Search results for: waste-water microbial fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6681

Search results for: waste-water microbial fuel cell

2361 Biogenic Amines Production during RAS Cheese Ripening

Authors: Amr Amer

Abstract:

Cheeses are among those high-protein-containing foodstuffs in which enzymatic and microbial activities cause the formation of biogenic amines from amino acids decarboxylation. The amount of biogenic amines in cheese may act as a useful indicator of the hygienic quality of the product. In other words, their presence in cheese is related to its spoilage and safety. Formation of biogenic amines during Ras cheese (Egyptian hard cheese) ripening was investigated for 4 months. Three batches of Ras cheese were manufactured using Egyptian traditional method. From each batch, Samples were collected at 1, 7, 15, 30, 60, 90 and 120 days after cheese manufacture. The concentrations of biogenic amines (Tyramine, Histamine, Cadaverine and Tryptamine) were analyzed by high performance liquid chromatography (HPLC). There was a significant increased (P<0.05) in Tyramine levels from 4.34± 0.07 mg|100g in the first day of storage till reached 88.77± 0.14 mg|100g at a 120-day of storage. Also, Histamine and Cadaverine levels had the same increased pattern of Tyramine reaching 64.94± 0.10 and 28.28± 0.08 mg|100g in a 120- day of storage, respectively. While, there was a fluctuation in the concentration of Tryptamine level during ripening period as it decreased from 3.24± 0.06 to 2.66± 0.11 mg|100g at 60-day of storage then reached 5.38±0.08 mg|100g in a 120- day of storage. Biogenic amines can be formed in cheese during production and storage: many variables, as pH, salt concentration, bacterial activity as well as moisture, storage temperature and ripening time, play a relevant role in their formation. Comparing the obtained results with the recommended standard by Food and Drug Administration "FDA" (2001), High levels of biogenic amines in various Ras cheeses consumed in Egypt exceeded the permissible value (10 mg%) which seemed to pose a threat to public health. In this study, presence of high concentrations of biogenic amines (Tyramine, Histamine, cadaverine and Tryptamine) in Egyptian Ras cheeses reflects the bad hygienic conditions under which they produced and stored. Accordingly, the levels of biogenic amines in different cheeses should be come in accordance with the safe permissible limit recommended by FDA to ensure human safety.

Keywords: Ras cheese, biogenic amines, tyramine, histamine, cadaverine

Procedia PDF Downloads 436
2360 Numerical Simulation of Natural Gas Dispersion from Low Pressure Pipelines

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Gas release from the pipelines is one of the main factors in the gas industry accidents. Released gas ejects from the pipeline as a free jet and in the growth process, the fuel gets mixed with the ambient air. Accordingly, an accidental spark will release the chemical energy of the mixture with an explosion. Gas explosion damages the equipment and endangers the life of staffs. So due to importance of safety in gas industries, prevision of accident can reduce the number of the casualties. In this paper, natural gas leakages from the low pressure pipelines are studied in two steps: 1) the simulation of mixing process and identification of flammable zones and 2) the simulation of wind effects on the mixing process. The numerical simulations were performed by using the finite volume method and the pressure-based algorithm. Also, for the grid generation the structured method was used. The results show that, in just 6.4 s after accident, released natural gas could penetrate to 40 m in vertical and 20 m in horizontal direction. Moreover, the results show that the wind speed is a key factor in dispersion process. In fact, the wind transports the flammable zones into the downstream. Hence, to improve the safety of the people and human property, it is preferable to construct gas facilities and buildings in the opposite side of prevailing wind direction.

Keywords: flammable zones, gas pipelines, numerical simulation, wind effects

Procedia PDF Downloads 166
2359 Solar Power Monitoring and Control System using Internet of Things

Authors: Oladapo Tolulope Ibitoye

Abstract:

It has become imperative to harmonize energy poverty alleviation and carbon footprint reduction. This is geared towards embracing independent power generation at local levels to reduce the popular ambiguity in the transmission of generated power. Also, it will contribute towards the total adoption of electric vehicles and direct current (DC) appliances that are currently flooding the global market. Solar power system is gaining momentum as it is now an affordable and less complex alternative to fossil fuel-based power generation. Although, there are many issues associated with solar power system, which resulted in deprivation of optimum working capacity. One of the key problems is inadequate monitoring of the energy pool from solar irradiance, which can then serve as a foundation for informed energy usage decisions and appropriate solar system control for effective energy pooling. The proposed technique utilized Internet of Things (IoT) in developing a system to automate solar irradiance pooling by controlling solar photovoltaic panels autonomously for optimal usage. The technique is potent with better solar irradiance exposure which results into 30% voltage pooling capacity than a system with static solar panels. The evaluation of the system show that the developed system possesses higher voltage pooling capacity than a system of static positioning of solar panel.

Keywords: solar system, internet of things, renewable energy, power monitoring

Procedia PDF Downloads 83
2358 “SockGEL/PLUG” Injectable Smart/Intelligent and Bio-Inspired Sol-Gel Nanomaterials for Simple and Complex Oro-Dental and Cranio-Maxillo-Facial Interventional Applications

Authors: Ziyad S. Haidar

Abstract:

Millions of teeth are removed annually, and dental extraction is one of the most commonly performed surgical procedures globally. Whether due to caries, periodontal disease or trauma, exodontia and the ensuing wound healing and bone remodeling processes of the resultant socket (hole in the jaw bone) usually result in serious deformities of the residual alveolar osseous ridge and surrounding soft tissues (reduced height/width). Such voluminous changes render the placement of a proper conventional bridge, denture or even an implant-supported prosthesis extremely challenging. Further, most extractions continue to be performed with no regard for preventing the onset of alveolar osteitis (also known as dry socket, a painful and difficult-to-treat/-manage condition post-exodontia). Hence, such serious resorptive morphological changes often result in significant facial deformities and a negative impact on the overall Quality of Life (QoL) of patients (and oral health-related QoL), alarming, particularly for the geriatric with compromised healing and in light of the thriving longevity statistics. Opportunity: Despite advances in tissue/wound grafting, serious limitations continue to exist, including efficacy and clinical outcome predictability, cost, treatment time, expertise and risk of immune reactions. For cases of dry sockets, specifically, the commercially-available and often-prescribed home remedies are highly lacking. Indeed, most are not recommended for use anymore. Alveogyl is a fine example. Hence, there is a great market demand and need for alternative solutions. Solution: Herein, SockGEL/PLUG (patent pending), an all-natural, drug-free and injectable stimuli-responsive hydrogel, was designed, formulated, characterized and evaluated as an osteogenic, angiogenic, anti-microbial and pain-soothing suture-free intra-alveolar dressing, safe and efficacious for use in several oro-dental and cranio-maxillo-facial interventional applications; for example: in fresh dental extraction sockets, immediately post-exodontia. It is composed of FDA-approved, biocompatible and biodegradable polymers, self-assembled electro-statically to formulate a scaffolding matrix to (a) prevent the onset of alveolar osteitis via securing the fibrin-clot in situ and protecting/sealing the socket from contamination/infection; and (b) endogenously promote/accelerate wound healing and bone remodeling to preserve the volume of the alveolus. Findings: The intrinsic properties of the SockGEL/PLUG hydrogel were evaluated physico-chemico-mechanically for safety (cell viability), viscosity, rheology, bio-distribution and essentially, capacity to induce wound healing and osteogenesis (small defect, in vivo) without any signaling cues from exogenous cells, growth factors or drugs. The performed animal model of cranial critical-sized and non-vascularized bone defects shall provide vitally critical insights into the role and mechanism of the employed natural bio-polymer blend and gel product in endogenous reparative regeneration of soft tissues and bone morphogenesis. Alongside, the fine-tuning of our modified formulation method will further tackle appropriateness, reproducibility, scalability, ease and speed in producing stable, biodegradable and sterilizable stimuli (thermo-sensitive and photo-responsive) matrices (3-dimensional interpenetrating yet porous polymeric network) suitable for an intra-socket application, and beyond. Conclusions and Perspective: Findings are anticipated to provide sufficient evidence to translate into pilot clinical trials and validate the bionanomaterial before engaging the market for feasibility, acceptance and cost-effectiveness studies. The SockGEL/PLUG platform is patent pending: SockGEL is a bio-inspired drug-free hydrogel; SockPLUG is a drug-loaded hydrogel designed for complex indications.

Keywords: hydrogel, injectable, dentistry, craniomaxillofacial complex, bioinspired, nanobiotechnology, biopolymer, sol-gel, stimuli-responsive, matrix, tissue engineering, regenerative medicine

Procedia PDF Downloads 72
2357 Two Step Biodiesel Production from High Free Fatty Acid Spent Bleaching Earth

Authors: Rajiv Arora

Abstract:

Biodiesel may be economical if produced from inexpensive feedstock which commonly contains high level of free fatty acids (FFA) as an inhibitor in production of methyl ester. In this study, a two-step process for biodiesel production from high FFA spent bleach earth oil in a batch reactor is developed. Oil sample extracted from spent bleaching earth (SBE) was utilized for biodiesel process. In the first step, FFA of the SBE oil was reduced to 1.91% through sulfuric acid catalyzed esterification. In the second step, the product prepared from the first esterification process was carried out transesterification with an alkaline catalyst. The influence of four variables on conversion efficiency to methyl ester, i.e., methanol/ SBE oil molar ratio, catalyst amount, reaction temperature and reaction time, was studied in the second stage. The optimum process variables in the transesterification were methanol/oil molar ratio 6:1, heterogeneous catalyst conc. 5 wt %, reaction temperature 65 °C and reaction time 60 minutes to produce biodiesel. Major fuel properties of SBE biodiesel were measured to comply with ASTM and EN standards. Therefore, an optimized process for production of biodiesel from a low-cost high FFA source was accomplished.

Keywords: biodiesel, esterification, free fatty acids, residual oil, spent bleaching earth, transesterification

Procedia PDF Downloads 176
2356 Enhanced Anti-Inflammatory and Antioxidant Activities of Perna canaliculus Oil Extract and Low Molecular Weight Fucoidan from Undaria pinnatifida

Authors: Belgheis Ebrahimi, Jun Lu

Abstract:

In recent years, there has been a growing recognition of the potential of marine-based functional foods and combination therapies in promoting a healthy lifestyle and exploring their effectiveness in preventing or treating diseases. The combination of marine bioactive compounds or extracts offers synergistic or enhancement effects through various mechanisms, including multi-target actions, improved bioavailability, enhanced bioactivity, and mitigation of potential adverse effects. Both the green-lipped mussel (GLM) and fucoidan derived from brown seaweed are rich in bioactivities. These two, mussel and fucoidan, have not been previously formulated together. This study aims to combine GLM oil from Perna canaliculus with low molecular weight fucoidan (LMWF) extracted from Undaria pinnatifida to investigate the unique mixture’s anti-inflammatory and antioxidant properties. The cytotoxicity of individual compounds and combinations was assessed using the MTT assay in (THP-1 and RAW264.7) cell lines. The anti-inflammatory activity of mussel-fucoidan was evaluated by treating LPS-stimulated human monocyte and macrophage (THP1-1) cells. Subsequently, the inflammatory cytokines released into the supernatant of these cell lines were quantified via ELISA. Antioxidant activity was determined by using the free radical scavenging assay (DPPH). DPPH assay demonstrated that the radical scavenging activity of the combinations, particularly at concentrations exceeding 1 mg/ml, showed a significantly higher percentage of inhibition when compared to the individual component. This suggests an enhancement effect when the two compounds are combined, leading to increased antioxidant activity. In terms of immunomodulatory activity, the individual compounds exhibited distinct behaviors. GLM oil displayed a higher ability to suppress the cytokine TNF- compared to LMWF. Interestingly, the LMWF fraction, when used individually, did not demonstrate TNF- suppression. However, when combined with GLM, the TNF- suppression (anti-inflammatory) activity of the combination was better than GLM or LWMF alone. This observation underscores the potential for enhancement interactions between the two components in terms of anti-inflammatory properties. This study revealed that each individual compound, LMWF, and GLM, possesses unique and notable bioactivity. The combination of these two individual compounds results in an enhancement effect, where the bioactivity of each is enhanced, creating a superior combination. This suggests that the combination of LMWF and GLM has the potential to offer a more potent and multifaceted therapeutic effect, particularly in the context of antioxidant and anti-inflammatory activities. These findings hold promise for the development of novel therapeutic interventions or supplements that harness the enhancement effects.

Keywords: combination, enhancement effect, perna canaliculus, undaria pinnatifida

Procedia PDF Downloads 81
2355 Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences

Authors: V. C. Shruti, P. F. Rodríguez-Espinosa, D. C. Escobedo-Urías, Estefanía Martinez Tavera, M. P. Jonathan

Abstract:

Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in μg g-1) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (Igeo), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (>1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and Igeo values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community.

Keywords: Atoyac River, contamination indices, metal concentrations, Mexico, textural studies

Procedia PDF Downloads 292
2354 Investigation of Irrigation Water Quality at Al-Wafra Agricultural Area, Kuwait

Authors: Mosab Aljeri, Ali Abdulraheem

Abstract:

The water quality of five water types at Al-Wuhaib farm, Al-Wafra area, was studies through onsite field measurements, including pH, temperature, electrical conductivity (EC), and dissolved oxygen (DO), for four different water types. Biweekly samples were collected and analyzed for two months to obtain data of chemicals, nutrients, organics, and heavy metals. The field and laboratory results were compared with irrigation standards of Kuwait Environmental Public Authority (KEPA). The pH values of the five samples sites were within the maximum and minimum limits of KEPA standards. Based on EC values, two groups of water types were observed. The first group represents freshwater quality originated from freshwater Ministry of Electricity & Water & Renewable Energy (MEWRE) line or from freshwater tanks or treated wastewater. The second group represents brackish water type originated from groundwater or treated water mixed with groundwater. The study indicated that all nitrogen forms (ammonia, Total Kjeldahl nitrogen (TKN), Total nitrogen (TN)), total phosphate concentrations and all tested heavy metals for the five water types were below KEPA standards. These macro and micro nutrients are essential for plant growth and can be used as fertilizers. The study suggest that the groundwater should be treated and disinfected in the farming area. Also, these type of studies shall be carried out routinely to all farm areas to ensure safe water use and safe agricultural produce.

Keywords: salinity, heavy metals, ammonia, phosphate

Procedia PDF Downloads 87
2353 Evaluation of Biological Seed Coating Technology On-Field Performance of Wheat in Regenerative Agriculture and Conventional Systems

Authors: S. Brain, P. J. Storer, H. Strydom, Z. M. Solaiman

Abstract:

Increasing farmer awareness of soil health, the impact of agricultural management practices, and the requirement for high-quality agricultural produce are major factors driving the rapid adoption of biological seed treatments - currently valued globally at USD 1.5 billion. Biological seed coatings with multistrain plant beneficial microbial technology have the capability to affect plant establishment, growth, and development positively. These beneficial plant microbes can potentially increase soil health, plant yield, and nutrition – acting as bio fertilisers, rhizoremediators, phytostimulators, and stress modulators, and can ultimately reduce the overall use of agrichemicals. A field trial was conducted on MACE wheat in the central wheat belt of Western Australia to evaluate a proprietary seed coating technology (Langleys Bio-EnergeticTM Microbe blend (BMB)) on a conventional program (+/- BMB microbes) and a Regenerative Biomineral fertiliser program (+/- BMB microbes). The Conventional (+BMB) and Biomineral (+BMB) treated plants had no fungicide treatments and had no disease issues. Control (No fertiliser, No microbes), Conventional (No Microbes), and Biomineral (No Microbes) were treated with fungicides (seed dressing and foliar). From the research findings, compared to control and no microbe treatments, both the Conventional (+ BMB) and Biomineral (+ BMB) showed significant increases in Soil Carbon (SOC), Seed germination, nutrient use efficiency (NUE) of nitrogen, phosphate and mineral nutrients, grain mineral nutrient uptake, protein %, hectolitre weight, and fewer screenings, yield, and gross margins.

Keywords: biological seed coating, biomineral fertiliser, plant nutrition, regenerative and conventional agriculture

Procedia PDF Downloads 79
2352 Characterization of the Microorganisms Associated with Pleurotus ostractus and Pleurotus tuber-Regium Spent Mushroom Substrate

Authors: Samuel E. Okere, Anthony E. Ataga

Abstract:

Introduction: The microbial ecology of Pleurotus osteratus and Pleurotus tuber–regium spent mushroom substrate (SMS) were characterized to determine other ways of its utilization. Materials and Methods: The microbiological properties of the spent mushroom substrate were determined using standard methods. This study was carried out at the Microbiology Laboratory University of Port Harcourt, Rivers State, Nigeria. Results: Quantitative microbiological analysis revealed that Pleurotus osteratus spent mushroom substrate (POSMS) contained 7.9x10⁵ and 1.2 x10³ cfu/g of total heterotrophic bacteria and total fungi count respectively while Pleurotus tuber-regium spent mushroom substrate (PTSMS) contained 1.38x10⁶ and 9.0 x10² cfu/g of total heterotrophic bacteria count and total fungi count respectively. The fungi species encountered from Pleurotus tuber-regium spent mushroom substrate (PTSMS) include Aspergillus and Cladosporum species, while Aspergillus and Penicillium species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). However, the bacteria species encountered from Pleurotus tuber-regium spent mushroom substrate include Bacillus, Acinetobacter, Alcaligenes, Actinobacter, and Pseudomonas species while Bacillus, Actinobacteria, Aeromonas, Lactobacillus and Aerococcus species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). Conclusion: Therefore based on the findings from this study, it can be concluded that spent mushroom substrate contain microorganisms that can be utilized both in bioremediation of oil-polluted soils as they contain important hydrocarbon utilizing microorganisms such as Penicillium, Aspergillus and Bacillus species and also as sources of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas and Bacillus species which can induce resistance on plants. However, further studies are recommended, especially to molecularly characterize these microorganisms.

Keywords: characterization, microorganisms, mushroom, spent substrate

Procedia PDF Downloads 161
2351 Scalable and Accurate Detection of Pathogens from Whole-Genome Shotgun Sequencing

Authors: Janos Juhasz, Sandor Pongor, Balazs Ligeti

Abstract:

Next-generation sequencing, especially whole genome shotgun sequencing, is becoming a common approach to gain insight into the microbiomes in a culture-independent way, even in clinical practice. It does not only give us information about the species composition of an environmental sample but opens the possibility to detect antimicrobial resistance and novel, or currently unknown, pathogens. Accurately and reliably detecting the microbial strains is a challenging task. Here we present a sensitive approach for detecting pathogens in metagenomics samples with special regard to detecting novel variants of known pathogens. We have developed a pipeline that uses fast, short read aligner programs (i.e., Bowtie2/BWA) and comprehensive nucleotide databases. Taxonomic binning is based on the lowest common ancestor (LCA) principle; each read is assigned to a taxon, covering the most significantly hit taxa. This approach helps in balancing between sensitivity and running time. The program was tested both on experimental and synthetic data. The results implicate that our method performs as good as the state-of-the-art BLAST-based ones, furthermore, in some cases, it even proves to be better, while running two orders magnitude faster. It is sensitive and capable of identifying taxa being present only in small abundance. Moreover, it needs two orders of magnitude less reads to complete the identification than MetaPhLan2 does. We analyzed an experimental anthrax dataset (B. anthracis strain BA104). The majority of the reads (96.50%) was classified as Bacillus anthracis, a small portion, 1.2%, was classified as other species from the Bacillus genus. We demonstrate that the evaluation of high-throughput sequencing data is feasible in a reasonable time with good classification accuracy.

Keywords: metagenomics, taxonomy binning, pathogens, microbiome, B. anthracis

Procedia PDF Downloads 137
2350 Water Quality and Coastal Management Profile Assessment of Puerto Galera Bay, Philippines

Authors: Ma. Manna Farrel B. Pinto

Abstract:

As global industrialization progresses, the environment remains to be at risk of disturbances brought by developments of cities and communities. Impacts of flourishing industries such as tourism require rapid growth of establishments and may threaten ecosystems and natural resources. Puerto Galera as a biosphere reserve and declared as the Center of the World’s Center of Marine Shorefish Biodiversity is on the brink of ecological deterioration as tourism further develops in its coastal areas. Apparently, attempts were initiated to establish a baseline for designation of protection in the economic and coastal marine zones of Puerto Galera but continuity of its implementation and coordination of concerned units remains deficient. Indications of eutrophication have been observed based on water quality analysis although parameter values still comply with the national standards for coastal waters. Water quality data, biodiversity and hydrodynamic information, gathered from studies, and local government units were analysed to assess the condition of the coast as well as acting policies implemented by the local authorities. Sources of contaminants were also located in its three main communities, and their shores wherein in recommendations for installing wastewater treatment facilities and further improvement of policies of waste discharge must be addressed. With a conceptual framework proposed in the study, a comprehensive data analysis and coordinated management are necessary to form an integrated coastal management for further protection and preservation of the sustainable coastal marine ecosystem of Puerto Galera.

Keywords: coastal management, environmental management, integrated resource management, Puerto Galera

Procedia PDF Downloads 267
2349 Glycerol-Free Biodiesel Synthesis from Crude Mahua (Madhuca indica) Oil under Supercritical Methyl Acetate Using CO2 as a Co-Solvent

Authors: Antaram Sarve, Mahesh Varma, Shriram Sonawane

Abstract:

Conventional route of producing biodiesel with alcohol produces glycerol as side product which leads to oversupply and devaluation in the world market. Supercritical methyl acetate (SCMA) has been proven to convert triglycerides into fatty acid methyl esters (FAMEs) and triacetin, which is a valuable biodiesel additive as side product rather than glycerol. However, due to the low reactivity of supercritical methyl acetate on triglycerides, high reaction conditions are required to obtained maximum yields. The present study describes the renewable approach for the production of biodiesel from low-cost, high acid value mahua oil under supercritical methyl acetate condition using carbon dioxide (CO2) as a co-solvent. CO2 was employed to decrease high reaction conditions required for supercritical methyl acetate transesterification. The influence of process parameters such as temperature, oil to methyl acetate molar ratio, reaction time, and the CO2 pressure was evaluated. The properties of biodiesel produced were found to be superior compared to conventional biodiesel method. Furthermore, SCMA has a high tolerance towards free fatty acids (FFAs) which is crucial to allow the utilization of inexpensive waste oils as a biodiesel feedstock.

Keywords: supercritical methyl acetate, CO2, biodiesel, fuel properties

Procedia PDF Downloads 563
2348 DNA Intercalating Alkaloids Isolated from Chelidonium majus (Papaveraceae)

Authors: Mohamed Tamer, Wink Michael

Abstract:

DNA intercalating agents increase the stability of DNA which can be demonstrated by measuring the melting temperature Tm. Tm can be determined in a spectrophotometer in which the cell temperature is increased gradually. The resulting absorption data comes as a sigmoidal curve from which melting temperature can be determined when half of the DNA has denatured. The current study aims to assess DNA intercalating activities of four pure bioactive isoquinoline alkaloids: sanguinarine, berberine, allocryptopine, and chelerythrine which were isolated from Chelidonium majus (Papaveraceae) by repeated silica gel column chromatography, recrystallization and preparative TLC. The isolated compounds were identified by comparing their physical properties and mass spectra with those of the published data. The results showed that sanguiarine is the most active intercalating agent with Tm value of 83.55 ± 0.49 followed by berberine, chelerythrine, and allocryptopine with Tm values 62.58 ± 0.47, 51.38 ± 0.37 and 50.94 ± 0.65, respectively, relative to 49.78 ± 1.05 of bacteriophage DNA alone and 86.09 ± 0.5 for ethidium bromide as a positive control.

Keywords: alkaloids, Chelidonium majus, DNA intercalation, Tm

Procedia PDF Downloads 501
2347 Quantitative Structure Activity Relationship Model for Predicting the Aromatase Inhibition Activity of 1,2,3-Triazole Derivatives

Authors: M. Ouassaf, S. Belaidi

Abstract:

Aromatase is an estrogen biosynthetic enzyme belonging to the cytochrome P450 family, which catalyzes the limiting step in the conversion of androgens to estrogens. As it is relevant for the promotion of tumor cell growth. A set of thirty 1,2,3-triazole derivatives was used in the quantitative structure activity relationship (QSAR) study using regression multiple linear (MLR), We divided the data into two training and testing groups. The results showed a good predictive ability of the MLR model, the models were statistically robust internally (R² = 0.982) and the predictability of the model was tested by several parameters. including external criteria (R²pred = 0.851, CCC = 0.946). The knowledge gained in this study should provide relevant information that contributes to the origins of aromatase inhibitory activity and, therefore, facilitates our ongoing quest for aromatase inhibitors with robust properties.

Keywords: aromatase inhibitors, QSAR, MLR, 1, 2, 3-triazole

Procedia PDF Downloads 115
2346 Improving Cyclability and Capacity of Lithium Oxygen Batteries via Low Rate Pre-Activation

Authors: Zhihong Luo, Guangbin Zhu, Lulu Guo, Zhujun Lyu, Kun Luo

Abstract:

Cycling life has become the threshold for the prospective application of Li-O₂ batteries, and the protection of Li anode has recently regarded as the key factor to the performance. Herein, a simple low rate pre-activation (20 cycles at 0.5 Ag⁻¹ and a capacity of 200 mAh g⁻¹) was employed to effectively improve the performance and cyclability of Li-O₂ batteries. The charge/discharge cycles at 1 A g⁻¹ with a capacity of 1000 mAh g⁻¹ were maintained for up to 290 times versus 55 times for the cell without pre-activation. The ultimate battery capacity and high rate discharge property were also largely enhanced. Morphology, XRD and XPS analyses reveal that the performance improvement is in close association with the formation of the smooth and compact surface layer formed on the Li anode after low rate pre-activation, which apparently alleviated the corrosion of Li anode and the passivation of cathode during battery cycling, and the corresponding mechanism was also discussed.

Keywords: lithium oxygen battery, pre-activation, cyclability, capacity

Procedia PDF Downloads 158
2345 Achievement of Sustainable Groundwater Exploitation through the Introduction of Water-Efficient Usage Techniques in Fish Farms

Authors: Lusine Tadevosyan, Natella Mirzoyan, Anna Yeritsyan, Narek Avetisyan

Abstract:

Due to high quality, the artesian groundwater is the main source of water supply for the fisheries in Ararat Valley, Armenia. From 1.6 billion m3 abstracted groundwater in 2016, half was used by fish farms. Yet, the inefficient water use, typical for low-intensity aquaculture systems in Ararat Valley, has become a key environmental issue in Armenia. In addition to excessive pure groundwater exploitation, which along with other sectors of groundwater use in this area resulted in the reduction of artesian zone by approximately 67% during last 20 years, the negative environmental impact of these productions is magnified by the discharge of large volumes of wastewater into receiving water bodies. In turn, unsustainable use of artesian groundwater in Ararat Valley along with increasingly strict policy measures on water use had a devastating impact on small and/or medium scale aquaculture: over the last two years approximately 100 fish farms have permanently seized their operations. The current project aims at the introduction of efficient and environmentally friendly fish farming practices (e.g., Recirculating Aquaculture Systems) in Ararat Valley fisheries in order to support current levels of fish production and simultaneously reduce the negative environmental pressure of aquaculture facilities in Armenia. Economic and environmental analysis of current small and medium scale operational systems and subsequently developed environmentally–friendly and economically sustainable system configurations will be presented.

Keywords: aquaculture, groundwater, recirculation, sustainability

Procedia PDF Downloads 270
2344 Influence of Pseudomonas japonica on Growth and Metal Tolerance of Celosia cristata L.

Authors: Muhammad Umair Mushtaq, Ameena Iqbal, Muhammad Aqib Hassan Ali Khan, Ismat Nawaz, Sohail Yousaf, Mazhar Iqbal

Abstract:

Heavy metals are one of the priority pollutants as they pose serious health and environmental threats. They can be removed by various physiochemical methods but are costly and responsible for additional environmental problems. Bioremediation that exploits plants and their associated microbes have been referred as cost effective and environmental friendly technique. In this study, a pot experiment was conducted in a greenhouse to evaluate the potential of Celosia cristata and effects of bacteria, Pseudomonas japonica, and organic amendment moss/compost on tolerating/accumulating heavy metals. Two weeks old seedlings were transferred to soil in pots, and after four weeks they were inoculated with bacterial strain, while after growth of six weeks they were watered with a metal containing synthetic wastewater and were harvested after a growth period of nine weeks. After harvesting, morphological and physiological parameters and metal content of plants were measured. The results showed highest plant growth and biomass production in case of organic amendments while highest metal uptake has been found in non-amended pots. Positive controls have shown highest Pb uptake of 2900 mg/kg DW, while P. japonica amended pots have shown highest Cd, Cr, Ni and Cu uptake of 963.53, 1481.17, 1022.01 and 602.17 mg/kg DW, respectively. In conclusion organic amendments have strong impacts on growth enhancement while P. japonica enhances metal translocation and accumulation to aerial parts with little significant involvement in plant growth.

Keywords: ornamental plants, plant microbe interaction, amendments, bacteria

Procedia PDF Downloads 294
2343 Interpersonal Variation of Salivary Microbiota Using Denaturing Gradient Gel Electrophoresis

Authors: Manjula Weerasekera, Chris Sissons, Lisa Wong, Sally Anderson, Ann Holmes, Richard Cannon

Abstract:

The aim of this study was to characterize bacterial population and yeasts in saliva by Polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) and measure yeast levels by culture. PCR-DGGE was performed to identify oral bacteria and yeasts in 24 saliva samples. DNA was extracted and used to generate DNA amplicons of the V2–V3 hypervariable region of the bacterial 16S rDNA gene using PCR. Further universal primers targeting the large subunit rDNA gene (25S-28S) of fungi were used to amplify yeasts present in human saliva. Resulting PCR products were subjected to denaturing gradient gel electrophoresis using Universal mutation detection system. DGGE bands were extracted and sequenced using Sanger method. A potential relationship was evaluated between groups of bacteria identified by cluster analysis of DGGE fingerprints with the yeast levels and with their diversity. Significant interpersonal variation of salivary microbiome was observed. Cluster and principal component analysis of the bacterial DGGE patterns yielded three significant major clusters, and outliers. Seventeen of the 24 (71%) saliva samples were yeast positive going up to 10³ cfu/mL. Predominately, C. albicans, and six other species of yeast were detected. The presence, amount and species of yeast showed no clear relationship to the bacterial clusters. Microbial community in saliva showed a significant variation between individuals. A lack of association between yeasts and the bacterial fingerprints in saliva suggests the significant ecological person-specific independence in highly complex oral biofilm systems under normal oral conditions.

Keywords: bacteria, denaturing gradient gel electrophoresis, oral biofilm, yeasts

Procedia PDF Downloads 222
2342 Paper-Based Detection Using Synthetic Gene Circuits

Authors: Vanessa Funk, Steven Blum, Stephanie Cole, Jorge Maciel, Matthew Lux

Abstract:

Paper-based synthetic gene circuits offer a new paradigm for programmable, fieldable biodetection. We demonstrate that by freeze-drying gene circuits with in vitro expression machinery, we can use complimentary RNA sequences to trigger colorimetric changes upon rehydration. We have successfully utilized both green fluorescent protein and luciferase-based reporters for easy visualization purposes in solution. Through several efforts, we are aiming to use this new platform technology to address a variety of needs in portable detection by demonstrating several more expression and reporter systems for detection functions on paper. In addition to RNA-based biodetection, we are exploring the use of various mechanisms that cells use to respond to environmental conditions to move towards all-hazards detection. Examples include explosives, heavy metals for water quality, and toxic chemicals.

Keywords: cell-free lysates, detection, gene circuits, in vitro

Procedia PDF Downloads 394
2341 Effect of Fiddler Crab Burrows on Bacterial Communities of Mangrove Sediments

Authors: Mohammad Mokhtari, Gires Usup, Zaidi Che Cob

Abstract:

Bacteria communities as mediators of the biogeochemical process are the main component of the mangrove ecosystems. Crab burrows by increasing oxic-anoxic interfaces and facilitating the flux rate between sediment and tidal water affect biogeochemical properties of sediments. The effect of fiddler crab burrows on the density and diversity of bacteria were investigated to elucidate the effect of burrow on bacterial distribution. Samples collected from the burrow walls of three species of fiddler crabs including Uca paradussumieri, Uca rosea, and Uca forcipata. Sediment properties including grain size, temperature, Redox potential, pH, chlorophyll, water and organic content were measured from the burrow walls to assess the correlation between environmental variables and bacterial communities. Bacteria were enumerated with epifluorescence microscopy after staining with SYBR green. Bacterial DNA extracted from sediment samples and the community profiles of bacteria were determined with Terminal Restriction Fragment Length Polymorphism (T-RFLP). High endemism was observed among bacterial communities. Among the 152 observed OTU’s, 22 were found only in crab burrows. The highest bacterial density and diversity were recorded in burrow wall. The results of ANOSIM indicated a significant difference between the bacterial communities from the three species of fiddler crab burrows. Only 3% of explained bacteria variability in the constrained ordination model of CCA was contributed to depth, while much of the bacteria’s variability was attributed to coarse sand, pH, and chlorophyll content. Our findings suggest that crab burrows by affecting sediment properties such as redox potential, pH, water, and chlorophyll content induce significant effects on the bacterial communities.

Keywords: bioturbation, canonical corresponding analysis, fiddler crab, microbial ecology

Procedia PDF Downloads 157
2340 Crumbed Rubber Modified Asphalt

Authors: Maanav M. Patel, Aarsh S. Mistry, Yash A. Dhaduk

Abstract:

Nowadays, only a small percentage of waste tyres are being land-filled. The Recycled Tyres Rubber is being used in new tyres, in tyre-derived fuel, in civil engineering applications and products, in molded rubber products, in agricultural uses, recreational and sports applications and in rubber modified asphalt applications. The benefits of using rubber modified asphalts are being more widely experienced and recognized, and the incorporation of tyres into asphalt is likely to increase. The technology with much different evidence of success demonstrated by roads built in the last 40 years is the rubberised asphalt mixture obtained through the so-called ‘‘wet process’’ which involves the utilisation of the Recycled Tyre Rubber Modified Bitumen (RTR-MBs). Since 1960s, asphalt mixtures produced with RTRMBs have been used in different parts of the world as solutions for different quality problems and, despite some downsides, in the majority of the cases they have demonstrated to enhance performance of road’s pavement. The present study aims in investigating the experimental performance of the bitumen modified with 15% by weight of crumb rubber varying its sizes. Four different categories of size of crumb rubber will be used, which are coarse (1 mm - 600 μm); medium size (600 μm - 300 μm); fine (300 μm150 μm); and superfine (150 μm - 75 μm). Common laboratory tests will be performed on the modified bitumen using various sizes of crumb rubber and thus analyzed. Marshall Stability method is adopted for mix design.

Keywords: Bitumen, CRMB, Marshall Stability Test, Pavement

Procedia PDF Downloads 143
2339 The Detection of Antibodies Against Shuni Virus in Cattle From Western Kenya

Authors: Barbra Bhebhe, Melvyn Quan

Abstract:

A serological survey was done to detect antibodies against Shuni virus (SHUV) from cattle in Western Kenya. In Kenya the disease status of SHUV in cattle has never been established. It is a zoonotic virus and even though studies have been carried out as early as the 1960s, little research has been published and SHUV is still not a well-recognised Orthobunyavirus. One hundred serum samples were collected from healthy cattle in Kenya and tested for antibodies against SHUV by a serum neutralization assay. All antibody titre values were greater than 1:160, with most of the samples greater than 1:320. Of the samples tested, 87 % had titres greater than 1:320, 12% had a titre of 1:320 and 2% had a titre of 1:160. Samples were classified as positive if the antibody titre was ≥ 1:10 and negative if < 1:10. This study suggests that cattle are exposed commonly to SHUV, which may be endemic in Kenya.

Keywords: Shuni virus, Orthobunyavuruses, serum neutralization test, cell-culture

Procedia PDF Downloads 75
2338 An Adaptive CFAR Algorithm Based on Automatic Censoring in Heterogeneous Environments

Authors: Naime Boudemagh

Abstract:

In this work, we aim to improve the detection performances of radar systems. To this end, we propose and analyze a novel censoring technique of undesirable samples, of priori unknown positions, that may be present in the environment under investigation. Therefore, we consider heterogeneous backgrounds characterized by the presence of some irregularities such that clutter edge transitions and/or interfering targets. The proposed detector, termed automatic censoring constant false alarm (AC-CFAR), operates exclusively in a Gaussian background. It is built to allow the segmentation of the environment to regions and switch automatically to the appropriate detector; namely, the cell averaging CFAR (CA-CFAR), the censored mean level CFAR (CMLD-CFAR) or the order statistic CFAR (OS-CFAR). Monte Carlo simulations show that the AC-CFAR detector performs like the CA-CFAR in a homogeneous background. Moreover, the proposed processor exhibits considerable robustness in a heterogeneous background.

Keywords: CFAR, automatic censoring, heterogeneous environments, radar systems

Procedia PDF Downloads 602
2337 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering

Authors: S. S. Salehi, A. Shamloo

Abstract:

Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.

Keywords: cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell

Procedia PDF Downloads 300
2336 Gender Specific Differences in Clinical Outcomes of Knee Osteoarthritis Treated with Micro-Fragmented Adipose Tissue

Authors: Tiffanie-Marie Borg, Yasmin Zeinolabediny, Nima Heidari, Ali Noorani, Mark Slevin, Angel Cullen, Stefano Olgiati, Alberto Zerbi, Alessandro Danovi, Adrian Wilson

Abstract:

Knee Osteoarthritis (OA) is a critical cause of disability globally. In recent years, there has been growing interest in non-invasive treatments, such as intra-articular injection of micro-fragmented fat (MFAT), showing great potential in treating OA. Mesenchymal stem cells (MSCs), originating from pericytes of micro-vessels in MFAT, can differentiate into mesenchymal lineage cells such as cartilage, osteocytes, adipocytes, and osteoblasts. Secretion of growth factor and cytokines from MSCs have the capability to inhibit T cell growth, reduced pain and inflammation, and create a micro-environment that through paracrine signaling, can promote joint repair and cartilage regeneration. Here we have shown, for the first time, data supporting the hypothesis that women respond better in terms of improvements in pain and function to MFAT injection compared to men. Historically, women have been underrepresented in studies, and studies with both sexes regularly fail to analyse the results by sex. To mitigate this bias and quantify it, we describe a technique using reproducible statistical analysis and replicable results with Open Access statistical software R to calculate the magnitude of this difference. Genetic, hormonal, environmental, and age factors play a role in our observed difference between the sexes. This observational, intention-to-treat study included the complete sample of 456 patients who agreed to be scored for pain (visual analogue scale (VAS)) and function (Oxford knee score (OKS)) at baseline regardless of subsequent changes to adherence or status during follow-up. We report that a significantly larger number of women responded to treatment than men: [90% vs. 60% change in VAS scores with 87% vs. 65% change in OKS scores, respectively]. Women overall had a stronger positive response to treatment with reduced pain and improved mobility and function. Pre-injection, our cohort of women were in more pain with worse joint function which is quite common to see in orthopaedics. However, during the 2-year follow-up, they consistently maintained a lower incidence of discomfort with superior joint function. This data clearly identifies a clear need for further studies to identify the cell and molecular biological and other basis for these differences and be able to utilize this information for stratification in order to improve outcome for both women and men.

Keywords: gender differences, micro-fragmented adipose tissue, knee osteoarthritis, stem cells

Procedia PDF Downloads 182
2335 Negative Pressure Wound Therapy in Complex Injuries of the Limbs

Authors: Mihail Nagea, Olivera Lupescu, Nicolae Ciurea, Alexandru Dimitriu, Alina Grosu

Abstract:

Introduction: As severe open injuries are more and more frequent in modern traumatology, threatening not only the integrity of the affected limb but even the life of the patients, new methods desired to cope with the consequences of these traumas were described. Vacuum therapy is one such method which has been described as enhancing healing in trauma with extensive soft-tissue injuries, included those with septic complications. Material and methods: Authors prospectively analyze 15 patients with severe lower limb trauma with MESS less than 6, with considerable soft tissue loss following initial debridement and fracture fixation. The patients needed serial debridements and vacuum therapy was applied after delayed healing due to initial severity of the trauma, for an average period of 12 days (7 - 23 days).In 7 cases vacuum therapy was applied for septic complications. Results: Within the study group, there were no local complications; secondary debridements were performed for all the patients and vacuum system was re-installed after these debridements. No amputations were needed. Medical records were reviewed in order to compare the outcome of the patients: the hospital stay, anti-microbial therapy, time to healing of the bone and soft tissues (there is no standard group to be compared with) and the result showed considerable improvements in the outcome of the patients. Conclusion: Vacuum therapy improves healing of the soft tissues, including those infected; hospital stay and the number of secondary necessary procedures are reduced. Therefore it is considered a valuable support in treating trauma of the limbs with severe soft tissue injuries.

Keywords: complex injuries, negative pressure, open fractures, wound therapy

Procedia PDF Downloads 295
2334 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation

Authors: Arezoo Assarian, Reza Javaherdashti

Abstract:

Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.

Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)

Procedia PDF Downloads 167
2333 Recovery the Regeneration Gas from Liquefied Petroleum Gas Dryer to Off Gas Compressors

Authors: Hassan Hussin Zwida

Abstract:

The liquified LPG (Liquefied Petroleum Gas) drying system at the Complex is designed to remove water and mercaptans from the LPG stream. Upon saturation of the desiccant beds, a regeneration cycle becomes necessary. The original design routed the regeneration gas, produced during the LPG dryer heating cycle, to the sulfur recovery unit to the incineration. However, concerns regarding high temperatures and potential unit disruptions led to a modification where the gas is currently vented to the acid flare for the initial hour before being diverted to the LP network fuel gas system. While this addresses the temperature concerns, it generates significant smoke due to the presence of liquid hydrocarbons. This paper proposes an approach to recover the regeneration gas and redirect it back to the gas plant's (off-gas compressors) instead of sending it to the AC (Acid Flare), by utilizing the existing pipe 6” and connected to off gas compressor KO (Knock-Out ) Drums . This option is simple to operate, flexible, environment-friendly solution as long-term solution, lower in capital expenditure and increase the company's profitability. The feasibility of this proposal is supported by dynamic simulations. The simulations suggest the possibility of operating two out of the three off-gas compressors and LPG (Liquefied petroleum gas) as a liquid phase, is foreseen to be carried over and gathered at the bottom level of the KO (Knock-Out) Drum.

Keywords: thermal incinerator, off-gas compressors, environment, knock-out drums, acid flare

Procedia PDF Downloads 50
2332 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling

Authors: Kisan Sarda, Bhavika Shingote

Abstract:

This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.

Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation

Procedia PDF Downloads 382