, years of dialysis and age, etc. Demographic factors influencing the signing of consent forms included gender, marital status, and age, which all showed significant impacts. Factors taken into consideration when signing consent forms included awareness of hospice care, understanding the relevant definitions of hospice care, and understanding that consent may be modified or cancelled at any time; it was predicted that people who knew more about ways to receive hospice care or more related definitions were more willing to sign the consent forms. In the qualitative study section, 10 participants who signed the consent form, five male, and 5 female, between the ages of 65-90, have completed the semi-structured interviews. Analysis of the interviews revealed six themes: (1) passing away peacefully, (2) autonomy on arrangements of life and death, (3) unwillingness to increase family and social burden, (4) friends and relatives’ experience influencing the decision to give consent, (5) sharing information to facilitate the giving of consent, (6) facing each day with ease, to reflect the experience and factors of consideration for elderly with end-stage renal disease when signing consent forms. The results of this study provides the awareness, thoughts and feelings of elderly with end-stage renal disease on signing consent forms, and serve as a future reference for the dialysis unit to enhance the promotion of hospice and palliative care and related caregiving measures, thereby improving the quality of life and care for elderly people with end-stage renal disease.

Keywords: end-stage renal disease, hemodialysis, hospice and palliative care, awareness, willingness

Procedia PDF Downloads 167
70 Analyzing the Investment Decision and Financing Method of the French Small and Medium-Sized Enterprises

Authors: Eliane Abdo, Olivier Colot

Abstract:

SMEs are always considered as a national priority due to their contribution to job creation, innovation and growth. Once the start-up phase is crossed with encouraging results, the company enters the phase of growth. In order to improve its competitiveness, maintain and increase its market share, the company is in the necessity even the obligation to develop its tangible and intangible investments. SMEs are generally closed companies with special and critical financial situation, limited resources and difficulty to access the capital markets; their shareholders are always living in a conflict between their independence and their need to increase capital that leads to the entry of new shareholder. The capital structure was always considered the core of research in corporate finance; moreover, the financial crisis and its repercussions on the credit’s availability, especially for SMEs make SME financing a hot topic. On the other hand, financial theories do not provide answers to capital structure’s questions; they offer tools and mode of financing that are more accessible to larger companies. Yet, SME’s capital structure can’t be independent of their governance structure. The classic financial theory supposes independence between the investment decision and the financing decision. Thus, investment determines the volume of funding, but not the split between internal or external funds. In this context, we find interesting to study the hypothesis that SMEs respond positively to the financial theories applied to large firms and to check if they are constrained by conventional solutions used by large companies. In this context, this research focuses on the analysis of the resource’s structure of SME in parallel with their investments’ structure, in order to highlight a link between their assets and liabilities structure. We founded our conceptual model based on two main theoretical frameworks: the Pecking order theory, and the Trade Off theory taking into consideration the SME’s characteristics. Our data were generated from DIANE database. Five hypotheses were tested via a panel regression to understand the type of dependence between the financing methods of 3,244 French SMEs and the development of their investment over a period of 10 years (2007-2016). The results show dependence between equity and internal financing in case of intangible investments development. Moreover, this type of business is constraint to financial debts since the guarantees provided are not sufficient to meet the banks' requirements. However, for tangible investments development, SMEs count sequentially on internal financing, bank borrowing, and new shares issuance or hybrid financing. This is compliant to the Pecking Order Theory. We, therefore, conclude that unlisted SMEs incur more financial debts to finance their tangible investments more than their intangible. However, they always prefer internal financing as a first choice. This seems to be confirmed by the assumption that the profitability of the company is negatively related to the increase of the financial debt. Thus, the Pecking Order Theory predictions seem to be the most plausible. Consequently, SMEs primarily rely on self-financing and then go, into debt as a priority to finance their financial deficit.

Keywords: capital structure, investments, life cycle, pecking order theory, trade off theory

Procedia PDF Downloads 111
69 Family Firm Internationalization: Identification of Alternative Success Pathways

Authors: Sascha Kraus, Wolfgang Hora, Philipp Stieg, Thomas Niemand, Ferdinand Thies, Matthias Filser

Abstract:

In most countries, small and medium-sized enterprises (SME) are the backbone of the economy due to their impact on job creation, innovation and wealth creation. Moreover, the ongoing globalization makes it inevitable – even for SME that traditionally focused on their domestic markets – to internationalize their business activities to realize further growth and survive in international markets. Thus, internationalization has become one of the most common growth strategies for SME and has received increasing scholarly attention over the last two decades. One the downside internationalization can be also regarded as the most complex strategy that a firm can undertake. Particularly for family firms, that are often characterized by limited financial capital, a risk-averse nature and limited growth aspirations, it could be argued that family firms are more likely to face greater challenges when taking the pathway to internationalization. Especially the triangulation of family, ownership, and management (so-called ‘familiness’) manifests in a unique behavior and decision-making process which is often characterized by the importance given to noneconomic goals and distinguishes a family firm from other businesses. Taking this into account, the concept of socio-emotional wealth (SEW) has been evolved to describe the behavior of family firms. In order to investigate how different internal and external firm characteristics shape internationalization success of family firms, we drew on a sample consisting of 297 small and medium-sized family firms from Germany, Austria, Switzerland, and Liechtenstein. Thus, we include SEW as essential family firm characteristic and added the two major intra-organizational characteristics, entrepreneurial orientation (EO), absorptive capacity (AC) as well as collaboration intensity (CI) and relational knowledge (RK) as two major external network characteristics. Based on previous research we assume that these characteristics are important to explain internationalization success of family firm SME. Regarding the data analysis, we applied a Fuzzy Set Qualitative Comparative Analysis (fsQCA), an approach that allows identifying configurations of firm characteristics, specifically used to study complex causal relationships where traditional regression techniques reach their limits. Results indicate that several combinations of these family firm characteristics can lead to international success, with no permanently required key characteristic. Instead, there are many roads to walk down for family firms to achieve internationalization success. Consequently, our data states that family owned SME are heterogeneous and internationalization is a complex and dynamic process. Results further show that network related characteristics occur in all sets, thus represent an essential element in the internationalization process of family owned SME. The contribution of our study is twofold, as we investigate different forms of international expansion for family firms and how to improve them. First, we are able to broaden the understanding of the intersection between family firm and SME internationalization with respect to major intra-organizational and network-related variables. Second, from a practical perspective, we offer family firm owners a basis for setting up internal capabilities to achieve international success.

Keywords: entrepreneurial orientation, family firm, fsQCA, internationalization, socio-emotional wealth

Procedia PDF Downloads 241
68 ADAM10 as a Potential Blood Biomarker of Cognitive Frailty

Authors: Izabela P. Vatanabe, Rafaela Peron, Patricia Manzine, Marcia R. Cominetti

Abstract:

Introduction: Considering the increase in life expectancy of world population, there is an emerging concern in health services to allocate better care and care to elderly, through promotion, prevention and treatment of health. It has been observed that frailty syndrome is prevalent in elderly people worldwide and this complex and heterogeneous clinical syndrome consist of the presence of physical frailty associated with cognitive dysfunction, though in absence of dementia. This can be characterized by exhaustion, unintentional weight loss, decreased walking speed, weakness and low level of physical activity, in addition, each of these symptoms may be a predictor of adverse outcomes such as hospitalization, falls, functional decline, institutionalization, and death. Cognitive frailty is a recent concept in literature, which is defined as the presence of physical frailty associated with mild cognitive impairment (MCI) however in absence of dementia. This new concept has been considered as a subtype of frailty, which along with aging process and its interaction with physical frailty, accelerates functional declines and can result in poor quality of life of the elderly. MCI represents a risk factor for Alzheimer's disease (AD) in view of high conversion rate for this disease. Comorbidities and physical frailty are frequently found in AD patients and are closely related to heterogeneity and clinical manifestations of the disease. The decreased platelets ADAM10 levels in AD patients, compared to cognitively healthy subjects, matched by sex, age and education. Objective: Based on these previous results, this study aims to evaluate whether ADAM10 platelet levels of could act as a biomarker of cognitive frailty. Methods: The study was approved by Ethics Committee of Federal University of São Carlos (UFSCar) and conducted in the municipality of São Carlos, headquarters of Federal University of São Carlos (UFSCar). Biological samples of subjects were collected, analyzed and then stored in a biorepository. ADAM10 platelet levels were analyzed by western blotting technique in subjects with MCI and compared to subjects without cognitive impairment, both with and without presence of frailty. Statistical tests of association, regression and diagnostic accuracy were performed. Results: The results have shown that ADAM10/β-actin ratio is decreased in elderly individuals with cognitive frailty compared to non-frail and cognitively healthy controls. Previous studies performed by this research group, already mentioned above, demonstrated that this reduction is still higher in AD patients. Therefore, the ADAM10/β-actin ratio appears to be a potential biomarker for cognitive frailty. The results bring important contributions to an accurate diagnosis of cognitive frailty from the perspective of ADAM10 as a biomarker for this condition, however, more experiments are being conducted, using a high number of subjects, and will help to understand the role of ADAM10 as biomarker of cognitive frailty and contribute to the implementation of tools that work in the diagnosis of cognitive frailty. Such tools can be used in public policies for the diagnosis of cognitive frailty in the elderly, resulting in a more adequate planning for health teams and better quality of life for the elderly.

Keywords: ADAM10, biomarkers, cognitive frailty, elderly

Procedia PDF Downloads 234
67 South-Mediterranean Oaks Forests Management in Changing Climate Case of the National Park of Tlemcen-Algeria

Authors: K. Bencherif, M. Bellifa

Abstract:

The expected climatic changes in North Africa are the increase of both intensity and frequencies of the summer droughts and a reduction in water availability during growing season. The exiting coppices and forest formations in the national park of Tlemcen are dominated by holm oak, zen oak and cork oak. These opened-fragmented structures don’t seem enough strong so to hope durable protection against climate change. According to the observed climatic tendency, the objective is to analyze the climatic context and its evolution taking into account the eventual behaving of the oak species during the next 20-30 years on one side and the landscaped context in relation with the most adequate sylvicultural models to choose and especially in relation with human activities on another side. The study methodology is based on Climatic synthesis and Floristic and spatial analysis. Meteorological data of the decade 1989-2009 are used to characterize the current climate. An another approach, based on dendrochronological analysis of a 120 years sample Aleppo pine stem growing in the park, is used so to analyze the climate evolution during one century. Results on the climate evolution during the 50 years obtained through climatic predictive models are exploited so to predict the climate tendency in the park. Spatially, in each forest unit of the Park, stratified sampling is achieved so to reduce the degree of heterogeneity and to easily delineate different stands using the GPS. Results from precedent study are used to analyze the anthropogenic factor considering the forecasts for the period 2025-2100, the number of warm days with a temperature over 25°C would increase from 30 to 70. The monthly mean temperatures of the maxima’s (M) and the minima’s (m) would pass respectively from 30.5°C to 33°C and from 2.3°C to 4.8°C. With an average drop of 25%, precipitations will be reduced to 411.37 mm. These new data highlight the importance of the risk fire and the water stress witch would affect the vegetation and the regeneration process. Spatial analysis highlights the forest and the agricultural dimensions of the park compared to the urban habitat and bare soils. Maps show both fragmentation state and forest surface regression (50% of total surface). At the level of the park, fires affected already all types of covers creating low structures with various densities. On the silvi cultural plan, Zen oak form in some places pure stands and this invasion must be considered as a natural tendency where Zen oak becomes the structuring specie. Climate-related changes have nothing to do with the real impact that South-Mediterranean forests are undergoing because human constraints they support. Nevertheless, hardwoods stand of oak in the national park of Tlemcen will face up to unexpected climate changes such as changing rainfall regime associated with a lengthening of the period of water stress, to heavy rainfall and/or to sudden cold snaps. Faced with these new conditions, management based on mixed uneven aged high forest method promoting the more dynamic specie could be an appropriate measure.

Keywords: global warming, mediterranean forest, oak shrub-lands, Tlemcen

Procedia PDF Downloads 388
66 Dietary Intakes and Associated Demographic, Behavioural and Other Health-Related Factors in Mexican College Students

Authors: Laura E. Hall, Joel Monárrez-Espino, Luz María Tejada Tayabas

Abstract:

College students are at risk of weight gain and poor dietary habits, and health behaviours established during this period have been shown to track into midlife. They may therefore be an important target group for health promotion strategies, yet there is a lack of literature regarding dietary intakes and associated factors in this group, particularly in middle-income countries such as Mexico. The aim of this exploratory research was to describe and compare reported dietary intakes among nursing and nutrition college students at two public universities in Mexico, and to explore the relationship between demographic, behavioural and other health-related factors and the risk of low diet quality. Mexican college students (n=444) majoring in nutrition or nursing at two urban universities completed questionnaires regarding dietary and health-related behaviours and risks. Dietary intake was assessed via 24-hour recall. Weight, height and abdominal circumference were measured. Descriptive statistics were reported and nutrient intakes were compared between colleges and study tracks using Student’s t tests, odds ratios and Pearson chi square tests. Two dietary quality scores were constructed to explore the relationship between demographic, behavioural and other health-related factors and the diet quality scores using binary logistic regression. Analysis was performed using SPSS statistics, with differences considered statistically significant at p<0.05. The response rate to the survey was 91%. When macronutrients were considered as a percentage of total energy, the majority of students had protein intakes within recommended ranges, however one quarter of students had carbohydrate and fat intakes exceeding recommended levels. Three quarters had fibre intakes that were below recommendations. More than half of the students reported intakes of magnesium, zinc, vitamin A, folate and vitamin E that were below estimated average requirements. Students studying nutrition reported macronutrient and micronutrient intakes that were more compliant with recommendations compared to nursing students, and students studying in central-north Mexico were more compliant than those studying in southeast Mexico. Breakfast skipping (Adjusted Odds Ratio (OR) = 5.3; 95% Confidence Interval (CI) = 1.2-22.7), risk of anxiety (OR = 2.3; CI = 1.3-4.4), and university location (OR = 1.6; CI = 1.03-2.6) were associated with a greater risk of having a low macronutrient score. Caloric intakes <1800kcal (OR = 5.8; CI = 3.5-9.7), breakfast skipping (OR = 3.7; CI = 1.4-10.3), vigorous exercise ≤1h/week (OR = 2.6; CI = 1.3-5.2), soda consumption >250mls/day (OR = 2.0; CI = 1.2-3.3), unhealthy diet perception (OR = 1.9; CI = 1.2-3.0), and university location (OR = 1.8; CI = 1.1-2.8) were significantly associated with greater odds of having a low micronutrient score. College students studying nursing and nutrition did not report ideal diets, and these students should not be overlooked in public health interventions. Differences in dietary intakes between universities and study tracks were evident, with more favourable profiles evident in nutrition compared to nursing, and North-central compared to Southeast students. Further, demographic, behavioural and other health-related factors were associated with diet quality scores, warranting further research.

Keywords: college student, diet quality, nutrient intake, young adult

Procedia PDF Downloads 452
65 Modeling the Demand for the Healthcare Services Using Data Analysis Techniques

Authors: Elizaveta S. Prokofyeva, Svetlana V. Maltseva, Roman D. Zaitsev

Abstract:

Rapidly evolving modern data analysis technologies in healthcare play a large role in understanding the operation of the system and its characteristics. Nowadays, one of the key tasks in urban healthcare is to optimize the resource allocation. Thus, the application of data analysis in medical institutions to solve optimization problems determines the significance of this study. The purpose of this research was to establish the dependence between the indicators of the effectiveness of the medical institution and its resources. Hospital discharges by diagnosis; hospital days of in-patients and in-patient average length of stay were selected as the performance indicators and the demand of the medical facility. The hospital beds by type of care, medical technology (magnetic resonance tomography, gamma cameras, angiographic complexes and lithotripters) and physicians characterized the resource provision of medical institutions for the developed models. The data source for the research was an open database of the statistical service Eurostat. The choice of the source is due to the fact that the databases contain complete and open information necessary for research tasks in the field of public health. In addition, the statistical database has a user-friendly interface that allows you to quickly build analytical reports. The study provides information on 28 European for the period from 2007 to 2016. For all countries included in the study, with the most accurate and complete data for the period under review, predictive models were developed based on historical panel data. An attempt to improve the quality and the interpretation of the models was made by cluster analysis of the investigated set of countries. The main idea was to assess the similarity of the joint behavior of the variables throughout the time period under consideration to identify groups of similar countries and to construct the separate regression models for them. Therefore, the original time series were used as the objects of clustering. The hierarchical agglomerate algorithm k-medoids was used. The sampled objects were used as the centers of the clusters obtained, since determining the centroid when working with time series involves additional difficulties. The number of clusters used the silhouette coefficient. After the cluster analysis it was possible to significantly improve the predictive power of the models: for example, in the one of the clusters, MAPE error was only 0,82%, which makes it possible to conclude that this forecast is highly reliable in the short term. The obtained predicted values of the developed models have a relatively low level of error and can be used to make decisions on the resource provision of the hospital by medical personnel. The research displays the strong dependencies between the demand for the medical services and the modern medical equipment variable, which highlights the importance of the technological component for the successful development of the medical facility. Currently, data analysis has a huge potential, which allows to significantly improving health services. Medical institutions that are the first to introduce these technologies will certainly have a competitive advantage.

Keywords: data analysis, demand modeling, healthcare, medical facilities

Procedia PDF Downloads 144
64 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 131
63 Sustainable Recycling Practices to Reduce Health Hazards of Municipal Solid Waste in Patna, India

Authors: Anupama Singh, Papia Raj

Abstract:

Though Municipal Solid Waste (MSW) is a worldwide problem, yet its implications are enormous in developing countries, as they are unable to provide proper Municipal Solid Waste Management (MSWM) for the large volume of MSW. As a result, the collected wastes are dumped in open dumping at landfilling sites while the uncollected wastes remain strewn on the roadside, many-a-time clogging drainage. Such unsafe and inadequate management of MSW causes various public health hazards. For example, MSW directly on contact or by leachate contaminate the soil, surface water, and ground water; open burning causes air pollution; anaerobic digestion between the piles of MSW enhance the greenhouse gases i.e., carbon dioxide and methane (CO2 and CH4) into the atmosphere. Moreover, open dumping can cause spread of vector borne disease like cholera, typhoid, dysentery, and so on. Patna, the capital city of Bihar, one of the most underdeveloped provinces in India, is a unique representation of this situation. Patna has been identified as the ‘garbage city’. Over the last decade there has been an exponential increase in the quantity of MSW generation in Patna. Though a large proportion of such MSW is recyclable in nature, only a negligible portion is recycled. Plastic constitutes the major chunk of the recyclable waste. The chemical composition of plastic is versatile consisting of toxic compounds, such as, plasticizers, like adipates and phthalates. Pigmented plastic is highly toxic and it contains harmful metals such as copper, lead, chromium, cobalt, selenium, and cadmium. Human population becomes vulnerable to an array of health problems as they are exposed to these toxic chemicals multiple times a day through air, water, dust, and food. Based on analysis of health data it can be emphasized that in Patna there has been an increase in the incidence of specific diseases, such as, diarrhoea, dysentry, acute respiratory infection (ARI), asthma, and other chronic respiratory diseases (CRD). This trend can be attributed to improper MSWM. The results were reiterated through a survey (N=127) conducted during 2014-15 in selected areas of Patna. Random sampling method of data collection was used to better understand the relationship between different variables affecting public health due to exposure to MSW and lack of MSWM. The results derived through bivariate and logistic regression analysis of the survey data indicate that segregation of wastes at source, segregation behavior, collection bins in the area, distance of collection bins from residential area, and transportation of MSW are the major determinants of public health issues. Sustainable recycling is a robust method for MSWM with its pioneer concerns being environment, society, and economy. It thus ensures minimal threat to environment and ecology consequently improving public health conditions. Hence, this paper concludes that sustainable recycling would be the most viable approach to manage MSW in Patna and would eventually reduce public health hazards.

Keywords: municipal solid waste, Patna, public health, sustainable recycling

Procedia PDF Downloads 323
62 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods

Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer

Abstract:

Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.

Keywords: cross-validation, importance sampling, information criteria, predictive accuracy

Procedia PDF Downloads 391