Search results for: inductively coupled plasma–optical emission spectrometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5439

Search results for: inductively coupled plasma–optical emission spectrometry

1179 Distribution and Historical Trends of PAHs Deposition in Recent Sediment Cores of the Imo River, SE Nigeria

Authors: Miranda I. Dosunmu, Orok E. Oyo-Ita, Inyang O. Oyo-Ita

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are a class of priority listed organic pollutants due to their carcinogenicity, mutagenity, acute toxicity and persistency in the environment. The distribution and historical changes of PAHs contamination in recent sediment cores from the Imo River were investigated using gas chromatography coupled with mass spectrometer. The concentrations of total PAHs (TPAHs) ranging from 402.37 ng/g dry weight (dw) at the surface layer of the Estuary zone (ESC6; 0-5 cm) to 92,388.59 ng/g dw at the near surface layer of the Afam zone (ASC5; 5-10 cm) indicate that PAHs contamination was localized not only between sample sites but also within the same cores. Sediment-depth profiles for the four (Afam, Mangrove, Estuary and illegal Petroleum refinery) cores revealed irregular distribution patterns in the TPAH concentrations except the fact that these levels became maximized at the near surface layers (5-10 cm) corresponding to a geological time-frame of about 1996-2004. This time scale coincided with the period of intensive bunkering and oil pipeline vandalization by the Niger Delta militant groups. Also a general slight decline was found in the TPAHs levels from near the surface layers (5-10 cm) to the most recent top layers (0-5 cm) of the cores, attributable to the recent effort by the Nigerian government in clamping down the illegal activity of the economic saboteurs. Therefore, the recent amnesty period granted to the militant groups should be extended. Although mechanism of perylene formation still remains enigmatic, examination of its distributions down cores indicates natural biogenic, pyrogenic and petrogenic origins for the compound at different zones. Thus, the characteristic features of the Imo River environment provide a means of tracing diverse origins for perylene.

Keywords: perylene, historical trend, distribution, origin, Imo River

Procedia PDF Downloads 248
1178 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fin height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fin height has greater impact on performance factor than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer and pressure drop up to 21% and 56% compared to a 2D one, respectfully.

Keywords: three-dimensional micro-finned tube, heat transfer, friction factor, heat exchanger

Procedia PDF Downloads 113
1177 Incorporating Circular Economy into Passive Design Strategies in Tropical Nigeria

Authors: Noah G. Akhimien, Eshrar Latif

Abstract:

The natural environment is in need for an urgent rescue due to dilapidation and recession of resources. Passive design strategies have proven to be one of the effective ways to reduce CO2 emissions and to improve building performance. On the other hand, there is a huge drop in material availability due to poor recycling culture. Consequently, building waste pose environmental hazard due to unrecycled building materials from construction and deconstruction. Buildings are seen to be material banks for a circular economy, therefore incorporating circular economy into passive housing will not only safe guide the climate but also improve resource efficiency. The study focuses on incorporating a circular economy in passive design strategies for an affordable energy and resource efficient residential building in Nigeria. Carbon dioxide (CO2) concentration is still on the increase as buildings are responsible for a significant amount of this emission globally. Therefore, prompt measures need to be taken to combat the effect of global warming and associated threats. Nigeria is rapidly growing in human population, resources on the other hand have receded greatly, and there is an abrupt need for recycling even in the built environment. It is necessary that Nigeria responds to these challenges effectively and efficiently considering building resource and energy. Passive design strategies were assessed using simulations to obtain qualitative and quantitative data which were inferred to case studies as it relates to the Nigeria climate. Building materials were analysed using the ReSOLVE model in order to explore possible recycling phase. This provided relevant information and strategies to illustrate the possibility of circular economy in passive buildings. The study offers an alternative approach, as it is the general principle for the reworking of an economy on ecological lines in passive housing and by closing material loops in circular economy.

Keywords: building, circular, efficiency, environment, sustainability

Procedia PDF Downloads 249
1176 The Role of Phase Morphology on the Corrosion Fatigue Mechanism in Marine Steel

Authors: Victor Igwemezie, Ali Mehmanparast

Abstract:

The correct knowledge of corrosion fatigue mechanism in marine steel is very important. This is because it enables the design, selection, and use of steels for offshore applications. It also supports realistic corrosion fatigue life prediction of marine structures. A study has been conducted to increase the understanding of corrosion fatigue mechanism in marine steels. The materials investigated are normalized and advanced S355 Thermomechanical control process (TMCP) steels commonly used in the design of offshore wind turbine support structures. The experimental study was carried out by conducting corrosion fatigue tests under conditions pertinent to offshore wind turbine operations, using the state of the art facilities. A careful microstructural study of the crack growth path was conducted using metallurgical optical microscope (OM), scanning electron microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX). The test was conducted on three subgrades of S355 steel: S355J2+N, S355G8+M and S355G10+M and the data compared with similar studies in the literature. The result shows that the ferrite-pearlite morphology primarily controls the corrosion-fatigue crack growth path in marine steels. A corrosion fatigue mechanism which relies on the hydrogen embrittlement of the grain boundaries and pearlite phase is used to explain the crack propagation behaviour. The crack growth trend in the Paris region of the da/dN vs. ΔK curve is used to explain the dependency of the corrosion-fatigue crack growth rate on the ferrite-pearlite morphology.

Keywords: corrosion-fatigue mechanism, fatigue crack growth rate, ferritic-pearlitic steel, microstructure, phase morphology

Procedia PDF Downloads 153
1175 Wearable Monitoring and Treatment System for Parkinson’s Disease

Authors: Bulcha Belay Etana, Benny Malengier, Janarthanan Krishnamoorthy, Timothy Kwa, Lieva Vanlangenhove

Abstract:

Electromyography measures the electrical activity of muscles using surface electrodes or needle electrodes to monitor various disease conditions. Recent developments in the signal acquisition of electromyograms using textile electrodes facilitate wearable devices, enabling patients to monitor and control their health status outside of healthcare facilities. Here, we have developed and tested wearable textile electrodes to acquire electromyography signals from patients suffering from Parkinson’s disease and incorporated a feedback-control system to relieve muscle cramping through thermal stimulus. In brief, the textile electrodes made of stainless steel was knitted into a textile fabric as a sleeve, and their electrical characteristic, such as signal-to-noise ratio, was compared with traditional electrodes. To relieve muscle cramping, a heating element made of stainless-steel conductive yarn sewn onto a cotton fabric, coupled with a vibration system, was developed. The system integrated a microcontroller and a Myoware muscle sensor to activate the heating element as well as the vibration motor when cramping occurred. At the same time, the element gets deactivated when the muscle cramping subsides. An optimum therapeutic temperature of 35.5°C is regulated and maintained continuously by a heating device. The textile electrode exhibited a signal-to-noise ratio of 6.38dB, comparable to that of the traditional electrode’s value of 7.05 dB. For a given 9 V power supply, the rise time for the developed heating element was about 6 minutes to reach an optimum temperature.

Keywords: smart textile system, wearable electronic textile, electromyography, heating textile, vibration therapy, Parkinson’s disease

Procedia PDF Downloads 70
1174 Economical Transformer Selection Implementing Service Lifetime Cost

Authors: Bonginkosi A. Thango, Jacobus A. Jordaan, Agha F. Nnachi

Abstract:

In this day and age, there is a proliferate concern from all governments across the globe to barricade the environment from greenhouse gases, which absorb infrared radiation. As a result, solar photovoltaic (PV) electricity has been an expeditiously growing renewable energy source and will eventually undertake a prominent role in the global energy generation. The selection and purchasing of energy-efficient transformers that meet the operational requirements of the solar photovoltaic energy generation plants then become a part of the Independent Power Producers (IPP’s) investment plan of action. Taking these into account, this paper proposes a procedure that put into effect the intricate financial analysis necessitated to precisely evaluate the transformer service lifetime no-load and load loss factors. This procedure correctly set forth the transformer service lifetime loss factors as a result of a solar PV plant’s sporadic generation profile and related levelized costs of electricity into the computation of the transformer’s total ownership cost. The results are then critically compared with the conventional transformer total ownership cost unaccompanied by the emission costs, and demonstrate the significance of the sporadic energy generation nature of the solar PV plant on the total ownership cost. The findings indicate that the latter play a crucial role for developers and Independent Power Producers (IPP’s) in making the purchase decision during a tender bid where competing offers from different transformer manufactures are evaluated. Additionally, the susceptibility analysis of different factors engrossed in the transformer service lifetime cost is carried out; factors including the levelized cost of electricity, solar PV plant’s generation modes, and the loading profile are examined.

Keywords: solar photovoltaic plant, transformer, total ownership cost, loss factors

Procedia PDF Downloads 123
1173 Quantification of Lawsone and Adulterants in Commercial Henna Products

Authors: Ruchi B. Semwal, Deepak K. Semwal, Thobile A. N. Nkosi, Alvaro M. Viljoen

Abstract:

The use of Lawsonia inermis L. (Lythraeae), commonly known as henna, has many medicinal benefits and is used as a remedy for the treatment of diarrhoea, cancer, inflammation, headache, jaundice and skin diseases in folk medicine. Although widely used for hair dyeing and temporary tattooing, henna body art has popularized over the last 15 years and changed from being a traditional bridal and festival adornment to an exotic fashion accessory. The naphthoquinone, lawsone, is one of the main constituents of the plant and responsible for its dyeing property. Henna leaves typically contain 1.8–1.9% lawsone, which is used as a marker compound for the quality control of henna products. Adulteration of henna with various toxic chemicals such as p-phenylenediamine, p-methylaminophenol, p-aminobenzene and p-toluenodiamine to produce a variety of colours, is very common and has resulted in serious health problems, including allergic reactions. This study aims to assess the quality of henna products collected from different parts of the world by determining the lawsone content, as well as the concentrations of any adulterants present. Ultra high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to determine the lawsone concentrations in 172 henna products. Separation of the chemical constituents was achieved on an Acquity UPLC BEH C18 column using gradient elution (0.1% formic acid and acetonitrile). The results from UPLC-MS revealed that of 172 henna products, 11 contained 1.0-1.8% lawsone, 110 contained 0.1-0.9% lawsone, whereas 51 samples did not contain detectable levels of lawsone. High performance thin layer chromatography was investigated as a cheaper, more rapid technique for the quality control of henna in relation to the lawsone content. The samples were applied using an automatic TLC Sampler 4 (CAMAG) to pre-coated silica plates, which were subsequently developed with acetic acid, acetone and toluene (0.5: 1.0: 8.5 v/v). A Reprostar 3 digital system allowed the images to be captured. The results obtained corresponded to those from UPLC-MS analysis. Vibrational spectroscopy analysis (MIR or NIR) of the powdered henna, followed by chemometric modelling of the data, indicates that this technique shows promise as an alternative quality control method. Principal component analysis (PCA) was used to investigate the data by observing clustering and identifying outliers. Partial least squares (PLS) multivariate calibration models were constructed for the quantification of lawsone. In conclusion, only a few of the samples analysed contain lawsone in high concentrations, indicating that they are of poor quality. Currently, the presence of adulterants that may have been added to enhance the dyeing properties of the products, is being investigated.

Keywords: Lawsonia inermis, paraphenylenediamine, temporary tattooing, lawsone

Procedia PDF Downloads 458
1172 Identification and Quantification of Sesquiterpene Lactones of Sagebrush (Artemisia tridentate) and Its Chemical Modification

Authors: Rosemary Anibogwu, Kavita Sharma, Karl De Jesus

Abstract:

Sagebrush is an abundant and naturally occurring plant in the Intermountain West region of the United States. The plant contains an array of bioactive compounds such as flavonoids, terpenoids, sterols, and phenolic acids. It is important to identify and characterize these compounds because Native Americans use sagebrush as herbal medicine. These compounds are also utilized for preventing infection in wounds, treating headaches and colds, and possess antitumor properties. This research is an exploratory study on the sesquiterpene present in the leaves of sagebrush. The leaf foliage was extracted with 100 % chloroform and 100 % methanol. The percentage yield for the crude was considerably higher in chloroform. The Thin Layer Chromatography (TLC) analysis of the crude extracted unveiled a brown band at Rf = 0.25 and a dark brown band at Rf = 0.74, along with three unknown faint bands the 254 nm UV lamp. Furthermore, the two distinct brown (Achillin) and dark brown band (Hydroxyachillin) in TLC were further utilized in the isolation of pure compounds with column chromatography. The structures of Achillin and Hydroxyachillin were elucidated based on extensive spectroscopic analysis, including TLC, High-Performance Liquid Chromatography (HPLC), 1D- and 2D-Nuclear Magnetic Resonance (NMR), and Mass Spectroscopy (MS). The antioxidant activities of crude extract and three pure compounds were evaluated in terms of their peroxyl radical scavenging by Ferric Reducing Ability of Plasma (FRAP) and 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) methods. The crude extract showed the antioxidant activity of 18.99 ± 0.51 µmol TEg -1 FW for FRAP and 11.59 ± 0.38 µmol TEg -1 FW for DPPH. The activities of Achillin, Hydroxyachillin, and Quercetagetin trimethyl ether were 13.03, 15.90 and 14.02 µmol TEg -1 FW respectively for the FRAP assay. The three purified compounds have been submitted to the National Cancer Institute 60 cancer cell line for further study.

Keywords: HPLC, nuclear magnetic resonance spectroscopy, sagebrush, sesquiterpene lactones

Procedia PDF Downloads 127
1171 Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses

Authors: Ashis Mallick, Rajeev Ranjan

Abstract:

The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing.

Keywords: Adomian decomposition, inverse analysis, hyperbolic fin, variable thermal conductivity

Procedia PDF Downloads 325
1170 Comparison of Low Velocity Impact Test on Coir Fiber Reinforced Polyester Composites

Authors: Ricardo Mendoza, Jason Briceño, Juan F. Santa, Gabriel Peluffo, Mauricio Márquez, Beatriz Cardozo, Carlos Gutiérrez

Abstract:

The most common controlled method to obtain impact strength of composites materials is performing a Charpy Impact Test which consists of a pendulum with calibrated mass and length released from a known height. In fact, composites components experience impact events in normal operations such as when a tool drops or a foreign object strikes it. These events are categorized into low velocity impact (LVI) which typically occurs at velocities below 10m/s. In this study, the major aim was to calculate the absorbed energy during the impact. Tests were performed on three types of composite panels: fiberglass laminated panels, coir fiber reinforced polyester and coir fiber reinforced polyester subjected to water immersion for 48 hours. Coir fibers were obtained in local plantations of the Caribbean coast of Colombia. They were alkali treated in 5% aqueous NaOH solution for 2h periods. Three type of shape impactors were used on drop-weight impact test including hemispherical, ogive and pointed. Failure mechanisms and failure modes of specimens were examined using an optical microscope. Results demonstrate a reduction in absorbed energy correlated with the increment of water absorption of the panels. For each level of absorbed energy, it was possible to associate a different fracture state. This study compares results of energy absorbed obtained from two impact test methods.

Keywords: coir fiber, polyester composites, low velocity impact, Charpy impact test, drop-weight impact test

Procedia PDF Downloads 450
1169 Dosimetric Analysis of Intensity Modulated Radiotherapy versus 3D Conformal Radiotherapy in Adult Primary Brain Tumors: Regional Cancer Centre, India

Authors: Ravi Kiran Pothamsetty, Radha Rani Ghosh, Baby Paul Thaliath

Abstract:

Radiation therapy has undergone many advancements and evloved from 2D to 3D. Recently, with rapid pace of drug discoveries, cutting edge technology, and clinical trials has made innovative advancements in computer technology and treatment planning and upgraded to intensity modulated radiotherapy (IMRT) which delivers in homogenous dose to tumor and normal tissues. The present study was a hospital-based experience comparing two different conformal radiotherapy techniques for brain tumors. This analytical study design has been conducted at Regional Cancer Centre, India from January 2014 to January 2015. Ten patients have been selected after inclusion and exclusion criteria. All the patients were treated on Artiste Siemens Linac Accelerator. The tolerance level for maximum dose was 6.0 Gyfor lenses and 54.0 Gy for brain stem, optic chiasm and optical nerves as per RTOG criteria. Mean and standard deviation values of PTV98%, PTV 95% and PTV 2% in IMRT were 93.16±2.9, 95.01±3.4 and 103.1±1.1 respectively; for 3DCRT were 91.4±4.7, 94.17±2.6 and 102.7±0.39 respectively. PTV max dose (%) in IMRT and 3D-CRT were 104.7±0.96 and 103.9±1.0 respectively. Maximum dose to the tumor can be delivered with IMRT with acceptable toxicity limits. Variables such as expertise, location of tumor, patient condition, and TPS influence the outcome of the treatment.

Keywords: brain tumors, intensity modulated radiotherapy (IMRT), three dimensional conformal radiotherapy (3D-CRT), radiation therapy oncology group (RTOG)

Procedia PDF Downloads 237
1168 A Framework for Auditing Multilevel Models Using Explainability Methods

Authors: Debarati Bhaumik, Diptish Dey

Abstract:

Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.

Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics

Procedia PDF Downloads 88
1167 The Financial and Metallurgical Benefits of Niobium Grain Refined As-Rolled 460 MPa H-Beam to the Construction Industry in SE Asia

Authors: Michael Wright, Tiago Costa

Abstract:

The construction industry in SE Asia has been relying on S355 MPa “as rolled” H-beams for many years now. It is an easily sourced, metallurgically simple, reliable product that all designers, fabricators and constructors are familiar with. However, as the Global demand to better use our finite resources gets stronger, the need for an as-rolled S460 MPa H-Beam is becoming more apparent. The Financial benefits of an “as-rolled” S460 MPa H-beam are obvious. The S460 MPa beam which is currently available and used is fabricated from rolled strip. However, making H-beam from 3 x 460 MPa strips requires costly equipment, valuable welding skills & production time, all of which can be in short supply or better used for other purposes. The Metallurgical benefits of an “as-rolled” S460 MPa H-beam are consistency in the product. Fabricated H-beams have inhomogeneous areas where the strips have been welded together - parent metal, heat affected zone and weld metal all in the one body. They also rely heavily on the skill of the welder to guarantee a perfect, defect free weld. If this does not occur, the beam is intrinsically flawed and could lead to failure in service. An as-rolled beam is a relatively homogenous product, with the optimum strength and ductility produced by delivering steel with as fine as possible uniform cross sectional grain size. This is done by cost effective alloy design coupled with proper metallurgical process control implemented into an existing mill’s equipment capability and layout. This paper is designed to highlight the benefits of bring an “as-rolled” S460 MPa H-beam to the construction market place in SE Asia, and hopefully encourage the current “as-rolled” H-beam producers to rise to the challenge and produce an innovative high quality product for the local market.

Keywords: fine grained, As-rolled, long products, process control, metallurgy

Procedia PDF Downloads 298
1166 Early Age Microstructural Analysis of Cement-Polymer Composite Paste Cured at High Temperature

Authors: Bertilia L. Bartley, Ledjane S. Barreto

Abstract:

As a preliminary investigation on the control of microcracking in composite cement pastes, this study explores and compares the compatibility of Tetraethyl Orthosilicate (TEOS), Ethylene Glycol (EG) and Silicone Resin (SIL) in cement pastes cured at high temperature. Pastes were prepared by incorporating ordinary Portland cement (OPC) into an additive solution, using a solution/cement ratio of 0.45. Specimens were molded for 24h at 21 ± 2°C, then cured in deionized water for another 24h at 74 ± 1°C. TEOS and EG influence on fresh paste properties were similar to the reference OPC paste yet disintegration was observed in EG and SIL specimens after the first 12h of curing. X-Ray Diffraction analysis (XRD) coupled with thermogravimetric analysis (TGA/DTG) verified that SIL addition impedes portlandite formation significantly. Backscatter Scanning Electron Microscopy (SEM) techniques were therefore performed on selected areas of each sample to investigate the morphology of the hydration products detected. Various morphologies of portlandite crystals were observed in pastes with EG and TEOS addition, as well as dense morphologies of calcium silicate hydrate (C-S-H) gel and fibers, and ettringite needles. However, the formation of portlandite aggregate and clusters of C-S-H was highly favored by TEOS addition. Furthermore, the microstructural details of composite pastes were clearly visible at low magnifications i.e. 500x, as compared to the OPC paste. The results demonstrate accelerated hydration within composite pastes, a uniform distribution of hydration products, as well as an adhesive interaction with the products and polymer additive. Overall, TEOS demonstrated the most favorable influence, which indicates the potential of TEOS as a compatible polymer additive within the cement system at high temperature.

Keywords: accelerated curing, cement/polymer composite, hydration, microstructural properties, morphology, portlandite, scanning electron microscopy (sem)

Procedia PDF Downloads 180
1165 Impact of Different Fuel Inlet Diameters onto the NOx Emissions in a Hydrogen Combustor

Authors: Annapurna Basavaraju, Arianna Mastrodonato, Franz Heitmeir

Abstract:

The Advisory Council for Aeronautics Research in Europe (ACARE) is creating awareness for the overall reduction of NOx emissions by 80% in its vision 2020. Hence this promotes the researchers to work on novel technologies, one such technology is the use of alternative fuels. Among these fuels hydrogen is of interest due to its one and only significant pollutant NOx. The influence of NOx formation due to hydrogen combustion depends on various parameters such as air pressure, inlet air temperature, air to fuel jet momentum ratio etc. Appropriately, this research is motivated to investigate the impact of the air to fuel jet momentum ratio onto the NOx formation in a hydrogen combustion chamber for aircraft engines. The air to jet fuel momentum is defined as the ratio of impulse/momentum of air with respect to the momentum of fuel. The experiments were performed in an existing combustion chamber that has been previously tested for methane. Premix of the reactants has not been considered due to the high reactivity of the hydrogen and high risk of a flashback. In order to create a less rich zone of reaction at the burner and to decrease the emissions, a forced internal recirculation flow has been achieved by integrating a plate similar to honeycomb structure, suitable to the geometry of the liner. The liner has been provided with an external cooling system to avoid the increase of local temperatures and in turn the reaction rate of the NOx formation. The injected air has been preheated to aim at so called flameless combustion. The air to fuel jet momentum ratio has been inspected by changing the area of fuel inlets and keeping the number of fuel inlets constant in order to alter the fuel jet momentum, thus maintaining the homogeneity of the flow. Within this analysis, promising results for a flameless combustion have been achieved. For a constant number of fuel inlets, it was seen that the reduction of the fuel inlet diameter resulted in decrease of air to fuel jet momentum ratio in turn lowering the NOx emissions.

Keywords: combustion chamber, hydrogen, jet momentum, NOx emission

Procedia PDF Downloads 287
1164 Cost-Effectiveness Analysis of the Use of COBLATION™ Knee Chondroplasty versus Mechanical Debridement in German Patients

Authors: Ayoade Adeyemi, Leo Nherera, Paul Trueman, Antje Emmermann

Abstract:

Background and objectives: Radiofrequency (RF) generated plasma chondroplasty is considered a promising treatment alternative to mechanical debridement (MD) with a shaver. The aim of the study was to perform a cost-effectiveness analysis comparing costs and outcomes following COBLATION chondroplasty versus mechanical debridement in patients with knee pain associated with a medial meniscus tear and idiopathic ICRS grade III focal lesion of the medial femoral condyle from a payer perspective. Methods: A decision-analytic model was developed comparing economic and clinical outcomes between the two treatment options in German patients following knee chondroplasty. Revision rates based on the frequency of repeat arthroscopy, osteotomy and conversion to total knee replacement, reimbursement costs and outcomes data over a 4-year time horizon were extracted from published literature. One-way sensitivity analyses were conducted to assess uncertainties around model parameters. Threshold analysis determined the revision rate at which model results change. All costs were reported in 2016 euros, future costs were discounted at a 3% annual rate. Results: Over a 4 year period, COBLATION chondroplasty resulted in an overall net saving cost of €461 due to a lower revision rate of 14% compared to 48% with MD. Threshold analysis showed that both options were associated with comparable costs if COBLATION revision rate was assumed to increase up to 23%. The initial procedure costs for COBLATION were higher compared to MD and outcome scores were significantly improved at 1 and 4 years post-operation versus MD. Conclusion: The analysis shows that COBLATION chondroplasty is a cost-effective option compared to mechanical debridement in the treatment of patients with a medial meniscus tear and idiopathic ICRS grade III defect of the medial femoral condyle.

Keywords: COBLATION, cost-effectiveness, knee chondroplasty, mechanical debridement

Procedia PDF Downloads 388
1163 Numerical Evaluation of Deep Ground Settlement Induced by Groundwater Changes During Pumping and Recovery Test in Shanghai

Authors: Shuo Wang

Abstract:

The hydrogeological parameters of the engineering site and the hydraulic connection between the aquifers can be obtained by the pumping test. Through the recovery test, the characteristics of water level recovery and the law of surface subsidence recovery can be understood. The above two tests can provide the basis for subsequent engineering design. At present, the deformation of deep soil caused by pumping tests is often neglected. However, some studies have shown that the maximum settlement subject to groundwater drawdown is not necessarily on the surface but in the deep soil. In addition, the law of settlement recovery of each soil layer subject to water level recovery is not clear. If the deformation-sensitive structure is deep in the test site, safety accidents may occur. In this study, the pumping test and recovery test of a confined aquifer in Shanghai are introduced. The law of measured groundwater changes and surface subsidence are analyzed. In addition, the fluid-solid coupling model was established by ABAQUS based on the Biot consolidation theory. The models are verified by comparing the computed and measured results. Further, the variation law of water level and the deformation law of deep soil during pumping and recovery tests under different site conditions and different times and spaces are discussed through the above model. It is found that the maximum soil settlement caused by pumping in a confined aquifer is related to the permeability of the overlying aquitard and pumping time. There is a lag between soil deformation and groundwater changes, and the recovery rate of settlement deformation of each soil layer caused by the rise of water level is different. Finally, some possible research directions are proposed to provide new ideas for academic research in this field.

Keywords: coupled hydro-mechanical analysis, deep ground settlement, numerical simulation, pumping test, recovery test

Procedia PDF Downloads 40
1162 Managing Student Internationalization during the COVID-19 Pandemic: Three Approaches That Should Endure beyond the Present

Authors: David Cobham

Abstract:

In higher education, a great degree of importance is placed on the internationalization of the student experience. This is seen as a valuable contributor to elements such as building confidence, broadening knowledge, creating networks and connections, and enhancing employability for current students who will become the next generation of managers in technology and business. The COVID-19 pandemic has affected all areas of people’s lives. The limitations of travel coupled with the fears and concerns generated by the health risks have dramatically reduced the opportunity for students to engage with this agenda. Institutions of higher education have been required to rethink fundamental aspects of their business model from recruitment and enrolment through learning approaches, assessment methods, and the pathway to employment. This paper presents a case study which focuses on student mobility and how the physical experience of being in another country, either to study, to work, to volunteer or to gain cultural and social enhancement, has of necessity been replaced by alternative approaches. It considers trans-national education as an alternative to physical study overseas, virtual mobility and internships as an alternative to international work experience, and adopting collaborative online projects as an alternative to in-person encounters. The paper concludes that although these elements have been adopted to address the current situation, the lessons learned and the feedback gained suggests that they have contributed successfully in new and sometimes unexpected ways and that they will persist beyond the present to become part of the 'new normal' for the future. That being the case, senior leaders of institutions of higher education will be required to revisit their international plans and to rewrite their international strategies to take account of and build upon these changes.

Keywords: higher education management, internationalization, transnational education, virtual mobility

Procedia PDF Downloads 103
1161 Topology Optimization of Heat and Mass Transfer for Two Fluids under Steady State Laminar Regime: Application on Heat Exchangers

Authors: Rony Tawk, Boutros Ghannam, Maroun Nemer

Abstract:

Topology optimization technique presents a potential tool for the design and optimization of structures involved in mass and heat transfer. The method starts with an initial intermediate domain and should be able to progressively distribute the solid and the two fluids exchanging heat. The multi-objective function of the problem takes into account minimization of total pressure loss and maximization of heat transfer between solid and fluid subdomains. Existing methods account for the presence of only one fluid, while the actual work extends optimization distribution of solid and two different fluids. This requires to separate the channels of both fluids and to ensure a minimum solid thickness between them. This is done by adding a third objective function to the multi-objective optimization problem. This article uses density approach where each cell holds two local design parameters ranging from 0 to 1, where the combination of their extremums defines the presence of solid, cold fluid or hot fluid in this cell. Finite volume method is used for direct solver coupled with a discrete adjoint approach for sensitivity analysis and method of moving asymptotes for numerical optimization. Several examples are presented to show the ability of the method to find a trade-off between minimization of power dissipation and maximization of heat transfer while ensuring the separation and continuity of the channel of each fluid without crossing or mixing the fluids. The main conclusion is the possibility to find an optimal bi-fluid domain using topology optimization, defining a fluid to fluid heat exchanger device.

Keywords: topology optimization, density approach, bi-fluid domain, laminar steady state regime, fluid-to-fluid heat exchanger

Procedia PDF Downloads 394
1160 Transition From Economic Growth-Energy Use to Green Growth-Green Energy Towards Environmental Quality: Evidence from Africa Using Econometric Approaches

Authors: Jackson Niyongabo

Abstract:

This study addresses a notable gap in the existing literature on the relationship between energy consumption, economic growth, and CO₂ emissions, particularly within the African context. While numerous studies have explored these dynamics globally and regionally across various development levels, few have delved into the nuances of regions and income levels specific to African countries. Furthermore, the evaluation of the interplay between green growth policies, green energy technologies, and their impact on environmental quality has been underexplored. This research aims to fill these gaps by conducting a comprehensive analysis of the transition from conventional economic growth and energy consumption to a paradigm of green growth coupled with green energy utilization across the African continent from 1980 to 2018. The study is structured into three main parts: an empirical examination of the long-term effects of energy intensity, renewable energy consumption, and economic growth on CO₂ emissions across diverse African regions and income levels; an estimation of the long-term impact of green growth and green energy use on CO₂ emissions for countries implementing green policies within Africa, as well as at regional and global levels; and a comparative analysis of the impact of green growth policies on environmental degradation before and after implementation. Employing advanced econometric methods and panel estimators, the study utilizes a testing framework, panel unit tests, and various estimators to derive meaningful insights. The anticipated results and conclusions will be elucidated through causality tests, impulse response, and variance decomposition analyses, contributing valuable knowledge to the discourse on sustainable development in the African context.

Keywords: economic growth, green growth, energy consumption, CO₂ emissions, econometric models, green energy

Procedia PDF Downloads 53
1159 Self-Healing Phenomenon Evaluation in Cementitious Matrix with Different Water/Cement Ratios and Crack Opening Age

Authors: V. G. Cappellesso, D. M. G. da Silva, J. A. Arndt, N. dos Santos Petry, A. B. Masuero, D. C. C. Dal Molin

Abstract:

Concrete elements are subject to cracking, which can be an access point for deleterious agents that can trigger pathological manifestations reducing the service life of these structures. Finding ways to minimize or eliminate the effects of this aggressive agents’ penetration, such as the sealing of these cracks, is a manner of contributing to the durability of these structures. The cementitious self-healing phenomenon can be classified in two different processes. The autogenous self-healing that can be defined as a natural process in which the sealing of this cracks occurs without the stimulation of external agents, meaning, without different materials being added to the mixture, while on the other hand, the autonomous seal-healing phenomenon depends on the insertion of a specific engineered material added to the cement matrix in order to promote its recovery. This work aims to evaluate the autogenous self-healing of concretes produced with different water/cement ratios and exposed to wet/dry cycles, considering two ages of crack openings, 3 days and 28 days. The self-healing phenomenon was evaluated using two techniques: crack healing measurement using ultrasonic waves and image analysis performed with an optical microscope. It is possible to observe that by both methods, it possible to observe the self-healing phenomenon of the cracks. For young ages of crack openings and lower water/cement ratios, the self-healing capacity is higher when compared to advanced ages of crack openings and higher water/cement ratios. Regardless of the crack opening age, these concretes were found to stabilize the self-healing processes after 80 days or 90 days.

Keywords: sealf-healing, autogenous, water/cement ratio, curing cycles, test methods

Procedia PDF Downloads 154
1158 Examining Motivational Dynamics and L2 Learning Transitions of Air Cadets Between Year One and Year Two: A Retrodictive Qualitative Modelling Approach

Authors: Kanyaporn Sommeechai

Abstract:

Air cadets who aspire to become military pilots upon graduation undergo rigorous training at military academies. As first-year cadets are akin to civilian freshmen, they encounter numerous challenges within the seniority-based military academy system. Imposed routines, such as mandatory morning runs and restrictions on mobile phone usage for two semesters, have the potential to impact their learning process and motivation to study, including second language (L2) acquisition. This study aims to investigate the motivational dynamics and L2 learning transitions experienced by air cadets. To achieve this, a Retrodictive Qualitative Modelling approach will be employed, coupled with the adaptation of the three-barrier structure encompassing institutional factors, situational factors, and dispositional factors. Semi-structured interviews will be conducted to gather rich qualitative data. By analyzing and interpreting the collected data, this research seeks to shed light on the motivational factors that influence air cadets' L2 learning journey. The three-barrier structure will provide a comprehensive framework to identify and understand the institutional, situational, and dispositional factors that may impede or facilitate their motivation and language learning progress. Moreover, the study will explore how these factors interact and shape cadets' motivation and learning experiences. The outcomes of this research will yield fundamental data that can inform strategies and interventions to enhance the motivation and language learning outcomes of air cadets. By better understanding their motivational dynamics and transitions, educators and institutions can create targeted initiatives, tailored pedagogical approaches, and supportive environments that effectively inspire and engage air cadets as L2 learners.

Keywords: second language, education, motivational dynamics, learning transitions

Procedia PDF Downloads 65
1157 The Role of Non-Native Plant Species in Enhancing Food Security in Sub-Saharan Africa

Authors: Thabiso Michael Mokotjomela, Jasper Knight

Abstract:

Intensification of agricultural food production in sub-Saharan Africa is of paramount importance as a means of increasing the food security of communities that are already experiencing a range of environmental and socio-economic stresses. However, achieving this aim faces several challenges including ongoing climate change, increased resistance of diseases and pests, extreme environmental degradation partly due to biological invasions, land tenure and management practices, socio-economic developments of rural populations, and national population growth. In particular, non-native plant species tend to display greater adaptation capacity to environmental stress than native species that form important food resource base for human beings, thus suggesting a potential for usage to shift accordingly. Based on review of the historical benefits of non-native plant species in food production in sub-Saharan Africa, we propose that use of non-invasive, non-native plant species and/or the genetic modification of native species might be viable options for future agricultural sustainability in this region. Coupled with strategic foresight planning (e.g. use of biological control agents that suppress plant species’ invasions), the consumptive use of already-introduced non-native species might help in containment and control of possible negative environmental impacts of non-native species on native species, ecosystems and biodiversity, and soil fertility and hydrology. Use of non-native species in food production should be accompanied by low cost agroecology practices (e.g. conservation agriculture and agrobiodiversity) that may promote the gradual recovery of natural capital, ecosystem services, and promote conservation of the natural environment as well as enhance food security.

Keywords: food security, invasive species, agroecology, agrobiodiversity, socio-economic stresses

Procedia PDF Downloads 366
1156 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique

Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki

Abstract:

Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.

Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector

Procedia PDF Downloads 330
1155 A Geometrical Multiscale Approach to Blood Flow Simulation: Coupling 2-D Navier-Stokes and 0-D Lumped Parameter Models

Authors: Azadeh Jafari, Robert G. Owens

Abstract:

In this study, a geometrical multiscale approach which means coupling together the 2-D Navier-Stokes equations, constitutive equations and 0-D lumped parameter models is investigated. A multiscale approach, suggest a natural way of coupling detailed local models (in the flow domain) with coarser models able to describe the dynamics over a large part or even the whole cardiovascular system at acceptable computational cost. In this study we introduce a new velocity correction scheme to decouple the velocity computation from the pressure one. To evaluate the capability of our new scheme, a comparison between the results obtained with Neumann outflow boundary conditions on the velocity and Dirichlet outflow boundary conditions on the pressure and those obtained using coupling with the lumped parameter model has been performed. Comprehensive studies have been done based on the sensitivity of numerical scheme to the initial conditions, elasticity and number of spectral modes. Improvement of the computational algorithm with stable convergence has been demonstrated for at least moderate Weissenberg number. We comment on mathematical properties of the reduced model, its limitations in yielding realistic and accurate numerical simulations, and its contribution to a better understanding of microvascular blood flow. We discuss the sophistication and reliability of multiscale models for computing correct boundary conditions at the outflow boundaries of a section of the cardiovascular system of interest. In this respect the geometrical multiscale approach can be regarded as a new method for solving a class of biofluids problems, whose application goes significantly beyond the one addressed in this work.

Keywords: geometrical multiscale models, haemorheology model, coupled 2-D navier-stokes 0-D lumped parameter modeling, computational fluid dynamics

Procedia PDF Downloads 355
1154 Constructing the Cult of the Self: On White, Working-Class Males and the Neoliberalisation of Identities: An Autoethnographic Study

Authors: Dane B. Norris

Abstract:

This paper offers a reflective and reflexive examination of the lived reality of a group of young white, working-class males engaging in secondary education in England at a time when this population is widely recognised as the lowest attaining ethnic group within British schools. The focus of the paper is an exploration of the development of identities and aspirations alongside contemporary demographic shifts in the British population within the intersection of neoliberal education policies and the emerging ideological conflict between identity conservatism and liberalism. The construction and performance of intersecting social-class, gender, ethnic and national identities are considered, as well as the process through which socially constructed narratives inform identities and aspirations. Evocative autoethnography is then employed to offer reflections on working-class habitus and, in particular, classed and gendered codes that underpin expectations of manhood in post-industrial culture within an education system which seemingly requires the abandonment of aspects of a working-class background, affiliation, and identity. Findings from the study identify the emergence of a culture of hyper-individualisation amongst white, working-class males in schools and a belief in the meritocratic ideologies of the New Right. In particular, the breakdown of the social contract, including notions of political and civic responsibility, coupled with the symbolic violence perpetrated against working-class culture and solidarity in British schools, have all informed the construction of working-class masculinity which values the individual entrepreneur over the collective and depoliticizes students to an extent where a focus on the spectacle and performance of success has replaced individual and collective investment in community.

Keywords: education, identity, masculinity, neoliberalism, working-class

Procedia PDF Downloads 100
1153 Protective Effect of Celosia Argentea Leaf Extract on Cadmium Induced Toxicity and Oxidative Stress in Rats

Authors: Sulyman Abdulhakeem Olarewaju, S. O. Malomo, M. T. Yakubu, J. O. Akolade

Abstract:

The ameliorative effect of Celosia argentea var. cristata leaf extract against cadmium (Cd) induced oxidative stress and toxicity in selected tissues of rats was investigated. Toxicity coupled with oxidative stress was induced in rats by oral administration of Cd (8 mg/kg b. wt). Preliminary quantitative phytochemical and in vitro antioxidant analyses showed that the methanolic extract of C. argentea leaves was constituted by polyphenols (5.72%), saponins (3.20%), tannins (0.65%) and cadenolides (0.006%). IC50 of 9800, 7406, and 45.04 μg/ml were recorded for inhibition of linoleic acid oxidation, 2, 2-diphenyl-1-picrylhydrazyl and hydrogen peroxide radicals respectively. Simultaneous administration of C. argentea leaf extract with Cd significantly attenuated Cd-induced elevation of serum enzyme markers such as aspartate and alanine transaminase, alkaline and acid phosphatase as well as γ-glutaryltransferase in a dose-dependent fashion, while their reduced level in the liver were significantly increased. Higher levels of enzymatic antioxidants; superoxide dismutase and catalase activities were observed in the liver, brain, kidney and testes of the Cd-induced rats treated with C. argentea extract, while lipid peroxidation expressed in malondialdehyde concentrations were lower when compared to values in rats administered Cd only. Other Cd-induced toxicity and stress markers in the serum viz. reduced uric acid and albumin levels as well as elevated total and unconjugated bilirubin were attenuated by the extract and their values compared favorably with those animals co-administered cadmium with ascorbic acid. Data from the study showed that oral administration of extract from the leaf C. argentea may ameliorate Cd-induced oxidative stress and toxicity in rats.

Keywords: toxicity, cadmium, celosia, antioxidants, oxidative stress

Procedia PDF Downloads 342
1152 Osteoprotegerin and Osteoprotegerin/TRAIL Ratio are Associated with Cardiovascular Dysfunction and Mortality among Patients with Renal Failure

Authors: Marek Kuźniewski, Magdalena B. Kaziuk , Danuta Fedak, Paulina Dumnicka, Ewa Stępień, Beata Kuśnierz-Cabala, Władysław Sułowicz

Abstract:

Background: The high prevalence of cardiovascular morbidity and mortality among patients with chronic kidney disease (CKD) is observed especially in those undergoing dialysis. Osteoprotegerin (OPG) and its ligands, receptor activator of nuclear factor kappa-B ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been associated with cardiovascular complications. Our aim was to study their role as cardiovascular risk factors in stage 5 CKD patients. Methods: OPG, RANKL and TRAIL concentrations were measured in 69 hemodialyzed CKD patients and 35 healthy volunteers. In CKD patients, cardiovascular dysfunction was assessed with aortic pulse wave velocity (AoPWV), carotid artery intima-media thickness (CCA-IMT), coronary artery calcium score (CaSc) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) serum concentration. Cardiovascular and overall mortality data were collected during a 7-years follow-up. Results: OPG plasma concentrations were higher in CKD patients comparing to controls. Total soluble RANKL was lower and OPG/RANKL ratio higher in patients. Soluble TRAIL concentrations did not differ between the groups and OPG/TRAIL ratio was higher in CKD patients. OPG and OPG/TRAIL positively predicted long-term mortality (all-cause and cardiovascular) in CKD patients. OPG positively correlated with AoPWV, CCA-IMT and NT-proBNP whereas OPG/TRAIL with AoPWV and NT-proBNP. Described relationships were independent of classical and non-classical cardiovascular risk factors, with exception of age. Conclusions: Our study confirmed the role of OPG as a biomarker of cardiovascular dysfunction and a predictor of mortality in stage 5 CKD. OPG/TRAIL ratio can be proposed as a predictor of cardiovascular dysfunction and mortality.

Keywords: osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, receptor activator of nuclear factor kappa-B ligand, hemodialysis, chronic kidney disease, cardiovascular disease

Procedia PDF Downloads 331
1151 The Application of Raman Spectroscopy in Olive Oil Analysis

Authors: Silvia Portarena, Chiara Anselmi, Chiara Baldacchini, Enrico Brugnoli

Abstract:

Extra virgin olive oil (EVOO) is a complex matrix mainly composed by fatty acid and other minor compounds, among which carotenoids are well known for their antioxidative function that is a key mechanism of protection against cancer, cardiovascular diseases, and macular degeneration in humans. EVOO composition in terms of such constituents is generally the result of a complex combination of genetic, agronomical and environmental factors. To selectively improve the quality of EVOOs, the role of each factor on its biochemical composition need to be investigated. By selecting fruits from four different cultivars similarly grown and harvested, it was demonstrated that Raman spectroscopy, combined with chemometric analysis, is able to discriminate the different cultivars, also as a function of the harvest date, based on the relative content and composition of fatty acid and carotenoids. In particular, a correct classification up to 94.4% of samples, according to the cultivar and the maturation stage, was obtained. Moreover, by using gas chromatography and high-performance liquid chromatography as reference techniques, the Raman spectral features further allowed to build models, based on partial least squares regression, that were able to predict the relative amount of the main fatty acids and the main carotenoids in EVOO, with high coefficients of determination. Besides genetic factors, climatic parameters, such as light exposition, distance from the sea, temperature, and amount of precipitations could have a strong influence on EVOO composition of both major and minor compounds. This suggests that the Raman spectra could act as a specific fingerprint for the geographical discrimination and authentication of EVOO. To understand the influence of environment on EVOO Raman spectra, samples from seven regions along the Italian coasts were selected and analyzed. In particular, it was used a dual approach combining Raman spectroscopy and isotope ratio mass spectrometry (IRMS) with principal component and linear discriminant analysis. A correct classification of 82% EVOO based on their regional geographical origin was obtained. Raman spectra were obtained by Super Labram spectrometer equipped with an Argon laser (514.5 nm wavelenght). Analyses of stable isotope content ratio were performed using an isotope ratio mass spectrometer connected to an elemental analyzer and to a pyrolysis system. These studies demonstrate that RR spectroscopy is a valuable and useful technique for the analysis of EVOO. In combination with statistical analysis, it makes possible the assessment of specific samples’ content and allows for classifying oils according to their geographical and varietal origin.

Keywords: authentication, chemometrics, olive oil, raman spectroscopy

Procedia PDF Downloads 329
1150 Hybrid Energy System for the German Mining Industry: An Optimized Model

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly.

Keywords: diesel generation, German mining industry, hybrid energy system, hybrid optimization model for electric renewables, optimized model, renewable energy

Procedia PDF Downloads 340