Search results for: fuzzy model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16837

Search results for: fuzzy model

12487 Self-Organizing Maps for Credit Card Fraud Detection and Visualization

Authors: Peng, Chun-Yi, Chen, Wei-Hsuan, Ueng, Shyh-Kuang

Abstract:

This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.

Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies

Procedia PDF Downloads 41
12486 Implementing Lesson Study in Qatari Mathematics Classroom: A Case Study of a New Experience for Teachers through IMPULS-QU Lesson Study Program

Authors: Areej Isam Barham

Abstract:

The implementation of Japanese lesson study approach in the mathematics classroom has been grown worldwide as a model of professional development for teachers. In Qatar, the implementation of IMPULS-QU lesson study program aimed to establish a robust organizational improvement model of professional development for mathematics teachers in Qatar schools. This study describes the implementation of a lesson study model at Al-Markhyia Independent Primary School through different stages; and discusses how the planning process, the research lesson, and the post discussion participates in providing teachers and researchers with a successful research lesson for teacher professional development. The research followed a case study approach in one mathematics classroom. Two teachers and one professional development specialist participated the planning process. One teacher conducted the research lesson study by introducing a problem solving related to the concept of the ‘Mean’ in a mathematics class, 21 students in grade 6 participated in solving the mathematic problem, 11 teachers, 4 professional development specialists, and 4 mathematics professors observed the research lesson. All previous participants except the students participated in a pre and post-lesson discussion within this research. This study followed a qualitative research approach by analyzing the collected data through different stages in the research lesson study. Observation, field notes, and semi-structured interviews conducted to collect data to achieve the research aims. One feature of this lesson study research is that this research describes the implementation for a lesson study as a new experience for one mathematics teacher and 21 students after 3 years of conducting IMPULS-QU project in Al-Markhyia school. The research describes various stages through the implementation of this lesson study model starting from the planning process and ending by the post discussion process. Findings of the study also address the impact of lesson study approach in teaching mathematics for the development of teachers from their point views. Results of the study show the benefits of using lesson study from the point views of participated teachers, theory perceptions about the essential features of lesson study, and their needs for future development. The discussion of the study addresses different features and issues related to the implementation of IMPULS-QU lesson study model in the mathematics classroom. In the light of the study, the research presents recommendations and suggestions for future professional development.

Keywords: lesson study, mathematics education, mathematics teaching experience, teacher professional development

Procedia PDF Downloads 169
12485 Management by Sufficient Economy Philosophy for Hospitality Business in Samut Songkram

Authors: Krisada Sungkhamanee

Abstract:

The objectives of this research are to know the management form of Samut Songkram lodging entrepreneurs with sufficient economy framework, to know the threat that affect this business and drawing the fit model for this province in order to sustain their business with Samut Songkram style. What will happen if they do not use this philosophy? Will they have a cash short fall? The data and information are collected by informal discussion with 8 managers and 400 questionnaires. We will use a mix of methods both qualitative research and quantitative research for our study. Bent Flyvbjerg’s phronesis is utilized for this analysis. Our research will prove that sufficient economy can help small and medium business firms solve their problems. We think that the results of our research will be a financial model to solve many problems of the entrepreneurs and this way will use to practice in other areas of our country.

Keywords: Samut Songkram, hospitality business, sufficient economy philosophy, style

Procedia PDF Downloads 287
12484 ANSYS FLUENT Simulation of Natural Convection and Radiation in a Solar Enclosure

Authors: Sireetorn Kuharat, Anwar Beg

Abstract:

In this study, multi-mode heat transfer characteristics of spacecraft solar collectors are investigated computationally. Two-dimensional steady-state incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics. Several radiative transfer models are employed which are available in the ANSYS workbench, including the classical Rosseland flux model and the more elegant P1 flux model. Mesh-independence tests are conducted. Validation of the simulations is conducted with a computational Harlow-Welch MAC (Marker and Cell) finite difference method and excellent correlation. The influence of aspect ratio, Prandtl number (Pr), Rayleigh number (Ra) and radiative flux model on temperature, isotherms, velocity, the pressure is evaluated and visualized in color plots. Additionally, the local convective heat flux is computed and solutions are compared with the MAC solver for various buoyancy effects (e.g. Ra = 10,000,000) achieving excellent agreement. The P1 model is shown to better predict the actual influence of solar radiative flux on thermal fluid behavior compared with the limited Rosseland model. With increasing Rayleigh numbers the hot zone emanating from the base of the collector is found to penetrate deeper into the collector and rises symmetrically dividing into two vortex regions with very high buoyancy effect (Ra >100,000). With increasing Prandtl number (three gas cases are examined respectively hydrogen gas mixture, air and ammonia gas) there is also a progressive incursion of the hot zone at the solar collector base higher into the solar collector space and simultaneously a greater asymmetric behavior of the dual isothermal zones. With increasing aspect ratio (wider base relative to the height of the solar collector geometry) there is a greater thermal convection pattern around the whole geometry, higher temperatures and the elimination of the cold upper zone associated with lower aspect ratio.

Keywords: thermal convection, radiative heat transfer, solar collector, Rayleigh number

Procedia PDF Downloads 104
12483 Study of Transport Phenomena in Photonic Crystals with Correlated Disorder

Authors: Samira Cherid, Samir Bentata, Feyza Zahira Meghoufel, Yamina Sefir, Sabria Terkhi, Fatima Bendahma, Bouabdellah Bouadjemi, Ali Zitouni

Abstract:

Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in random dimer model (RDM) on transmission properties of light in one dimension photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers appears in pairs. It is shown that the one-dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.

Keywords: photonic crystals, disorder, correlation, transmission

Procedia PDF Downloads 459
12482 Method of Visual Prosthesis Design Based on Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Zhu Guo Niu, Peng Ying Hong

Abstract:

There are two issues exited in the traditional visual prosthesis: lacking systematic method and the low level of humanization. To tackcle those obstacles, a visual prosthesis design method based on biologically inspired design is proposed. Firstly, a constrained FBS knowledge cell model is applied to construct the functional model of visual prosthesis in biological field. Then the clustering results of engineering domain are ob-tained with the use of the cross-domain knowledge cell clustering algorithm. Finally, a prototype system is designed to support the bio-logically inspired design where the conflict is digested by TRIZ and other tools, and the validity of the method is verified by the solution scheme

Keywords: knowledge-based engineering, visual prosthesis, biologically inspired design, biomedical engineering

Procedia PDF Downloads 173
12481 Intelligent Human Pose Recognition Based on EMG Signal Analysis and Machine 3D Model

Authors: Si Chen, Quanhong Jiang

Abstract:

In the increasingly mature posture recognition technology, human movement information is widely used in sports rehabilitation, human-computer interaction, medical health, human posture assessment, and other fields today; this project uses the most original ideas; it is proposed to use the collection equipment for the collection of myoelectric data, reflect the muscle posture change on a degree of freedom through data processing, carry out data-muscle three-dimensional model joint adjustment, and realize basic pose recognition. Based on this, bionic aids or medical rehabilitation equipment can be further developed with the help of robotic arms and cutting-edge technology, which has a bright future and unlimited development space.

Keywords: pose recognition, 3D animation, electromyography, machine learning, bionics

Procedia PDF Downloads 59
12480 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model

Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry

Abstract:

The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.

Keywords: crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete

Procedia PDF Downloads 109
12479 Thrust Vectoring Control of Supersonic Flow through an Orifice Injector

Authors: I. Mnafeg, A. Abichou, L. Beji

Abstract:

Traditional mechanical control systems in thrust vectoring are efficient in rocket thrust guidance but their costs and their weights are excessive. The fluidic injection in the nozzle divergent constitutes an alternative procedure to achieve the goal. In this paper, we present a 3D analytical model for fluidic injection in a supersonic nozzle integrating an orifice. The fluidic vectoring uses a sonic secondary injection in the divergent. As a result, the flow and interaction between the main and secondary jet has built in order to express the pressure fields from which the forces and thrust vectoring are deduced. Under various separation criteria, the present analytical model results are compared with the existing numerical and experimental data from the literature.

Keywords: flow separation, fluidic thrust vectoring, nozzle, secondary jet, shock wave

Procedia PDF Downloads 282
12478 Empirical Study and Modelling of Three-Dimensional Pedestrian Flow in Railway Foot-Over-Bridge Stair

Authors: Ujjal Chattaraj, M. Raviteja, Chaitanya Aemala

Abstract:

Over the years vehicular traffic has been given priority over pedestrian traffic. With the increase of population in cities, pedestrian traffic is increasing day by day. Pedestrian safety has become a matter of concern for the Traffic Engineers. Pedestrian comfort is primary important for the Engineers who design different pedestrian facilities. Pedestrian comfort and safety can be measured in terms of different level of service (LOS) of the facilities. In this study video data on pedestrian movement have been collected from different railway foot over bridges (FOB) in India. The level of service of those facilities has been analyzed. A cellular automata based model has been formulated to mimic the route choice behaviour of the pedestrians on the foot over bridges.

Keywords: cellular automata model, foot over bridge, level of service, pedestrian

Procedia PDF Downloads 255
12477 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field

Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen

Abstract:

Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.

Keywords: smart structures, piezolamintes, material nonlinearity, strong electric field

Procedia PDF Downloads 409
12476 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 39
12475 The Leaching Kinetics of Zinc from Industrial Zinc Slag Waste

Authors: Hilary Rutto

Abstract:

The investigation was aimed at determining the extent at which the zinc will be extracted from secondary sources generated from galvanising process using dilute sulphuric acid under controlled laboratory conditions of temperature, solid-liquid ratio, and agitation rate. The leaching experiment was conducted for a period of 2 hours and to total zinc extracted calculated in relation to the amount of zinc dissolved at a unit time in comparison to the initial zinc content of the zinc ash. Sulphuric acid was found to be an effective leaching agent with an overall extraction of 91.1% when concentration is at 2M, and solid/liquid ratio kept at 1g/200mL leaching solution and temperature set at 65ᵒC while slurry agitation is at 450rpm. The leaching mechanism of zinc ash with sulphuric acid was conformed well to the shrinking core model.

Keywords: leaching, kinetics, shrinking core model, zinc slag

Procedia PDF Downloads 134
12474 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier

Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat

Abstract:

Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.

Keywords: arrhythmic beat detection, ECG, HRV, kNN classifier

Procedia PDF Downloads 339
12473 Augmented ADRC for Trajectory Tracking of a Novel Hydraulic Spherical Motion Mechanism

Authors: Bin Bian, Liang Wang

Abstract:

A hydraulic spherical motion mechanism (HSMM) is proposed. Unlike traditional systems using serial or parallel mechanisms for multi-DOF rotations, the HSMM is capable of implementing continuous 2-DOF rotational motions in a single joint without the intermediate transmission mechanisms. It has some advantages of compact structure, low inertia and high stiffness. However, as HSMM is a nonlinear and multivariable system, it is very complicate to realize accuracy control. Therefore, an augmented active disturbance rejection controller (ADRC) is proposed in this paper. Compared with the traditional PD control method, three compensation items, i.e., dynamics compensation term, disturbance compensation term and nonlinear error elimination term, are added into the proposed algorithm to improve the control performance. The ADRC algorithm aims at offsetting the effects of external disturbance and realizing accurate control. Euler angles are applied to describe the orientation of rotor. Lagrange equations are utilized to establish the dynamic model of the HSMM. The stability of this algorithm is validated with detailed derivation. Simulation model is formulated in Matlab/Simulink. The results show that the proposed control algorithm has better competence of trajectory tracking in the presence of uncertainties.

Keywords: hydraulic spherical motion mechanism, dynamic model, active disturbance rejection control, trajectory tracking

Procedia PDF Downloads 90
12472 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model

Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi

Abstract:

Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.

Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models

Procedia PDF Downloads 100
12471 Analysis and Design of Exo-Skeleton System Based on Multibody Dynamics

Authors: Jatin Gupta, Bishakh Bhattacharya

Abstract:

With the aging process, many people start suffering from the problem of weak limbs resulting in mobility disorders and loss of sensory and motor function of limbs. Wearable robotic devices are viable solutions to help people suffering from these issues by augmenting their strength. These robotic devices, popularly known as exoskeletons aides user by providing external power and controlling the dynamics so as to achieve desired motion. Present work studies a simplified dynamic model of the human gait. A four link open chain kinematic model is developed to describe the dynamics of Single Support Phase (SSP) of the human gait cycle. The dynamic model is developed integrating mathematical models of the motion of inverted and triple pendulums. Stance leg is modeled as inverted pendulum having single degree of freedom and swing leg as triple pendulum having three degrees of freedom viz. thigh, knee, and ankle joints. The kinematic model is formulated using forward kinematics approach. Lagrangian approach is used to formulate governing dynamic equation of the model. For a system of nonlinear differential equations, numerical method is employed to obtain system response. Reference trajectory is generated using human body simulator, LifeMOD. For optimal mechanical design and controller design of exoskeleton system, it is imperative to study parameter sensitivity of the system. Six different parameters viz. thigh, shank, and foot masses and lengths are varied from 85% to 115% of the original value for the present work. It is observed that hip joint of swing leg is the most sensitive and ankle joint of swing leg is the least sensitive one. Changing link lengths causes more deviation in system response than link masses. Also, shank length and thigh mass are most sensitive parameters. Finally, the present study gives an insight on different factors that should be considered while designing a lower extremity exoskeleton.

Keywords: lower limb exoskeleton, multibody dynamics, energy based formulation, optimal design

Procedia PDF Downloads 184
12470 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times

Authors: Nagham Ismail, Djamel Ouahrani

Abstract:

Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.

Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather

Procedia PDF Downloads 54
12469 A Transformer-Based Question Answering Framework for Software Contract Risk Assessment

Authors: Qisheng Hu, Jianglei Han, Yue Yang, My Hoa Ha

Abstract:

When a company is considering purchasing software for commercial use, contract risk assessment is critical to identify risks to mitigate the potential adverse business impact, e.g., security, financial and regulatory risks. Contract risk assessment requires reviewers with specialized knowledge and time to evaluate the legal documents manually. Specifically, validating contracts for a software vendor requires the following steps: manual screening, interpreting legal documents, and extracting risk-prone segments. To automate the process, we proposed a framework to assist legal contract document risk identification, leveraging pre-trained deep learning models and natural language processing techniques. Given a set of pre-defined risk evaluation problems, our framework utilizes the pre-trained transformer-based models for question-answering to identify risk-prone sections in a contract. Furthermore, the question-answering model encodes the concatenated question-contract text and predicts the start and end position for clause extraction. Due to the limited labelled dataset for training, we leveraged transfer learning by fine-tuning the models with the CUAD dataset to enhance the model. On a dataset comprising 287 contract documents and 2000 labelled samples, our best model achieved an F1 score of 0.687.

Keywords: contract risk assessment, NLP, transfer learning, question answering

Procedia PDF Downloads 113
12468 New Model of Immersive Experiential Branding for International Universities

Authors: Kakhaber Djakeli

Abstract:

For market leadership, iconic brands already start to establish their unique digital avatars into Metaverse and offer Non Fungible Tokens to their fans. Metaverse can be defined as an evolutionary step of Internet development. So if companies and brands use the internet, logically, they can find new solutions for them and their customers in Metaverse. Marketing and Management today must learn how to combine physical world activities with those either entitled as digital, virtual, and immersive. A “Phygital” Solution uniting physical and digital competitive activities of the company covering the questions about how to use virtual worlds for Brand Development and Non Fungible Tokens for more attractiveness soon will be most relevant question for Branding. Thinking comprehensively, we can entitle this type of branding as an Immersive one. As we see, the Immersive Brands give customers more mesmerizing feelings than traditional ones. Accordingly, the Branding can be divided by the company in its own understanding into two models: traditional and immersive. Immersive Branding being more directed to Sensorial challenges of Humans will be big job for International Universities in near future because they target the Generation - Z. To try to help those International Universities opening the door to the mesmerizing, immersive branding, the Marketing Research have been undertaken. The main goal of the study was to establish the model for Immersive Branding at International Universities and answer on many questions what logically arises in university life. The type of Delphi Surveys entitled as an Expert Studies was undertaken for one great mission, to help International Universities to open the opportunities to Phygital activities with reliable knowledge with Model of Immersive Branding. The Questionnaire sent to Experts of Education were covering professional type of questions from education to segmentation of customers, branding, attitude to students, and knowledge to Immersive Marketing. The research results being very interesting and encouraging enough to make author to establish the New Model of Immersive Experiential Branding for International Universities.

Keywords: branding, immersive marketing, students, university

Procedia PDF Downloads 64
12467 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm

Authors: Abdullah A. AlShaher

Abstract:

In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.

Keywords: character recognition, regression curves, handwritten Arabic letters, expectation maximization algorithm

Procedia PDF Downloads 130
12466 Count Data Regression Modeling: An Application to Spontaneous Abortion in India

Authors: Prashant Verma, Prafulla K. Swain, K. K. Singh, Mukti Khetan

Abstract:

Objective: In India, around 20,000 women die every year due to abortion-related complications. In the modelling of count variables, there is sometimes a preponderance of zero counts. This article concerns the estimation of various count regression models to predict the average number of spontaneous abortion among women in the Punjab state of India. It also assesses the factors associated with the number of spontaneous abortions. Materials and methods: The study included 27,173 married women of Punjab obtained from the DLHS-4 survey (2012-13). Poisson regression (PR), Negative binomial (NB) regression, zero hurdle negative binomial (ZHNB), and zero-inflated negative binomial (ZINB) models were employed to predict the average number of spontaneous abortions and to identify the determinants affecting the number of spontaneous abortions. Results: Statistical comparisons among four estimation methods revealed that the ZINB model provides the best prediction for the number of spontaneous abortions. Antenatal care (ANC) place, place of residence, total children born to a woman, woman's education and economic status were found to be the most significant factors affecting the occurrence of spontaneous abortion. Conclusions: The study offers a practical demonstration of techniques designed to handle count variables. Statistical comparisons among four estimation models revealed that the ZINB model provided the best prediction for the number of spontaneous abortions and is recommended to be used to predict the number of spontaneous abortions. The study suggests that women receive institutional Antenatal care to attain limited parity. It also advocates promoting higher education among women in Punjab, India.

Keywords: count data, spontaneous abortion, Poisson model, negative binomial model, zero hurdle negative binomial, zero-inflated negative binomial, regression

Procedia PDF Downloads 142
12465 The Effect of Metformin in Combination with Dexamethasone on the CXCR4 Level in Multiple Myeloma Cell Line

Authors: Seyede Sanaz Seyedebrahimi, Shima Rahimi, Shohreh Fakhari, Ali Jalili

Abstract:

Background: CXCR4, as a chemokine receptor, plays well-known roles in various types of cancers. Several studies have been conducted to overcome CXCR4 axis acts in multiple myeloma (MM) pathogenesis and progression. Dexamethasone, a standard treatment for multiple myeloma, has been shown to increase CXCR4 levels in multiple myeloma cell lines. Herein, we focused on the effects of metformin and dexamethasone on CXCR4 at the cellular level and the migration rate of cell lines after exposure to a combination compared to single-agent models. Materials and Method: Multiple myeloma cell lines (U266 and RPMI8226) were cultured with different metformin and dexamethasone concentrations in single-agent and combination models. The simultaneous combination doses were calculated by CompuSyn software. Cell surface and mRNA expression of CXCR4 were determined using flow cytometry and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay, respectively. The Transwell cell migration assay evaluated the migration ability. Results: In concurred with previous studies, our results showed a dexamethasone up-regulation effect on CXCR4 in a dose-dependent manner. Although, the metformin single-agent model could reduce CXCR4 expression of U266 and RPMI8226 in cell surface and mRNA expression level. Moreover, the administration of metformin and dexamethasone simultaneously exerted a higher suppression effect on CXCR4 expression than the metformin single-agent model. The migration rate through the combination model's matrigel membrane was remarkably lower than the metformin and dexamethasone single-agent model. Discussion: According to our findings, the combination of metformin and dexamethasone effectively inhibited dexamethasone-induced CXCR4 expression in multiple myeloma cell lines. As a result, metformin may be counted as an alternative medicine combined with other chemotherapies to combat multiple myeloma. However, more research is required.

Keywords: CXCR4, dexamethasone, metformin, migration, multiple myeloma

Procedia PDF Downloads 137
12464 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: rough sets, rough neural networks, cellular automata, image processing

Procedia PDF Downloads 417
12463 Parent’s Expectations and School Achievement: Longitudinal Perspective among Chilean Pupils

Authors: Marine Hascoet, Valentina Giaconi, Ludivine Jamain

Abstract:

The aim of our study is to examine if the family socio-economic status (SES) has an influence on students’ academic achievement. We first make the hypothesis that the more their families have financial and social resources, the more students succeed at school. We second make the hypothesis that this family SES has also an impact on parents’ expectations about their children educational outcomes. Moreover, we want to study if that parents’ expectations play the role of mediator between parents’ socio-economic status and the student’ self-concept and academic outcome. We test this model with a longitudinal design thanks to the census-based assessment from the System of Measurement of the Quality of Education (SIMCE). The SIMCE tests aim to assess all the students attending to regular education in a defined level. The sample used in this study came from the SIMCE assessments done three times: in 4th, 8th and 11th grade during the years 2007, 2011 and 2014 respectively. It includes 156.619 students (75.084 boys and 81.535 girls) that had valid responses for the three years. The family socio-economic status was measured at the first assessment (in 4th grade). The parents’ educational expectations and the students’ self-concept were measured at the second assessment (in 8th grade). The achievement score was measured twice; once when children were in 4th grade and a second time when they were in 11th grade. To test our hypothesis, we have defined a structural equation model. We found that our model fit well the data (CFI = 0.96, TLI = 0.95, RMSEA = 0.05, SRMR = 0.05). Both family SES and prior achievements predict parents’ educational expectations and effect of SES is important in comparison to the other coefficients. These expectations predict students’ achievement three years later (with prior achievement controlled) but not their self-concept. Our model explains 51.9% of the achievement in the 11th grade. Our results confirm the importance of the parents’ expectations and the significant role of socio-economic status in students’ academic achievement in Chile.

Keywords: Chilean context, parent’s expectations, school achievement, self-concept, socio-economic status

Procedia PDF Downloads 129
12462 Downside Risk Analysis of the Nigerian Stock Market: A Value at Risk Approach

Authors: Godwin Chigozie Okpara

Abstract:

This paper using standard GARCH, EGARCH, and TARCH models on day of the week return series (of 246 days) from the Nigerian Stock market estimated the model variants’ VaR. An asymmetric return distribution and fat-tail phenomenon in financial time series were considered by estimating the models with normal, student t and generalized error distributions. The analysis based on Akaike Information Criterion suggests that the EGARCH model with student t innovation distribution can furnish more accurate estimate of VaR. In the light of this, we apply the likelihood ratio tests of proportional failure rates to VaR derived from EGARCH model in order to determine the short and long positions VaR performances. The result shows that as alpha ranges from 0.05 to 0.005 for short positions, the failure rate significantly exceeds the prescribed quintiles while it however shows no significant difference between the failure rate and the prescribed quantiles for long positions. This suggests that investors and portfolio managers in the Nigeria stock market have long trading position or can buy assets with concern on when the asset prices will fall. Precisely, the VaR estimates for the long position range from -4.7% for 95 percent confidence level to -10.3% for 99.5 percent confidence level.

Keywords: downside risk, value-at-risk, failure rate, kupiec LR tests, GARCH models

Procedia PDF Downloads 427
12461 Three-Dimensional Model of Leisure Activities: Activity, Relationship, and Expertise

Authors: Taekyun Hur, Yoonyoung Kim, Junkyu Lim

Abstract:

Previous works on leisure activities had been categorizing activities arbitrarily and subjectively while focusing on a single dimension (e.g. active-passive, individual-group). To overcome these problems, this study proposed a Korean leisure activities’ matrix model that considered multidimensional features of leisure activities, which was comprised of 3 main factors and 6 sub factors: (a) Active (physical, mental), (b) Relational (quantity, quality), (c) Expert (entry barrier, possibility of improving). We developed items for measuring the degree of each dimension for every leisure activity. Using the developed Leisure Activities Dimensions (LAD) questionnaire, we investigated the presented dimensions of a total of 78 leisure activities which had been enjoyed by most Koreans recently (e.g. watching movie, taking a walk, watching media). The study sample consisted of 1348 people (726 men, 658 women) ranging in age from teenagers to elderlies in their seventies. This study gathered 60 data for each leisure activity, a total of 4860 data, which were used for statistical analysis. First, this study compared 3-factor model (Activity, Relation, Expertise) fit with 6-factor model (physical activity, mental activity, relational quantity, relational quality, entry barrier, possibility of improving) fit by using confirmatory factor analysis. Based on several goodness-of-fit indicators, the 6-factor model for leisure activities was a better fit for the data. This result indicates that it is adequate to take account of enough dimensions of leisure activities (6-dimensions in our study) to specifically apprehend each leisure attributes. In addition, the 78 leisure activities were cluster-analyzed with the scores calculated based on the 6-factor model, which resulted in 8 leisure activity groups. Cluster 1 (e.g. group sports, group musical activity) and Cluster 5 (e.g. individual sports) had generally higher scores on all dimensions than others, but Cluster 5 had lower relational quantity than Cluster 1. In contrast, Cluster 3 (e.g. SNS, shopping) and Cluster 6 (e.g. playing a lottery, taking a nap) had low scores on a whole, though Cluster 3 showed medium levels of relational quantity and quality. Cluster 2 (e.g. machine operating, handwork/invention) required high expertise and mental activity, but low physical activity. Cluster 4 indicated high mental activity and relational quantity despite low expertise. Cluster 7 (e.g. tour, joining festival) required not only moderate degrees of physical activity and relation, but low expertise. Lastly, Cluster 8 (e.g. meditation, information searching) had the appearance of high mental activity. Even though clusters of our study had a few similarities with preexisting taxonomy of leisure activities, there was clear distinctiveness between them. Unlike the preexisting taxonomy that had been created subjectively, we assorted 78 leisure activities based on objective figures of 6-dimensions. We also could identify that some leisure activities, which used to belong to the same leisure group, were included in different clusters (e.g. filed ball sports, net sports) because of different features. In other words, the results can provide a different perspective on leisure activities research and be helpful for figuring out what various characteristics leisure participants have.

Keywords: leisure, dimensional model, activity, relationship, expertise

Procedia PDF Downloads 289
12460 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 61
12459 Physico-Chemical Characterization of an Algerian Biomass: Application in the Adsorption of an Organic Pollutant

Authors: Djelloul Addad, Fatiha Belkhadem Mokhtari

Abstract:

The objective of this work is to study the retention of methylene blue (MB) by biomass. The Biomass is characterized by X-ray diffraction (XRD), infrared absorption (IRTF). Results show that the biomass contains organic and mineral substances. The effect of certain physicochemical parameters on the adsorption of MB is studied (effect of the pH). This study shows that the increase in the initial concentration of MB leads to an increase in the adsorbed quantity. The adsorption efficiency of MB decreases with increasing biomass mass. The adsorption kinetics show that the adsorption is rapid, and the maximum amount is reached after 120 min of contact time. It is noted that the pH has no great influence on the adsorption. The isotherms are best modelled by the Langmuir model. The adsorption kinetics follow the pseudo-second-order model. The thermodynamic study of adsorption shows that the adsorption is spontaneous and exothermic.

Keywords: dyes, adsorption, biomass, methylene blue, langmuir

Procedia PDF Downloads 44
12458 Structural Analysis and Modelling in an Evolving Iron Ore Operation

Authors: Sameh Shahin, Nannang Arrys

Abstract:

Optimizing pit slope stability and reducing strip ratio of a mining operation are two key tasks in geotechnical engineering. With a growing demand for minerals and an increasing cost associated with extraction, companies are constantly re-evaluating the viability of mineral deposits and challenging their geological understanding. Within Rio Tinto Iron Ore, the Structural Geology (SG) team investigate and collect critical data, such as point based orientations, mapping and geological inferences from adjacent pits to re-model deposits where previous interpretations have failed to account for structurally controlled slope failures. Utilizing innovative data collection methods and data-driven investigation, SG aims to address the root causes of slope instability. Committing to a resource grid drill campaign as the primary source of data collection will often bias data collection to a specific orientation and significantly reduce the capability to identify and qualify complexity. Consequently, these limitations make it difficult to construct a realistic and coherent structural model that identifies adverse structural domains. Without the consideration of complexity and the capability of capturing these structural domains, mining operations run the risk of inadequately designed slopes that may fail and potentially harm people. Regional structural trends have been considered in conjunction with surface and in-pit mapping data to model multi-batter fold structures that were absent from previous iterations of the structural model. The risk is evident in newly identified dip-slope and rock-mass controlled sectors of the geotechnical design rather than a ubiquitous dip-slope sector across the pit. The reward is two-fold: 1) providing sectors of rock-mass controlled design in previously interpreted structurally controlled domains and 2) the opportunity to optimize the slope angle for mineral recovery and reduced strip ratio. Furthermore, a resulting high confidence model with structures and geometries that can account for historic slope instabilities in structurally controlled domains where design assumptions failed.

Keywords: structural geology, geotechnical design, optimization, slope stability, risk mitigation

Procedia PDF Downloads 22