Search results for: biophysical and biochemical techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7603

Search results for: biophysical and biochemical techniques

3253 Nano-Particle of π-Conjugated Polymer for Near-Infrared Bio-Imaging

Authors: Hiroyuki Aoki

Abstract:

Molecular imaging has attracted much attention recently, which visualizes biological molecules, cells, tissue, and so on. Among various in vivo imaging techniques, the fluorescence imaging method has been widely employed as a useful modality for small animals in pre-clinical researches. However, the higher signal intensity is needed for highly sensitive in vivo imaging. The objective of the current study is the development of a fluorescent imaging agent with high brightness for the tumor imaging of a mouse. The strategy to enhance the fluorescence signal of a bio-imaging agent is the increase of the absorption of the excitation light and the fluorescence conversion efficiency. We developed a nano-particle fluorescence imaging agent consisting of a π-conjugated polymer emitting a fluorescence signal in a near infrared region. A large absorption coefficient and high emission intensity at a near infrared optical window for biological tissue enabled highly sensitive in vivo imaging with a tumor-targeting ability by an EPR (enhanced permeation and retention) effect. The signal intensity from the π-conjugated fluorescence imaging agent is larger by two orders of magnitude compared to a quantum dot, which has been known as the brightest imaging agent. The π-conjugated polymer nano-particle would be a promising candidate in the in vivo imaging of small animals.

Keywords: fluorescence, conjugated polymer, in vivo imaging, nano-particle, near-infrared

Procedia PDF Downloads 478
3252 Comparison of Sensitivity and Specificity of Pap Smear and Polymerase Chain Reaction Methods for Detection of Human Papillomavirus: A Review of Literature

Authors: M. Malekian, M. E. Heydari, M. Irani Estyar

Abstract:

Human papillomavirus (HPV) is one of the most common sexually transmitted infection, which may lead to cervical cancer as the main cause of it. With early diagnosis and treatment in health care services, cervical cancer and its complications are considered to be preventable. This study was aimed to compare the efficiency, sensitivity, and specificity of Pap smear and polymerase chain reaction (PCR) in detecting HPV. A literature search was performed in Google Scholar, PubMed and SID databases using the keywords 'human papillomavirus', 'pap smear' and 'polymerase change reaction' to identify studies comparing Pap smear and PCR methods for the detection. No restrictions were considered.10 studies were included in this review. All samples that were positive by pop smear were also positive by PCR. However, there were positive samples detected by PCR which was negative by pop smear and in all studies, many positive samples were missed by pop smear technique. Although The Pap smear had high specificity, PCR based HPV detection was more sensitive method and had the highest sensitivity. In order to promote the quality of detection and high achievement of the maximum results, PCR diagnostic methods in addition to the Pap smear are needed and Pap smear method should be combined with PCR techniques according to the high error rate of Pap smear in detection.

Keywords: human papillomavirus, cervical cancer, pap smear, polymerase chain reaction

Procedia PDF Downloads 131
3251 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network

Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao

Abstract:

The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.

Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations

Procedia PDF Downloads 154
3250 Estimating View-Through Ad Attribution from User Surveys Using Convex Optimization

Authors: Yuhan Lin, Rohan Kekatpure, Cassidy Yeung

Abstract:

In Digital Marketing, robust quantification of View-through attribution (VTA) is necessary for evaluating channel effectiveness. VTA occurs when a product purchase is aided by an Ad but without an explicit click (e.g. a TV ad). A lack of a tracking mechanism makes VTA estimation challenging. Most prevalent VTA estimation techniques rely on post-purchase in-product user surveys. User surveys enable the calculation of channel multipliers, which are the ratio of the view-attributed to the click-attributed purchases of each marketing channel. Channel multipliers thus provide a way to estimate the unknown VTA for a channel from its known click attribution. In this work, we use Convex Optimization to compute channel multipliers in a way that enables a mathematical encoding of the expected channel behavior. Large fluctuations in channel attributions often result from overfitting the calculations to user surveys. Casting channel attribution as a Convex Optimization problem allows an introduction of constraints that limit such fluctuations. The result of our study is a distribution of channel multipliers across the entire marketing funnel, with important implications for marketing spend optimization. Our technique can be broadly applied to estimate Ad effectiveness in a privacy-centric world that increasingly limits user tracking.

Keywords: digital marketing, survey analysis, operational research, convex optimization, channel attribution

Procedia PDF Downloads 199
3249 Novel Marketing Strategy To Increase Sales Revenue For SMEs Through Social Media

Authors: Kruti Dave

Abstract:

Social media marketing is an essential component of 21st-century business. Social media platforms enable small and medium-sized businesses to enhance brand recognition, generate leads and sales. However, the research on social media marketing is still fragmented and focuses on specific topics, such as effective communication techniques. Since the various ways in which social media impacts individuals and companies alike, the authors of this article focus on the origin, impacts, and current state of Social Media, emphasizing their significance as customer empowerment agents. It illustrates their potential and current responsibilities as part of the corporate business strategy and also suggests several methods to engage them as marketing tools. The focus of social media marketing ranges from defenders to explorers, the culture of Social media marketing encompasses the poles of conservatism and modernity, social media marketing frameworks lie between hierarchies and networks, and its management goes from autocracy to anarchy. This research proposes an integrative framework for small and medium-sized businesses through social media, and the influence of the same will be measured. This strategy will help industry experts to understand this new era. We propose an axiom: Social Media is always a function of marketing as a revenue generator.

Keywords: social media, marketing strategy, media marketing, brand awareness, customer engagement, revenue generator, brand recognition

Procedia PDF Downloads 197
3248 Long-Term Climate Patterns in Eastern and Southeastern Ethiopia

Authors: Messay Mulugeta, Degefa Tolossa

Abstract:

The purpose of this paper is to scrutinize trends of climate risks in eastern and southeastern parts of Ethiopia. This part of the country appears severely affected by recurrent droughts, erratic rainfall, and increasing temperature condition. Particularly, erratic rains and moisture stresses have been forcibly threatening and shoving the people over many decades coupled with unproductive policy frameworks and weak institutional setups. These menaces have been more severe in dry lowlands where rainfall is more erratic and scarce. Long-term climate data of nine weather stations in eastern and southeastern parts of Ethiopia were obtained from National Meteorological Agency of Ethiopia (NMA). As issues related to climate risks are very intricate, different techniques and indices were applied to deal with the objectives of the study. It is concluded that erratic rainfall, moisture scarcity, and increasing temperature conditions have been the main challenges in eastern and southeastern Ethiopia. In fact, these risks can be eased by putting in place efficient and integrated rural development strategies, environmental rehabilitation plans of action in overworked areas, proper irrigation and water harvesting practices and well thought-out and genuine resettlement schemes.

Keywords: rainfall variability, erratic rains, precipitation concentration index (PCI), climatic pattern, Ethiopia

Procedia PDF Downloads 238
3247 A Sensitive Uric Acid Electrochemical Sensing in Biofluids Based on Ni/Zn Hydroxide Nanocatalyst

Authors: Nathalia Florencia Barros Azeredo, Josué Martins Gonçalves, Pamela De Oliveira Rossini, Koiti Araki, Lucio Angnes

Abstract:

This work demonstrates the electroanalysis of uric acid (UA) at very low working potential (0 V vs Ag/AgCl) directly in body fluids such as saliva and sweat using electrodes modified with mixed -Ni0.75Zn0.25(OH)2 nanoparticles exhibiting stable electrocatalytic responses from alkaline down to weakly acidic media (pH 14 to 3 range). These materials were prepared for the first time and fully characterized by TEM, XRD, and spectroscopic techniques. The electrochemical properties of the modified electrodes were evaluated in a fast and simple procedure for uric acid analyses based on cyclic voltammetry and chronoamperometry, pushing down the detection and quantification limits (respectively of 2.3*10-8 and 7.6*10-8 mol L-1) with good repeatability (RSD = 3.2% for 30 successive analyses pH 14). Finally, the possibility of real application was demonstrated upon realization of unexpectedly robust and sensitive modified FTO (fluorine doped tin oxide) glass and screen-printed sensors for measurement of uric acid directly in real saliva and sweat samples, with no significant interference of usual concentrations of ascorbic acid, acetaminophen, lactate and glucose present in those body fluids (Fig. 1).

Keywords: nickel hydroxide, mixed catalyst, uric acid sensors, biofluids

Procedia PDF Downloads 127
3246 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques

Authors: Ved Kulkarni, Karthik Kini

Abstract:

This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.

Keywords: data mining, language processing, artificial neural networks, sentiment analysis

Procedia PDF Downloads 17
3245 Surgical Planning for the Removal of Cranial Spheno-orbital Meningioma by Using Personalized Polymeric Prototypes Obtained with Additive Manufacturing Techniques

Authors: Freddy Patricio Moncayo-Matute, Pablo Gerardo Peña-Tapia, Vázquez-Silva Efrén, Paúl Bolívar Torres-Jara, Diana Patricia Moya-Loaiza, Gabriela Abad-Farfán

Abstract:

This study describes a clinical case and the results on the application of additive manufacturing for the surgical planning in the removal of a cranial spheno-orbital meningioma. It is verified that the use of personalized anatomical models and cutting guides helps to manage the cranial anomalies approach. The application of additive manufacturing technology: Fused Deposition Modeling (FDM), as a low-cost alternative, enables the printing of the test anatomical model, which in turn favors the reduction of surgery time, as well the morbidity rate reduction too. And the printing of the personalized cutting guide, which constitutes a valuable aid to the surgeon in terms of improving the intervention precision and reducing the invasive effect during the craniotomy. As part of the results, post-surgical follow-up is included as an instrument to verify the patient's recovery and the validity of the procedure.

Keywords: surgical planning, additive manufacturing, rapid prototyping, fused deposition modeling, custom anatomical model

Procedia PDF Downloads 100
3244 Carbonate Crusts in Jordan: Records of Groundwater Flow, Carbon Fluxes, Tectonic Movement and Climate Change

Authors: Nizar Abu-Jaber

Abstract:

Late Pleistocene and Holocene carbonate crusts in the south of Jordan were studied using a combination of field documentation, petrography, geochemical and isotopic techniques. These surficial crusts and vein deposits appear to have formed as a result of interaction between near-surface groundwater, surficial soil and sediments and rising carbon dioxide. Rising mantle CO2 dissolves in the water to create carbonic acid, which in turn dissolves the calcite in the soil in the sediments. When the pH rises later due to degassing, the carbonate crusts are left in the places where the water was flowing in veins, channels and interfaces between high and low permeability materials. The crusts have the potential for being important records of natural and human agencies on the landscape of the area. They reflect the isotopic composition of the waters in which they precipitated in, and also contain isotopic information about the aeolian calcium fluxes affecting the area (using strontium isotopes). Moreover, changing stream valley base levels can be identified and measured, which can help quantify the rates of tectonic movement. Finally, human activities such and channel construction and terrace building can be identified and traced temporally and spatially using these deposits.

Keywords: anthropogenic change, carbonate crusts, environmental change, Jordan

Procedia PDF Downloads 279
3243 Opportunity Development and Entrepreneurial Process

Authors: Abosede Mosunmola Odeseye

Abstract:

The sustainability of nations’ economies today have proven to be unrealistic in a constantly changing world without appropriate accordance to entrepreneurship role and its processes. This role has therefore proven to be a product of the available and discoverable opportunities by an individual/organisation in any pattern – innovation, discovery, diffusion, imitation amidst possible challenges. In light of these, this paper examined the relationship between opportunity development and entrepreneurial processes as well as the factors determining individual’s opportunity development and the success of entrepreneurial processes. Systematic review method was adopted for selecting relevant academic materials. The theoretical base of this paper was anchored on Schumpeter’s entrepreneurial innovation model and Drucker and Stevenson’s opportunity-based entrepreneurship theory. Based on the reviewed literature, it was discovered that rough business idea “opportunity” in any form – techniques/product encounter various obstacles to achieve its development, acceptability and sustainability. In essence, the findings revealed that the birth of every opportunity is as a result of the individual/organisation and environmental factors to be able to scale through the whole process successfully. Due to the outcome of this paper, it was recommended that the organisations/government should endeavour to create an enabling environment for a rough business idea to come to life amidst the hurdles of the entrepreneurial process.

Keywords: entrepreneurial process, entrepreneurship, opportunity, opportunity development, organisation, sustainability

Procedia PDF Downloads 240
3242 Data-Driven Approach to Predict Inpatient's Estimated Discharge Date

Authors: Ayliana Dharmawan, Heng Yong Sheng, Zhang Xiaojin, Tan Thai Lian

Abstract:

To facilitate discharge planning, doctors are presently required to assign an Estimated Discharge Date (EDD) for each patient admitted to the hospital. This assignment of the EDD is largely based on the doctor’s judgment. This can be difficult for cases which are complex or relatively new to the doctor. It is hypothesized that a data-driven approach would be able to facilitate the doctors to make accurate estimations of the discharge date. Making use of routinely collected data on inpatient discharges between January 2013 and May 2016, a predictive model was developed using machine learning techniques to predict the Length of Stay (and hence the EDD) of inpatients, at the point of admission. The predictive performance of the model was compared to that of the clinicians using accuracy measures. Overall, the best performing model was found to be able to predict EDD with an accuracy improvement in Average Squared Error (ASE) by -38% as compared to the first EDD determined by the present method. It was found that important predictors of the EDD include the provisional diagnosis code, patient’s age, attending doctor at admission, medical specialty at admission, accommodation type, and the mean length of stay of the patient in the past year. The predictive model can be used as a tool to accurately predict the EDD.

Keywords: inpatient, estimated discharge date, EDD, prediction, data-driven

Procedia PDF Downloads 174
3241 Self Tuning Controller for Reducing Cycle to Cycle Variations in SI Engine

Authors: Alirıza Kaleli, M. Akif Ceviz, Erdoğan Güner, Köksal Erentürk

Abstract:

The cyclic variations in spark ignition engines occurring especially under specific engine operating conditions make the maximum pressure variable for successive in-cylinder pressure cycles. Minimization of cyclic variations has a great importance in effectively operating near to lean limit, or at low speed and load. The cyclic variations may reduce the power output of the engine, lead to operational instabilities, and result in undesirable engine vibrations and noise. In this study, spark timing is controlled in order to reduce the cyclic variations in spark ignition engines. Firstly, an ARMAX model has developed between spark timing and maximum pressure using system identification techniques. By using this model, the maximum pressure of the next cycle has been predicted. Then, self-tuning minimum variance controller has been designed to change the spark timing for consecutive cycles of the first cylinder of test engine to regulate the in-cylinder maximum pressure. The performance of the proposed controller is illustrated in real time and experimental results show that the controller has a reliable effect on cycle to cycle variations of maximum cylinder pressure when the engine works under low speed conditions.

Keywords: cyclic variations, cylinder pressure, SI engines, self tuning controller

Procedia PDF Downloads 481
3240 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos

Abstract:

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450 °C. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite -TiO2 or halloysite- TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Keywords: halloysite, palygorskite, photocatalysis, titanium dioxide

Procedia PDF Downloads 315
3239 Characterization of Nanostructured and Conventional TiAlN and AlCrN Coated ASTM-SA213-T-11 Boiler Steel

Authors: Vikas Chawla, Buta Singh Sidhu, Amita Rani, Amit Handa

Abstract:

The main objective of the present work is microstructural and mechanical characterization of the conventional and nanostructured TiAlN and AlCrN coatings deposited on T-11 boiler steel. In case of conventional coatings, Al-Cr and Ti-Al metallic powders were deposited using plasma spray process followed by gas nitriding of the surface which was done in the lab with optimized parameters after conducting several trials on plasma-sprayed coated specimens. The physical vapor deposition process (PAPVD) was employed for depositing nanostructured TiAlN and AlCrN coatings. The field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray analysis (EDAX) attachment, X-ray diffraction (XRD) analysis, atomic force microscopy (AFM) analysis and the X-Ray mapping analysis techniques have been used to study surface and cross-sectional morphology of the coatings. The surface roughness and micro-hardness were also measured. A good adhesion of the conventional thick TiAlN and AlCrN coatings was found. The coatings under study are recommended for the applications to super-heater and re-heater tubes of the boilers based upon the outcomes of the research work.

Keywords: nanostructure, physical vapour deposition, oxides, thin films, electron microscopy

Procedia PDF Downloads 140
3238 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time

Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani

Abstract:

This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.

Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management

Procedia PDF Downloads 84
3237 A Study to Examine the Use of Traditional Agricultural Practices to Fight the Effects of Climate Change

Authors: Rushva Parihar, Anushka Barua

Abstract:

The negative repercussions of a warming planet are already visible, with biodiversity loss, water scarcity, and extreme weather events becoming ever so frequent. The agriculture sector is perhaps the most impacted, and modern agriculture has failed to defend farmers from the effects of climate change. This, coupled with the added pressure of higher demands for food production caused due to population growth, has only compounded the impact. Traditional agricultural practices that are routed in indigenous knowledge have long safeguarded the delicate balance of the ecosystem through sustainable production techniques. This paper uses secondary data to explore these traditional processes (like Beejamrita, Jeevamrita, sheep penning, earthen bunding, and others) from around the world that have been developed over centuries and focuses on how they can be used to tackle contemporary issues arising from climate change (such as nutrient and water loss, soil degradation, increased incidences of pests). Finally, the resulting framework has been applied to the context of Indian agriculture as a means to combat climate change and improve food security, all while encouraging documentation and transfer of local knowledge as a shared resource among farmers.

Keywords: sustainable food systems, traditional agricultural practices, climate smart agriculture, climate change, indigenous knowledge

Procedia PDF Downloads 127
3236 Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques

Authors: Amir Peyman Soleymani, Jasna Jankovic

Abstract:

The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes.

Keywords: PEM fuel cells, Li-ion batteries, 2D and 3D imaging, materials characterizations

Procedia PDF Downloads 154
3235 Application of Deep Neural Networks to Assess Corporate Credit Rating

Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu

Abstract:

In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.

Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating

Procedia PDF Downloads 235
3234 Development of Calcium Carbonate Molecular Sheets via Wet Chemical Route

Authors: Sudhir Kumar Sharma, Ramesh Jagannathan

Abstract:

The interaction of organic and inorganic matrices of biological origin resulting in self-assembled structures with unique properties is well established. The development of such self-assembled nanostructures by synthetic and bio-inspired techniques is an established field of active research. Among bio-materials, nacre, a laminar stack of calcium carbonate nanosheets, which are interleaved with organic material, has long been focused research due to its unique mechanical properties. In this paper, we present the development of nacre-like lamellar structures made up of calcium carbonate via a wet chemical route. We used the binding affinity of carboxylate anions and calcium cations using poly (acrylic) acid (PAA) to lead CaCO₃ crystallization. In these experiments, we selected calcium acetate as the precursor molecule along with PAA (Mw ~ 8000 Da). We found that Ca⁺²/COO⁻ ratio provided a tunable control for the morphology and growth of CaCO₃ nanostructures. Drop casting one such formulation on a silicon substrate followed by calcination resulted in co-planner, molecular sheets of CaCO₃, separated by a spacer layer of carbon. The scope of our process could be expanded to produce unit cell thick molecular sheets of other important inorganic materials.

Keywords: self-assembled structures, bio-inspired materials, calcium carbonate, wet chemical route

Procedia PDF Downloads 136
3233 Repeated Reuse of Insulin Injection Syringes and Incidence of Bacterial Contamination among Diabetic Patients in Jimma University Specialized Hospital, Jimma, Ethiopia

Authors: Muluneh Ademe, Zeleke Mekonnen

Abstract:

Objective: to determine the level of bacterial contamination of reused insulin syringes among diabetic patients. Method: A facility based cross-sectional study was conducted among diabetic patients. Data on socio-demographic variables, history of injection syringe reuse, and frequency of reuse of syringes were collected using predesigned questionnaire. Finally, the samples from the syringes were cultured according to standard microbiological techniques. Result: Eighteen diabetic patients at Jimma University Hospital participated. A total of 83.3% of participants reused a single injection syringe for >30 consecutive injections, while 16.7% reused for >30 injections. Our results showed 22.2% of syringes were contaminated with methicillin-resistant Staphylococcus aures. Conclusion: We conclude reuse of syringe is associated with microbial contamination. The findings that 4/18 syringes being contaminated with bacteria is an alarming situation. A mechanism should be designed for patients to get injection syringes with affordable price. If reusing is not avoidable, reducing number of injections per a single syringe and avoiding needle touching with hand or other non-sterile material may be an alternative to reduce the risk of contamination.

Keywords: diabetes mellitus, Ethiopia, subcutaneous insulin injection, syringe reuse

Procedia PDF Downloads 381
3232 Perceptions toward Adopting Virtual Reality as a Learning Aid in Information Technology

Authors: S. Alfalah, J. Falah, T. Alfalah, M. Elfalah, O. Falah

Abstract:

The field of education is an ever-evolving area constantly enriched by newly discovered techniques provided by active research in all areas of technologies. The recent years have witnessed the introduction of a number of promising technologies and applications to enhance the teaching and learning experience. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing education in many fields. VR creates an artificial environment, using computer hardware and software, which is similar to the real world. This simulation provides a solution to improve the delivery of materials, which facilitates the teaching process by providing a useful aid to instructors, and enhances the learning experience by providing a beneficial learning aid. In order to assure future utilization of such systems, students’ perceptions were examined toward utilizing VR as an educational tool in the Faculty of Information Technology (IT) in The University of Jordan. A questionnaire was administered to IT undergraduates investigating students’ opinions about the potential opportunities that VR technology could offer and its implications as learning and teaching aid. The results confirmed the end users’ willingness to adopt VR systems as a learning aid. The result of this research forms a solid base for investing in a VR system for IT education.

Keywords: information, technology, virtual reality, education

Procedia PDF Downloads 290
3231 An Assessment of the Impact of Safe Motherhood Initiative on Maternal Health of Women in Gumel Local Government Area of Jigawa State, Nigeria

Authors: Ahmed Mudi, Bala Zakar

Abstract:

The paper assesses the impact of safe motherhood initiative on maternal health of women in Gumel Local Government Area of Jigawa State. The work will specifically concentrate on the background on safe motherhood scheme and maternal health of women. The objective of this paper is to assess the level of safe motherhood scheme in Gumel local government area, to find out the level of maternal health in Gumel local government as well as to determine the impact of safe motherhood scheme on maternal health on women in Gumel Local Government Area Jigawa State. Various literature on the topic are reviewed, the paper adopts survey design and use questionnaire to collect data from the respondent. The study comprises 350 women selected from six rural communities in Gumel using random sampling techniques, and the data was analysed by simple frequency and percentage. The research concluded that safe motherhood initiative has a significant impact on the maternal health of women in Gumel Local Government Area of Jigawa State. Finally, suitable recommendations were given on how to improve the scheme to ensure better maternal health in the region.

Keywords: action, assessment, maternal health, safe motherhood, surgery

Procedia PDF Downloads 266
3230 The Reflection Framework to Enhance the User Experience for Cultural Heritage Spaces’ Websites in Post-Pandemic Times

Authors: Duyen Lam, Thuong Hoang, Atul Sajjanhar, Feifei Chen

Abstract:

With the emerging interactive technology applications helping users connect progressively with cultural artefacts in new approaches, the cultural heritage sector gains significantly. The interactive apps’ issues can be tested via several techniques, including usability surveys and usability evaluations. The severe usability problems for museums’ interactive technologies commonly involve interactions, control, and navigation processes. This study confirms the low quality of being immersive for audio guides in navigating the exhibition and involving experience in the virtual environment, which are the most vital features of new interactive technologies such as AR and VR. In addition, our usability surveys and heuristic evaluations disclosed many usability issues of these interactive technologies relating to interaction functions. Additionally, we use the Wayback Machine to examine what interactive apps/technologies were deployed on these websites during the physical visits limited due to the COVID-19 pandemic lockdown. Based on those inputs, we propose the reflection framework to enhance the UX in the cultural heritage domain with detailed guidelines.

Keywords: framework, user experience, cultural heritage, interactive technology, museum, COVID-19 pandemic, usability survey, heuristic evaluation, guidelines

Procedia PDF Downloads 68
3229 The Effect of the Addition of Additives on the Properties of Bisamide Organogels

Authors: Elmira Ghanbari, Jan Van Esch, Stephen J. Picken, Sahil Aggarwal

Abstract:

Organogels are formed by the assembly of low molecular weight gelators (LMWG) into fibrous structures. The assembly of these molecules into crystalline fibrous structures occurs as a result of reversible interactions such as π-stacking, hydrogen-bonding, and van der Waals interactions. Bisamide organogelators with two amide groups have been used as one of LMWGs which show efficient assembly behavior via hydrogen bonding for network formation, the formation of a crystalline network for solvent entrapment. In this study, different bisamide gelators with different lengths of alkyl chains have been added to the bisamide parent gels. The effect of the addition of bisamide additives on the gelation of bisamide gels is described. Investigation of the thermal properties of the gels by differential scanning calorimetry and dropping ball techniques indicated that the bisamide gels can be formed by the addition of a high concentration of the second bisamide components. The microstructure of the gels with different gelator components has been visualized with scanning electron microscopy (SEM) which has shown systematic woven, platelet-like, and a combination of those morphologies for different gels. Examining the addition of a range of bisamide additives with different structural characteristics than the parent bisamide gels has confirmed the effect of the molecular structure on the morphology of the bisamide gels and their final properties.

Keywords: bisamide organogelator additives, gel morphology, gel properties, self-assembly

Procedia PDF Downloads 203
3228 Seismic Hazard Prediction Using Seismic Bumps: Artificial Neural Network Technique

Authors: Belkacem Selma, Boumediene Selma, Tourkia Guerzou, Abbes Labdelli

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. The Earthquakes prediction to prevent the loss of human lives and even property damage is an important factor; that is why it is crucial to develop techniques for predicting this natural disaster. This present study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 10^4J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines has been analyzed. The results obtained show that the ANN with high accuracy was able to predict earthquake parameters; the classification accuracy through neural networks is more than 94%, and that the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: earthquake prediction, ANN, seismic bumps

Procedia PDF Downloads 127
3227 Identification System for Grading Banana in Food Processing Industry

Authors: Ebenezer O. Olaniyi, Oyebade K. Oyedotun, Khashman Adnan

Abstract:

In the food industry high quality production is required within a limited time to meet up with the demand in the society. In this research work, we have developed a model which can be used to replace the human operator due to their low output in production and slow in making decisions as a result of an individual differences in deciding the defective and healthy banana. This model can perform the vision attributes of human operators in deciding if the banana is defective or healthy for food production based. This research work is divided into two phase, the first phase is the image processing where several image processing techniques such as colour conversion, edge detection, thresholding and morphological operation were employed to extract features for training and testing the network in the second phase. These features extracted in the first phase were used in the second phase; the classification system phase where the multilayer perceptron using backpropagation neural network was employed to train the network. After the network has learned and converges, the network was tested with feedforward neural network to determine the performance of the network. From this experiment, a recognition rate of 97% was obtained and the time taken for this experiment was limited which makes the system accurate for use in the food industry.

Keywords: banana, food processing, identification system, neural network

Procedia PDF Downloads 471
3226 Formulation of Mortars with Marine Sediments

Authors: Nor-Edine Abriak, Mouhamadou Amar, Mahfoud Benzerzour

Abstract:

The transition to a more sustainable economy is directed by a reduction in the consumption of raw materials in equivalent production. The recovery of byproducts and especially the dredged sediment as mineral addition in cements matrix represents an alternative to reduce raw material consumption and construction sector’s carbon footprint. However, the efficient use of sediment requires adequate and optimal treatment. Several processing techniques have so far been applied in order to improve some physicochemical properties. The heat treatment by calcination was effective in removing the organic fraction and activates the pozzolanic properties. In this article, the effect of the optimized heat treatment of marine sediments in the physico-mechanical and environmental properties of mortars are shown. A finding is that the optimal substitution of a portion of cement by treated sediments by calcination at 750 °C helps to maintain or improve the mechanical properties of the cement matrix in comparison with a standard reference mortar. The use of calcined sediment enhances mortar behavior in terms of mechanical strength and durability. From an environmental point of view and life cycle, mortars formulated containing treated sediments are considered inert with respect to the inert waste storage facilities reference (ISDI-France).

Keywords: sediment, calcination, cement, reuse

Procedia PDF Downloads 180
3225 Electricity Generation from Renewables and Targets: An Application of Multivariate Statistical Techniques

Authors: Filiz Ersoz, Taner Ersoz, Tugrul Bayraktar

Abstract:

Renewable energy is referred to as "clean energy" and common popular support for the use of renewable energy (RE) is to provide electricity with zero carbon dioxide emissions. This study provides useful insight into the European Union (EU) RE, especially, into electricity generation obtained from renewables, and their targets. The objective of this study is to identify groups of European countries, using multivariate statistical analysis and selected indicators. The hierarchical clustering method is used to decide the number of clusters for EU countries. The conducted statistical hierarchical cluster analysis is based on the Ward’s clustering method and squared Euclidean distances. Hierarchical cluster analysis identified eight distinct clusters of European countries. Then, non-hierarchical clustering (k-means) method was applied. Discriminant analysis was used to determine the validity of the results with data normalized by Z score transformation. To explore the relationship between the selected indicators, correlation coefficients were computed. The results of the study reveal the current situation of RE in European Union Member States.

Keywords: share of electricity generation, k-means clustering, discriminant, CO2 emission

Procedia PDF Downloads 415
3224 Awareness in the Code of Ethics for Nurse Educators among Nurse Educators, Nursing Students and Professional Nurses at the Royal Thai Army, Thailand

Authors: Wallapa Boonrod

Abstract:

Thai National Education Act 1999 required all educational institutions received external quality evaluation at least once every five years. The purpose of this study was to compare the awareness in the code of ethics for nurse educators among nurse educators, professional nurses, and nursing students under The Royal Thai Army Nurse College. The sample consisted of 51 of nurse educators 200 nursing students and 340 professional nurses from Army nursing college and hospital by stratified random sampling techniques. The descriptive statistics indicated that the nurse educators, nursing students and professional nurses had different levels of awareness in the 9 roles of nurse educators: Nurse, Reliable Sacrifice, Intelligence, Giver, Nursing Skills, Teaching Responsibility, Unbiased Care, Tie to Organization, and Role Model. The code of ethics for nurse educators (CENE) measurement models from the awareness of nurse educators, professional nurses, and nursing students were well fitted with the empirical data. The CENE models from them were invariant in forms, but variant in factor loadings. Thai Army nurse educators strive to create a learning environment that nurtures the highest nursing potential and standards in their nursing students.

Keywords: awareness of the code of ethics for nurse educators, nursing college and hospital under The Royal Thai Army, Thai Army nurse educators, professional nurses

Procedia PDF Downloads 450