Search results for: weight improved particle swarm optimization (WIPSO)
8087 Impact of Social Crisis on Property Market Performance and Evolving Strategy for Improved Property Transactions in Crisis Prone Environment: A Case Study of North Eastern Nigeria
Authors: A. Yakub AbdurRaheem
Abstract:
Urban violence in the form of ethnic and religious conflicts have been on the increase in many African cities in the recent years of which most of them are the result of intense and bitter competition for political power, the control of limited economic, social and environmental resources. In Nigeria, the emergence of the Boko Haram insurgency in most parts of the northeastern parts have ignited violence, bloodshed, refugee exodus and internal migration. Not only do the persistent attacks of the sect create widespread insecurity and fear, but it has also stifled normal processes of trade and investments most especially real property investment which is acclaimed to accelerate the economic cycle, thus the need to evolve strategies for an improved property market in such areas. This paper, therefore, examines the impact of this social crisis on effective and efficient utilization of real properties as a resource towards the development of the economy, using a descriptive analysis approach where particular emphasis was based on trends in residential housing values; volume of estimated property transactions and real estate investment decisions by affected individuals. Findings indicate that social crisis in the affected areas have been a clog on the wheels of property development and investment as properties worth hundreds of millions have been destroyed thereby having great impact on property values. Based on these findings, recommendations were made to include the need to strategically continue investing in property during such times, the need for Nigerian government to establish an active conflict monitoring and management unit for the prompt response, encourage community and neighborhood policing to ameliorate security challenges in Nigeria.Keywords: social crisis, economy, resources, property market
Procedia PDF Downloads 2428086 The Effect of Nutrition Education on Adherence to the Mediterranean Diet and Sustainable Healthy Eating Behaviors in University Students
Authors: Tuba Tekin, Nurcan Baglam, Emine Dincer
Abstract:
This study aimed to examine the effects of nutrition education received by university students on sustainable healthy eating behaviors and adherence to the Mediterranean diet. The 2nd, 3rd, and 4th-grade university students studying at the Faculty of Health Sciences, Nutrition and Dietetics, Midwifery, Nursing, Physical Therapy, and Rehabilitation departments of universities in Turkey were included in the study. Students' adherence to the Mediterranean diet was evaluated using the Mediterranean Diet Adherence Scale, and their sustainable and healthy eating behaviors were evaluated using the Sustainable and Healthy Eating Behaviors Scale. In addition, the body weight and height of the students were measured by the researchers, and the Body Mass Index (BMI) value was calculated. A total of 181 students, 85 of whom were studying in the Department of Nutrition and Dietetics and 96 of whom were educated in other departments, were included in the study. 75.7% of the students in the sample are female, while 24.3% are male. The average body weight of the students was 61.17±10.87 kg, and the average BMI was 22.04±3.40 kg/m2. While the mean score of the Mediterranean Diet Adherence Scale was 6.72±1.84, in the evaluation of adherence to the Mediterranean diet, it was determined that 25.4% of the students had poor adherence and 66.9% needed improvement. When the adherence scores of students who received and did not receive nutrition education were compared, it was discovered that the students who received nutrition education had a higher score (p<0.05). Students who received nutrition education had a higher total score on the Sustainable and Healthy Eating Behaviors scale (p<0.05). A moderately positive correlation was found between the Sustainable and Healthy Eating Behaviors scale total score and the Mediterranean Diet Adherence scores (p<0.05). As a result of the linear regression analysis, it was revealed that a 1-unit increase in the Mediterranean diet adherence score would result in a 1.3-point increase in the total score of the Sustainable and Healthy Eating Behaviors scale. Sustainable and healthy diets are important for improving and developing health and the prevention of diseases. The Mediterranean diet is defined as a sustainable diet model. The findings revealed the relationship between the Mediterranean diet and sustainable nutrition and showed that nutrition education increased knowledge and awareness about sustainable nutrition and increased adherence to the Mediterranean diet. For this reason, courses or seminars on sustainable nutrition can be organized during educational periods.Keywords: healthy eating, Mediterranean diet, nutrition education, sustainable nutrition
Procedia PDF Downloads 838085 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties
Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd
Abstract:
Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well-known formulas.Keywords: conjugate gradient method, conjugate gradient coefficient, global convergence
Procedia PDF Downloads 4718084 Effects of Drought Stress on Red Bean (Phaseolus vulgaris L.) Cultivars during Post-Flowering Growth Stage
Authors: Fariborz Shekari, Abdollah Javanmard, Amin Abbasi
Abstract:
A pot experiment conducted to evaluate the response of two red bean cultivars, Sayad and Derakhshan, to water deficit stress during post-flowering growth stage and recovery potential of plants after stress. Treatments were included regular irrigation or control, water deficit during flowering stage, water deficit during pod formation and water deficit during pod filling period. Results showed that plant height had positive effects on yield of cultivars so that, the tall cultivar, ‘Sayad’, had higher yields. Stress application during flowering stage showed the highest negative impact on plant height and subsequently yield. The longest and the higher number of pods as well as the greatest number of seeds in pods were recorded in control treatment in ‘Sayad’. Stress application during pod formation resulted in the minimum amount of all studied traits in both cultivars. Stress encountered during seed filling period had the least effect on number and length of pods and seed/pod. However, 100 seeds weight significantly decreased. The highest amount for 100 seeds weight was record in control plants in ‘Derakhshan’. Under all treatments, ‘Sayad’ had higher biologic and seed yield compared to ‘Derakhshan’. The least amount of yield was recorded during stress application in pod formation and flowering period for ‘Sayad’ and ‘Derakhshan’ respectively. Harvest index of ‘Sayad’ was more affect by stress application. Data related to photosynthetic rate showed that during stress application, ‘Derakhshan’ owned rapid decline in photosynthesis. Beyond stress alleviation and onset of irrigation, recovery potential of ‘Sayad’ was higher than ‘Derakhshan’ and this cultivar was able to rapidly restore the photosynthesis rate of stress faced plants near control ones. In total, stress had lower impacts on photosynthetic rate of ‘Sayad’ cultivar.Keywords: common bean, water stress, yield, yield components, photosynthetic rate
Procedia PDF Downloads 3058083 Issues on Optimizing the Structural Parameters of the Induction Converter
Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan
Abstract:
Analytical expressions of the current and angular errors, as well as the frequency characteristics of an induction converter describing the relation with its structural parameters, the core and winding characteristics are obtained. Based on estimation of the dependences obtained, a mathematical problem of parametric optimization is formulated which can successfully be used for investigation and diagnosing an induction converter.Keywords: induction converters, magnetic circuit material, current and angular errors, frequency response, mathematical formulation, structural parameters
Procedia PDF Downloads 3488082 Investigation on the Effect of Titanium (Ti) Plus Boron (B) Addition to the Mg-AZ31 Alloy in the as Cast and After Extrusion on Its Metallurgical and Mechanical Characteristics
Authors: Adnan I. O. Zaid, Raghad S. Hemeimat
Abstract:
Magnesium - aluminum alloys are versatile materials which are used in manufacturing a number of engineering and industrial parts in the automobile and aircraft industries due to their strength – to –weight -ratio. Against these preferable characteristics, magnesium is difficult to deform at room temperature therefore it is alloyed with other elements mainly Aluminum and Zinc to add some required properties particularly for their high strength - to -weight ratio. Mg and its alloys oxidize rapidly therefore care should be taken during melting or machining them; but they are not fire hazardous. Grain refinement is an important technology to improve the mechanical properties and the micro structure uniformity of the alloys. Grain refinement has been introduced in early fifties; when Cibula showed that the presence of Ti, and Ti+ B, produced a great refining effect in Al. since then it became an industrial practice to grain refine Al. Most of the published work on grain refinement was directed toward grain refining Al and Zinc alloys; however, the effect of the addition of rare earth material on the grain size or the mechanical behavior of Mg alloys has not been previously investigated. This forms the main objective of the research work; where, the effect of Ti addition on the grain size, mechanical behavior, ductility, and the extrusion force & energy consumed in forward extrusion of Mg-AZ31 alloy is investigated and discussed in two conditions, first in the as cast condition and the second after extrusion. It was found that addition of Ti to Mg- AZ31 alloy has resulted in reduction of its grain size by 14%; the reduction in grain size after extrusion was much higher. However the increase in Vicker’s hardness was 3% after the addition of Ti in the as cast condition, and higher values for Vicker’s hardness were achieved after extrusion. Furthermore, an increase in the strength coefficient by 36% was achieved with the addition of Ti to Mg-AZ31 alloy in the as cast condition. Similarly, the work hardening index was also increased indicating an enhancement of the ductility and formability. As for the extrusion process, it was found that the force and energy required for the extrusion were both reduced by 57% and 59% with the addition of Ti.Keywords: cast condition, direct extrusion, ductility, MgAZ31 alloy, super - plasticity
Procedia PDF Downloads 4558081 A Model for Operating Rooms Scheduling
Authors: Jose Francisco Ferreira Ribeiro, Alexandre Bevilacqua Leoneti, Andre Lucirton Costa
Abstract:
This paper presents a mathematical model in binary variables 0/1 to make the assignment of surgical procedures to the operating rooms in a hospital. The proposed mathematical model is based on the generalized assignment problem, which maximizes the sum of preferences for the use of the operating rooms by doctors, respecting the time available in each room. The corresponding program was written in Visual Basic of Microsoft Excel, and tested to schedule surgeries at St. Lydia Hospital in Ribeirao Preto, Brazil.Keywords: generalized assignment problem, logistics, optimization, scheduling
Procedia PDF Downloads 2968080 Application Case and Result Consideration About Basic and Working Design of Floating PV Generation System Installed in the Upstream of Dam
Authors: Jang-Hwan Yin, Hae-Jeong Jeong, Hyo-Geun Jeong
Abstract:
K-water (Korea Water Resources Corporation) conducted basic and working design about floating PV generation system installed above water in the upstream of dam to develop clean energy using water with importance of green growth is magnified ecumenically. PV Generation System on the ground applied considerably until now raise environmental damage by using farmland and forest land, PV generation system on the building roof is already installed at almost the whole place of business and additional installation is almost impossible. Installation space of PV generation system is infinite and efficient national land use is possible because it is installed above water. Also, PV module's efficiency increase by natural water cooling method and no shade. So it is identified that annual power generation is more than PV generation system on the ground by operating performance data. Although it is difficult to design and construct by high cost, little application case, difficult installation of floater, mooring device, underwater cable, etc. However, it has been examined cost reduction plan such as structure weight lightening, floater optimal design, etc. This thesis described basic and working design result systematically about K-water's floating PV generation system development and suggested optimal design method of floating PV generation system. Main contents are photovoltaic array location select, substation location select related underwater cable, PV module and inverter design, transmission and substation equipment design, floater design related structure weight lightening, mooring system design related water level fluctuation, grid connecting technical review, remote control and monitor equipment design, etc. This thesis will contribute to optimal design and business extension of floating PV generation system, and it will be opportunity revitalize clean energy development using water.Keywords: PV generation system, clean energy, green growth, solar energy
Procedia PDF Downloads 4168079 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents
Authors: Amesh P, Suneesh A S, Venkatesan K A
Abstract:
The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment
Procedia PDF Downloads 1758078 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites
Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li
Abstract:
Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.Keywords: aerogel, cement-based, composite, fly ash cenosphere, lightweight, sustainable development, thermal conductivity
Procedia PDF Downloads 2278077 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method
Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh
Abstract:
In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure
Procedia PDF Downloads 3268076 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House
Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal
Abstract:
Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production
Procedia PDF Downloads 3388075 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films
Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete
Abstract:
SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide
Procedia PDF Downloads 2758074 Development of Kenaf Cellulose CNT Paper for Electrical Conductive Paper
Authors: A. W. Fareezal, R. Rosazley, M. A. Izzati, M. Z. Shazana, I. Rushdan
Abstract:
Kenaf cellulose CNT paper production was for lightweight, high strength and excellent flexibility electrical purposes. Aqueous dispersions of kenaf cellulose and varied weight percentage of CNT were combined with the assistance of PEI solution by using ultrasonic probe. The solution was dried using vacuum filter continued with air drying in condition room for 2 days. Circle shape conductive paper was characterized with Fourier transformed infrared (FTIR) spectra, scanning electron microscopy (SEM) and therma gravimetric analysis (TGA).Keywords: cellulose, CNT paper, PEI solution, electrical conductive paper
Procedia PDF Downloads 2428073 To Study Small for Gestational Age as a Risk Factor for Thyroid Dysfunction
Authors: Shilpa Varghese, Adarsh Eregowda
Abstract:
Introduction: The normal development and maturation of the central nervous system is significantly influenced by thyroid hormones. Small for gestational age (SGA) babies have a distinct hormonal profile than kids born at an acceptable birth weight for gestational age, according to several studies (AGA). In SGA babies, thyroid size is larger when expressed as a percentage of body weight, indicating that low thyroid hormone levels throughout foetal life may be partially compensated for. Numerous investigations have found that compared to full-term and preterm AGA neonates, SGA babies exhibit considerably decreased thyroid plasma levels. According to our hypothesis, term and preterm SGA newborns have greater thyroid-stimulating hormone (TSH) concentrations than those that are normal for gestational age (AGA) and a higher incidence of thyroid dysfunction. Need for the study: Clinically diagnosed Assessment of term SGA babies confirming thyroid dysfunction unclear Requirement and importance of ft4 along with tsh and comparative values of ft4 in SGA babies as compared to AGA babies unclear. Inclusion criteria : SGA infants including preterm (<37 weeks of gestation) term (37-40 weeks) – comparing with preterm and term AGA infants. 3.76 7.66 0 2 4 6 8 10 12 AGA Babies SGA Babies Mean Mean TSH Comparison 2.73 1.52 0 0.5 1 1.5 2 2.5 3 3.5 4 AGA Babies SGA Babies Mean Mean FT4 Comparison Discussion : According to this study, neonates with SGA had considerably higher TSH levels than newborns with AGA. Our findings have been supported by results from earlier research. The TSH level range was established to 7.5 mU/L in the study by Bosch-Giménez et al, found greater TSH concentrations in SGA newborns. Thyroid hormone levels from newborns that are tiny for gestational age were found to be higher than AGA in our investigation. According to Franco et al., blood T4 concentrations are lower in both preterm and term SGA infants, while TSH concentrations are only noticeably greater in term SGA infants compared to AGA ones. According to our study analysis, the SGA group had considerably greater FT4 concentrations. Therefore, our findings are consistent with those of the two studies that SGA babies have a higher incidence of transient hypothyroidism and need close follow-up. Conclusions: A greater frequency of thyroid dysfunction and considerably higher TSH values within the normal range were seen in preterm and term SGA babies. The SGA babies who exhibit these characteristics should have ongoing endocrinologic testing and periodic TFTs.Keywords: thyroid hormone, thyroid function tests, small for gestationl age, appropriate for gestational age
Procedia PDF Downloads 698072 The Coaching on Lifestyle Intervention (CooL): Preliminary Results and Implementation Process
Authors: Celeste E. van Rinsum, Sanne M. P. L. Gerards, Geert M. Rutten, Ien A. M. van de Goor, Stef P. J. Kremers
Abstract:
Combined lifestyle interventions have shown to be effective in changing and maintaining behavioral lifestyle changes and reducing overweight and obesity. A lifestyle coach is expected to promote lifestyle changes in adults related to physical activity and diet. The present Coaching on Lifestyle (CooL) study examined participants’ physical activity level, dietary behavioral, and motivational changes immediately after the intervention and at 1.5 years after baseline. In CooL intervention a lifestyle coach coaches individuals from eighteen years and older with (a high risk of) obesity in group and individual sessions. In addition a process evaluation was conducted in order to examine the implementation process and to be able to interpret the changes within the participants. This action-oriented research has a pre-post design. Participants of the CooL intervention (N = 200) completed three questionnaires: at baseline, immediately after the intervention (on average after 44 weeks), and at 1.5 years after baseline. T-tests and linear regressions were conducted to test self-reported changes in physical activity (IPAQ), dietary behaviors, their quality of motivation for physical activity (BREQ-3) and for diet (REBS), body mass index (BMI), and quality of life (EQ-5D-3L). For the process evaluation, we used individual and group interviews, observations and document analyses to gain insight in the implementation process (e.g. the recruitment) and how the intervention was valued by the participants, lifestyle coaches, and referrers. The study is currently ongoing and therefore the results presented here are preliminary. On average, the participants that finished the intervention and those that have completed the long-term measurement improved their level of vigorous-intense physical activity, sedentary behavior, sugar-sweetened beverage consumption and BMI. Mixed results were observed in motivational regulation for physical activity and nutrition. Moreover, an improvement on the quality of life dimension anxiety/depression was found, also in the long-term. All the other constructs did not show significant change over time. The results of the process evaluation have shown that recruitment of clients was difficult. Participants evaluated the intervention positively and the lifestyle coaches have continuously adapted the structure and contents of the intervention throughout the study period, based on their experiences and feedback from research. Preliminary results indicate that the CooL-intervention may have beneficial effects on overweight and obese participants in terms of energy balance-related behaviors, weight reduction, and quality of life. Recruitment of participants and embedding the position of the lifestyle coach in traditional care structures is challenging.Keywords: combined lifestyle intervention, effect evaluation, lifestyle coaching, process evaluation, overweight, the Netherlands
Procedia PDF Downloads 2328071 Potential Opportunity and Challenge of Developing Organic Rankine Cycle Geothermal Power Plant in China Based on an Energy-Economic Model
Authors: Jiachen Wang, Dongxu Ji
Abstract:
Geothermal power generation is a mature technology with zero carbon emission and stable power output, which could play a vital role as an optimum substitution of base load technology in China’s future decarbonization society. However, the development of geothermal power plants in China is stagnated for a decade due to the underestimation of geothermal energy and insufficient favoring policy. Lack of understanding of the potential value of base-load technology and environmental benefits is the critical reason for disappointed policy support. This paper proposed a different energy-economic model to uncover the potential benefit of developing a geothermal power plant in Puer, including the value of base-load power generation, and environmental and economic benefits. Optimization of the Organic Rankine Cycle (ORC) for maximum power output and minimum Levelized cost of electricity was first conducted. This process aimed at finding the optimum working fluid, turbine inlet pressure, pinch point temperature difference and superheat degrees. Then the optimal ORC model was sent to the energy-economic model to simulate the potential economic and environmental benefits. Impact of geothermal power plants based on the scenarios of implementing carbon trade market, the direct subsidy per electricity generation and nothing was tested. In addition, a requirement of geothermal reservoirs, including geothermal temperature and mass flow rate for a competitive power generation technology with other renewables, was listed. The result indicated that the ORC power plant has a significant economic and environmental benefit over other renewable power generation technologies when implementing carbon trading market and subsidy support. At the same time, developers must locate the geothermal reservoirs with minimum temperature and mass flow rate of 130 degrees and 50 m/s to guarantee a profitable project under nothing scenarios.Keywords: geothermal power generation, optimization, energy model, thermodynamics
Procedia PDF Downloads 718070 Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites
Authors: Luiza Melo De Lima, Tito Trindade, Jose M. Oliveira
Abstract:
The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference.Keywords: graphene nanoplatelets, mechanical properties, melt blending processing, poly(propylene)-based nanocomposites
Procedia PDF Downloads 1898069 Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior
Authors: Y. El Kaissi, M. Allam, A. Koulou, M. Galai, M. Ebn Touhami
Abstract:
The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment.Keywords: cyclic voltammetry, EIS, electroless Ni–P coating, heat treatment, potentiodynamic polarization
Procedia PDF Downloads 3058068 Synthesis, Characterization and Applications of Novel Hydrogels Based On Chitosan Derivatives
Authors: Mahmoud H. Aboul-Ela, Riham R. Mohamed, Magdy W. Sabaa
Abstract:
Synthesis of cross-linked hydrogels composed of trimethyl chitosan (TMC) and poly(vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, XRD, SEM and TGA. The prepared hydrogels were investigated as adsorbent materials for some transition metal ions from their aqueous solutions. Moreover, the swell ability of the prepared hydrogels was also investigated in both acidic and alkaline pHs, as well as in simulated body fluid (SBF).Keywords: trimethyl chitosan, hydrogels, metal uptake, superabsorbent materials
Procedia PDF Downloads 3948067 The Development of Sports Medicine and Physical Fitness in China from Reviewing Their Studies from the Journal of China Sports Science
Authors: Dong Zhan
Abstract:
China sports science is the core periodical of scientific research in the field of sports in China at present. It is the first academic periodical ranked in China. The author has studied the characteristics and trends of articles on sports medicine and physical fitness published in the journal since it founded. Now, the articles on sports medicine and physical fitness published in the Journal of Sports Science from 2013 to 2017 are reviewed. The results show that 1) The characteristics of previous sports medicine articles showed that there were more articles on the basis of sports medicine than that on the application. The research on animal experiments was far more than that on the human body. Moreover, the trend was getting worse and worse as time goes on. But in the past five years, there had been a marked improvement. The basic/application has been improved from 2.1/1 to 1.3/1. This shows that sports medicine researchers have been paid more attention to the application research in sports medicine. 2) There are few articles on sports injury, because the state put the sports injury specialty into the medical colleges, and the research scope of sports research institutes does not include sports injury. It cannot meet the need for the development of sports medicine, and it should change sooner or later. 3) In the past, researchers’ effort was on athletes' physical health, not on ordinary people. Now, there is a great change, they not only research on the sportsmen’s health but also research on the health of the ordinary people. 4) Researchers mainly studied on the young people’s physical fitness in the past; now, it has been greatly improved. Researchers study on the physical health of the elderly, especially those over the age of 60. Numbers of paper researching on the young were much more than those on the old. In the past 10 years, the ratio of number of paper researching on the young to the old people was (young/old) 16.6/1, while in the past 5 years, this ratio was 6.3/1. However, this is not enough. China has a large population and needs to focus on promoting the health of the people. Conclusion: It is important to pay more attention to the application research on sports medicine and on the physical fitness, and it is also important to make a research on physical health of the elderly.Keywords: sports medicine, people's health, the young, the old
Procedia PDF Downloads 1548066 Examining the Relationship Between Green Procurement Practices and Firm’s Performance in Ghana
Authors: Alexander Otchere Fianko, Clement Yeboah, Evans Oteng
Abstract:
Prior research concludes that Green Procurement Practices positively drive Organisational Performance. Nonetheless, the nexus and conditions under which Green Procurement Practices contribute to a Firm’s Performance are less understood. The purpose of this quantitative relational study was to examine the relationship between Green Procurement Practices and 500 Firms’ Performances in Ghana. The researchers further seek to draw insights from the resource-based view to conceptualize Green Procurement Practices and Environmental Commitment as resource capabilities to enhance Firm Performance. The researchers used insights from the contingent resource-based view to examine Green Leadership Orientation conditions under which Green Procurement Practices contribute to Firm Performance through Environmental Commitment Capabilities. The study’s conceptual framework was tested on primary data from some firms in the Ghanaian market. PROCESS Macro was used to test the study’s hypotheses. Beyond that, Environmental Commitment Capabilities mediated the association between Green Procurement Practices and the Firm’s Performance. The study further seeks to find out whether Green Leadership Orientation positively moderates the indirect relationship between Green Procurement Practices and Firm Performance through Environmental Commitment Capabilities. While conventional wisdom suggests that improved Green Procurement Practices help improve a Firm’s Performance, this study tested this presumed relationship between Green Procurement Practices and Firm Performance and provides theoretical arguments and empirical evidence to justify how Environmental Commitment Capabilities uniquely and in synergy with Green Leadership Orientation transform this relationship. The study results indicated a positive correlation between Green Procurement Practices and Firm Performance. This result suggests that firms that prioritize environmental sustainability and demonstrate a strong commitment to environmentally responsible practices tend to experience better overall performance. This includes financial gains, operational efficiency, enhanced reputation, and improved relationships with stakeholders. The study's findings inform policy formulation in Ghana related to environmental regulations, incentives, and support mechanisms. Policymakers can use the insights to design policies that encourage and reward firms for their Green Procurement Practices, thereby fostering a more sustainable and environmentally responsible business environment. The findings from such research can influence the design and development of educational programs in Ghana, specifically in fields related to sustainability, environmental management, and corporate social responsibility (CSR). Institutions may consider integrating environmental and sustainability topics into their business and management courses to create awareness and promote responsible practices among future business professionals. Also, the study results can also promote the adoption of environmental accounting practices in Ghana. By recognizing and measuring the environmental impacts and costs associated with business activities, firms can better understand the financial implications of their Green Procurement Practices and develop strategies for improved performance.Keywords: environmental commitment, firm’s performance, green procurement practice, green leadership orientation
Procedia PDF Downloads 848065 Assessment of Fluid Flow Hydrodynamics for Cylindrical and Conical Fluidized Bed Reactor
Authors: N. G. Thangan, A. B. Deoghare, P. M. Padole
Abstract:
Computational Fluid Dynamics (CFD) aids in modeling the prototype of a real world processes. CFD approach is useful in predicting the fluid flow, heat transfer mass transfer and other flow related phenomenon. In present study, hydrodynamic characteristics of gas-solid cylindrical fluidized bed is compared with conical fluidized beds. A 2D fluidized bed consists of different configurations of particle size of iron oxide, bed height and superficial velocities of nitrogen. Simulations are performed to capture the complex physics associated with it. The Eulerian multiphase model is prepared in ANSYS FLUENT v.14 which is used to simulate fluidization process. It is analyzed with nitrogen as primary phase and iron oxide as secondary phase. The bed hydrodynamics is assessed prominently to examine effect on fluidization time, pressure drop, minimum fluidization velocity, and gas holdup in the system.Keywords: fluidized bed, bed hydrodynamics, Eulerian multiphase approach, computational fluid dynamics
Procedia PDF Downloads 4558064 The Unscented Kalman Filter Implementation for the Sensorless Speed Control of a Permanent Magnet Synchronous Motor
Authors: Justas Dilys
Abstract:
ThispaperaddressestheimplementationandoptimizationofanUnscentedKalmanFilter(UKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM Cortex- M3 microcontroller. A various optimization levels based on arithmetic calculation reduction was implemented in ARM Cortex-M3 microcontroller. The execution time of UKF estimator was up to 90µs without loss of accuracy. Moreover, simulation studies on the Unscented Kalman filters are carried out using Matlab to explore the usability of the UKF in a sensorless PMSMdrive.Keywords: unscented kalman filter, ARM, PMSM, implementation
Procedia PDF Downloads 1748063 Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles
Authors: Huseyin Kavas
Abstract:
Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION.Keywords: magnetic materials, nanostructures, self-assembly, FMR
Procedia PDF Downloads 1128062 AI-Driven Solutions for Optimizing Master Data Management
Authors: Srinivas Vangari
Abstract:
In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.Keywords: artificial intelligence, master data management, data governance, data quality
Procedia PDF Downloads 238061 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming
Authors: David Muyise
Abstract:
Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing
Procedia PDF Downloads 1348060 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method
Authors: Karuna Tuchinda, Sasithon Bland
Abstract:
This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction
Procedia PDF Downloads 3778059 Contrast Media Effects and Radiation Dose Assessment in Contrast Enhanced Computed Tomography
Authors: Buhari Samaila, Sabiu Abdullahi, Buhari Maidamma
Abstract:
Background: Contrast-enhanced computed tomography (CE-CT) is a technique that uses contrast media to improve image quality and diagnostic accuracy. It is a widely used imaging modality in medical diagnostics, offering high-resolution images for accurate diagnosis. However, concerns regarding the potential adverse effects of contrast media and radiation dose exposure have prompted ongoing investigation and assessment. It is important to assess the effects of contrast media and radiation dose in CE-CT procedures. Objective: This study aims to assess the effects of contrast media and radiation dose in contrast-enhanced computed tomography (CECT) procedures. Methods: A comprehensive review of the literature was conducted to identify studies related to contrast media effects and radiation dose assessment in CECT. Relevant data, including location, type of research, objective, method, findings, conclusion, authors, and year of publications, were extracted, analyzed, and reported. Results: The findings revealed that several studies have investigated the impacts of contrast media and radiation doses in CECT procedures, with iodinated contrast agents being the most commonly employed. Adverse effects associated with contrast media administration were reported, including allergic reactions, nephrotoxicity, and thyroid dysfunction, albeit at relatively low incidence rates. Additionally, radiation dose levels varied depending on the imaging protocol and anatomical region scanned. Efforts to minimize radiation exposure through optimization techniques were evident across studies. Conclusion: Contrast-enhanced computed tomography (CECT) remains an invaluable tool in medical imaging; however, careful consideration of contrast media effects and radiation dose exposure is imperative. Healthcare practitioners should weigh the diagnostic benefits against potential risks, employing strategies to mitigate adverse effects and optimize radiation dose levels for patient safety and effective diagnosis. Further research is warranted to enhance the understanding and management of contrast media effects and radiation dose optimization in CECT procedures.Keywords: CT, contrast media, radiation dose, effect of radiation
Procedia PDF Downloads 268058 Optimal Utilization of Space in a Warehouse: A Case Study
Authors: Arun Kumar R. K. Gothra, Hasan Alhakamy
Abstract:
With increasing expectations and demands for warehousing and distribution, Warehouse Solution Incorporated in Victoria has been looking at ways to improve on its business processes to maintain the competitive edge. To maintain the provision of high quality service standards at competitive and affordable prices, improvements in the logistics management are necessary. One such avenue is to make efficient use of space available in the warehouse. This paper is based on a study of the collaboration of Warehouse Solution Inc with Dandenong Distribution Centre (DDC) to solve congestion problem and enhance efficiency of the whole warehouse activities.Keywords: space optimization, optimal utilization, warehouse, DDC
Procedia PDF Downloads 613