Search results for: moderator variables
34 A Copula-Based Approach for the Assessment of Severity of Illness and Probability of Mortality: An Exploratory Study Applied to Intensive Care Patients
Authors: Ainura Tursunalieva, Irene Hudson
Abstract:
Continuous improvement of both the quality and safety of health care is an important goal in Australia and internationally. The intensive care unit (ICU) receives patients with a wide variety of and severity of illnesses. Accurately identifying patients at risk of developing complications or dying is crucial to increasing healthcare efficiency. Thus, it is essential for clinicians and researchers to have a robust framework capable of evaluating the risk profile of a patient. ICU scoring systems provide such a framework. The Acute Physiology and Chronic Health Evaluation III and the Simplified Acute Physiology Score II are ICU scoring systems frequently used for assessing the severity of acute illness. These scoring systems collect multiple risk factors for each patient including physiological measurements then render the assessment outcomes of individual risk factors into a single numerical value. A higher score is related to a more severe patient condition. Furthermore, the Mortality Probability Model II uses logistic regression based on independent risk factors to predict a patient’s probability of mortality. An important overlooked limitation of SAPS II and MPM II is that they do not, to date, include interaction terms between a patient’s vital signs. This is a prominent oversight as it is likely there is an interplay among vital signs. The co-existence of certain conditions may pose a greater health risk than when these conditions exist independently. One barrier to including such interaction terms in predictive models is the dimensionality issue as it becomes difficult to use variable selection. We propose an innovative scoring system which takes into account a dependence structure among patient’s vital signs, such as systolic and diastolic blood pressures, heart rate, pulse interval, and peripheral oxygen saturation. Copulas will capture the dependence among normally distributed and skewed variables as some of the vital sign distributions are skewed. The estimated dependence parameter will then be incorporated into the traditional scoring systems to adjust the points allocated for the individual vital sign measurements. The same dependence parameter will also be used to create an alternative copula-based model for predicting a patient’s probability of mortality. The new copula-based approach will accommodate not only a patient’s trajectories of vital signs but also the joint dependence probabilities among the vital signs. We hypothesise that this approach will produce more stable assessments and lead to more time efficient and accurate predictions. We will use two data sets: (1) 250 ICU patients admitted once to the Chui Regional Hospital (Kyrgyzstan) and (2) 37 ICU patients’ agitation-sedation profiles collected by the Hunter Medical Research Institute (Australia). Both the traditional scoring approach and our copula-based approach will be evaluated using the Brier score to indicate overall model performance, the concordance (or c) statistic to indicate the discriminative ability (or area under the receiver operating characteristic (ROC) curve), and goodness-of-fit statistics for calibration. We will also report discrimination and calibration values and establish visualization of the copulas and high dimensional regions of risk interrelating two or three vital signs in so-called higher dimensional ROCs.Keywords: copula, intensive unit scoring system, ROC curves, vital sign dependence
Procedia PDF Downloads 15233 Computer-Integrated Surgery of the Human Brain, New Possibilities
Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto
Abstract:
The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.Keywords: computational mechanics, peridynamics, finite element, biomechanics
Procedia PDF Downloads 8032 Adolescent Health Risk Behaviors and the Mediating Effects of Family Dynamics and Socio-Demographic Factors
Authors: Rufina C. Abul, Dylan Kyle D. Apostol, Darius Rex G. Binuya, Alyanah Mae F. Cauilan, Darren A. Diaz, Angelica Jones A. Gallang, Charisse G. Kiwang, Alyanna Nicole G. Mactal, Nadine Beatrize V. Nerona, Janella Nicole R. Posadas, Charisse Purie C. Toledo
Abstract:
Background: Dramatic physical development, socioemotional adjustment, and cognitive changes highlight adolescent development. Adolescent brains are susceptible to emotional reactivity, making them likely to engage in risk-taking and impulsive behaviors. The family is crucial in laying the foundations of good health. Aims: This study determined the degree of family cohesion, quality of father-child and mother-child relationships, and degree of academic pressure across cultures, age groups, and sexual orientations. Further, it sought the prevalence of adolescent health concerns, including suicide risks, risk-taking behaviors, social media engagement, and self-care deviations. Finally, the correlations between health risk behaviors and the elements of family dynamics were unraveled. Methods: The descriptive-correlational design served as the blueprint for this study. Data were collected from 1095 adolescents aged 12-21 in two high schools and two universities in Baguio City using self-report questionnaires. Data was analyzed using Microsoft Excel Toolpak and IBM SPSS Statistics to identify significant differences and relationships among variables through descriptive statistics (frequency, %, means and figures) and inferential statistics (ANOVA and logistic regression). Results and Discussion: Adolescents generally have strong family cohesion (FC), high-quality father-child relationships (F-CR), very high-quality mother-child relationships(M-CR), and experience high academic pressure (AP). Cultural affiliation does not influence the 4 elements of family dynamics; the higher the age, the stronger the family cohesion; males score significantly higher on family cohesion and mother-child relationship while significantly lower in perceived academic pressure compared to their female and LGBT counterparts. Suicide risk is prevalent among 29-63% of the population, safety issues have the lowest prevalence for having an abusive relationship (8.22%) and the highest for encountering major family changes (53.52%). Substance use was highest for vaping (22.74%), sexual engagement occurs in 14.61% of the population, while 63% are engaged in social media for >5 hours/day. The self-care deviation is highest for weight concerns (63.39%), lack of visits to health care professionals (64.65%) and lack of exercise (49.94%). All 4 elements of family dynamic (FC, F-CR, M-CR and AP) are significantly associated with safety concerns, suicide risks and social media engagement, while M-CR significantly influences cigarette smoking, alcohol drinking, rugby use and engagement in sex. Conclusion and Recommendations: Strong family cohesion and quality parent-child interactions improve emotional and behavioral outcomes. Sexual orientation has a significant impact on academic pressure and social media use, demanding targeted treatments. The link between family dynamics and health-risk behaviors emphasizes the importance of promoting positive family relationships and encouraging safer behaviors, which are critical for increasing adolescents' well-being.Keywords: adolescent health, family cohesion, health risk behaviors, suicide risk
Procedia PDF Downloads 1131 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria
Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List
Abstract:
Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM
Procedia PDF Downloads 31330 Leveraging Information for Building Supply Chain Competitiveness
Authors: Deepika Joshi
Abstract:
Operations in automotive industry rely greatly on information shared between Supply Chain (SC) partners. This leads to efficient and effective management of SC activity. Automotive sector in India is growing at 14.2 percent per annum and has huge economic importance. We find that no study has been carried out on the role of information sharing in SC management of Indian automotive manufacturers. Considering this research gap, the present study is planned to establish the significance of information sharing in Indian auto-component supply chain activity. An empirical research was conducted for large scale auto component manufacturers from India. Twenty four Supply Chain Performance Indicators (SCPIs) were collected from existing literature. These elements belong to eight diverse but internally related areas of SC management viz., demand management, cost, technology, delivery, quality, flexibility, buyer-supplier relationship, and operational factors. A pair-wise comparison and an open ended questionnaire were designed using these twenty four SCPIs. The questionnaire was then administered among managerial level employees of twenty-five auto-component manufacturing firms. Analytic Network Process (ANP) technique was used to analyze the response of pair-wise questionnaire. Finally, twenty-five priority indexes are developed, one for each respondent. These were averaged to generate an industry specific priority index. The open-ended questions depicted strategies related to information sharing between buyers and suppliers and their influence on supply chain performance. Results show that the impact of information sharing on certain performance indicators is relatively greater than their corresponding variables. For example, flexibility, delivery, demand and cost related elements have massive impact on information sharing. Technology is relatively less influenced by information sharing but it immensely influence the quality of information shared. Responses obtained from managers reveal that timely and accurate information sharing lowers the cost, increases flexibility and on-time delivery of auto parts, therefore, enhancing the competitiveness of Indian automotive industry. Any flaw in dissemination of information can disturb the cycle time of both the parties and thus increases the opportunity cost. Due to supplier’s involvement in decisions related to design of auto parts, quality conformance is found to improve, leading to reduction in rejection rate. Similarly, mutual commitment to share right information at right time between all levels of SC enhances trust level. SC partners share information to perform comprehensive quality planning to ingrain total quality management. This study contributes to operations management literature which faces scarcity of empirical examination on this subject. It views information sharing as a building block which firms can promote and evolve to leverage the operational capability of all SC members. It will provide insights for Indian managers and researchers as every market is unique and suppliers and buyers are driven by local laws, industry status and future vision. While major emphasis in this paper is given to SC operations happening between domestic partners, placing more focus on international SC can bring in distinguished results.Keywords: Indian auto component industry, information sharing, operations management, supply chain performance indicators
Procedia PDF Downloads 55029 Traditional Wisdom of Indigenous Vernacular Architecture as Tool for Climate Resilience Among PVTG Indigenous Communities in Jharkhand, India
Authors: Ankush, Harshit Sosan Lakra, Rachita Kuthial
Abstract:
Climate change poses significant challenges to vulnerable communities, particularly indigenous populations in ecologically sensitive regions. Jharkhand, located in the heart of India, is home to several indigenous communities, including the Particularly Vulnerable Tribal Groups (PVTGs). The Indigenous architecture of the region functions as a significant reservoir of climate adaptation wisdom. It explores the architectural analysis encompassing the construction materials, construction techniques, design principles, climate responsiveness, cultural relevance, adaptation, integration with the environment and traditional wisdom that has evolved through generations, rooted in cultural and socioeconomic traditions, and has allowed these communities to thrive in a variety of climatic zones, including hot and dry, humid, and hilly terrains to withstand the test of time. Despite their historical resilience to adverse climatic conditions, PVTG tribal communities face new and amplified challenges due to the accelerating pace of climate change. There is a significant research void that exists in assimilating their traditional practices and local wisdom into contemporary climate resilience initiatives. Most of the studies place emphasis on technologically advanced solutions, often ignoring the invaluable Indigenous Local knowledge that can complement and enhance these efforts. This research gap highlights the need to bridge the disconnect between indigenous knowledge and contemporary climate adaptation strategies. The study aims to explore and leverage indigenous knowledge of vernacular architecture as a strategic tool for enhancing climatic resilience among PVTGs of the region. The first objective is to understand the traditional wisdom of vernacular architecture by analyzing and documenting distinct architectural practices and cultural significance of PVTG communities, emphasizing construction techniques, materials and spatial planning. The second objective is to develop culturally sensitive climatic resilience strategies based on findings of vernacular architecture by employing a multidisciplinary research approach that encompasses ethnographic fieldwork climate data assessment considering multiple variables such as temperature variations, precipitation patterns, extreme weather events and climate change reports. This will be a tailor-made solution integrating indigenous knowledge with modern technology and sustainable practices. With the involvement of indigenous communities in the process, the research aims to ensure that the developed strategies are practical, culturally appropriate, and accepted. To foster long-term resilience against the global issue of climate change, we can bridge the gap between present needs and future aspirations with Traditional wisdom, offering sustainable solutions that will empower PVTG communities. Moreover, the study emphasizes the significance of preserving and reviving traditional Architectural wisdom for enhancing climatic resilience. It also highlights the need for cooperative endeavors of communities, stakeholders, policymakers, and researchers to encourage integrating traditional Knowledge into Modern sustainable design methods. Through these efforts, this research will contribute not only to the well-being of PVTG communities but also to the broader global effort to build a more resilient and sustainable future. Also, the Indigenous communities like PVTG in the state of Jharkhand can achieve climatic resilience while respecting and safeguarding the cultural heritage and peculiar characteristics of its native population.Keywords: vernacular architecture, climate change, resilience, PVTGs, Jharkhand, indigenous people, India
Procedia PDF Downloads 7428 Older Consumer’s Willingness to Trust Social Media Advertising: A Case of Australian Social Media Users
Authors: Simon J. Wilde, David M. Herold, Michael J. Bryant
Abstract:
Social media networks have become the hotbed for advertising activities due mainly to their increasing consumer/user base and, secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional media, such as broadcast media and print media, and, more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilized as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: (1) Gen Z/Millennials Reliability = 4.90/7 vs. Gen X/Boomers Reliability = 4.34/7; (2) Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and (3) Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioral intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users in an attempt to foster positive behavioral responses from within this large demographic group – whose engagement with social media sites continues to increase year on year.Keywords: social media advertising, trust, older consumers, internet studies
Procedia PDF Downloads 4027 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design
Authors: Sebastian Kehne, Alexander Epple, Werner Herfs
Abstract:
A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design
Procedia PDF Downloads 28726 Adapting to College: Exploration of Psychological Well-Being, Coping, and Identity as Markers of Readiness
Authors: Marit D. Murry, Amy K. Marks
Abstract:
The transition to college is a critical period that affords abundant opportunities for growth in conjunction with novel challenges for emerging adults. During this time, emerging adults are garnering experiences and acquiring hosts of new information that they are required to synthesize and use to inform life-shaping decisions. This stage is characterized by instability and exploration, which necessitates a diverse set of coping skills to successfully navigate and positively adapt to their evolving environment. However, important sociocultural factors result in differences that occur developmentally for minority emerging adults (i.e., emerging adults with an identity that has been or is marginalized). While the transition to college holds vast potential, not all are afforded the same chances, and many individuals enter into this stage at varying degrees of readiness. Understanding the nuance and diversity of student preparedness for college and contextualizing these factors will better equip systems to support incoming students. Emerging adulthood for ethnic, racial minority students presents itself as an opportunity for growth and resiliency in the face of systemic adversity. Ethnic, racial identity (ERI) is defined as an identity that develops as a function of one’s ethnic-racial group membership. Research continues to demonstrate ERI as a resilience factor that promotes positive adjustment in young adulthood. Adaptive coping responses (e.g., engaging in help-seeking behavior, drawing on personal and community resources) have been identified as possible mechanisms through which ERI buffers youth against stressful life events, including discrimination. Additionally, trait mindfulness has been identified as a significant predictor of general psychological health, and mindfulness practice has been shown to be a self-regulatory strategy that promotes healthy stress responses and adaptive coping strategy selection. The current study employed a person-centered approach to explore emerging patterns across ethnic identity development and psychological well-being criterion variables among college freshmen. Data from 283 incoming college freshmen at Northeastern University were analyzed. The Brief COPE Acceptance and Emotional Support scales, the Five Factor Mindfulness Questionnaire, and MIEM Exploration and Affirmation measures were used to inform the cluster profiles. The TwoStep auto-clustering algorithm revealed an optimal three-cluster solution (BIC = 848.49), which classified 92.6% (n = 262) of participants in the sample into one of the three clusters. The clusters were characterized as ‘Mixed Adjustment’, ‘Lowest Adjustment’, and ‘Moderate Adjustment.’ Cluster composition varied significantly by ethnicity X² (2, N = 262) = 7.74 (p = .021) and gender X² (2, N = 259) = 10.40 (p = .034). The ‘Lowest Adjustment’ cluster contained the highest proportion of students of color, 41% (n = 32), and male-identifying students, 44.2% (n = 34). Follow-up analyses showed higher ERI exploration in ‘Moderate Adjustment’ cluster members, also reported higher levels of psychological distress, with significantly elevated depression scores (p = .011), psychological diagnoses of depression (p = .013), anxiety (p = .005) and psychiatric disorders (p = .025). Supporting prior research, students engaging with identity exploration processes often endure more psychological distress. These results indicate that students undergoing identity development may require more socialization and different services beyond normal strategies.Keywords: adjustment, coping, college, emerging adulthood, ethnic-racial identity, psychological well-being, resilience
Procedia PDF Downloads 11025 Obesity and Lifestyle of Students in Roumanian Southeastern Region
Authors: Mariana Stuparu-Cretu, Doina-Carina Voinescu, Rodica-Mihaela Dinica, Daniela Borda, Camelia Vizireanu, Gabriela Iordachescu, Camelia Busila
Abstract:
Obesity is involved in the etiology or acceleration of progression of important non-communicable diseases, such as: metabolic, cardiovascular, rheumatological, oncological and depression. It is a need to prevent the obesity occurrence, like a key link in disease management. From this point of view, the best approach is to early educate youngsters upon the need for a healthy nutrition lifestyle associated with constant physical activities. The objective of the study was to assess correlations between weight condition, physical activities and food preferences of students from South East Romania. Questionnaires were applied on high school students in Galati: 1006 girls and 880 boys, aged between 14 and 19 years (being approved by Local School Inspectorate and the Ethics Committee of the 'Dunarea de Jos' University of Galati). The collected answers have been statistically processed by using the multivariate regression method (PLS2) by Unscramble X program (Camo, Norway). Multiple variables such as age group, body mass index, nutritional habits and physical activities were separately analysed, depending on gender and general mathematical models were proposed to explain the obesity trend at an early age. The study results show that overweight and obesity are present in less than a fifth of the adolescents who were surveyed. With a very small variation and a strong correlation of over 86% for 99% of the cases, a general preference for sweet foods, nocturnal eating associated with computer work and a reduced period of physical activity is noticed for girls. In addition, the overweight girls consume sweet juices and alcohol, although a percentage of them also practice the gym. There is also a percentage of the normoponderal girls that consume high caloric foods which predispose this group to turn into overweight cases in time. Within the studied group, statistics for the boys show a positive correlation of almost 87% for over 96% of cases. They prefer high calories foods, fast food, and sweet juices, and perform medium physical activities. Both overweight and underweight boys are more sedentary. Over 15% of girls and over a quarter of boys consume alcohol. All these bad eating habits seem to increase with age, for both sexes. To conclude, obesity and overweight assessed in adolescents in S-E Romania reveal nonsignificant percentage differences between boys and girls. However, young people in this area of the country are sedentary in general; a significant percentage prefers sweets / sweet juices / fast-food and practice computer nourishing. The authors consider that at this age, it is very useful to adapt nutritional education by new methods of food processing and market supply. This would require an early understanding of the difference among foods and nutrients and the benefits of physical activities integrated into the healthy current lifestyle, as a measure for preventing and managing non-communicable chronic diseases related to nutritional errors and sedentarism. Acknowledgment— This study has been partial founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), no.21899/ 06.09.2017.Keywords: adolescents, body mass index, nutritional habits, obesity, physical activity
Procedia PDF Downloads 25824 Modeling Competition Between Subpopulations with Variable DNA Content in Resource-Limited Microenvironments
Authors: Parag Katira, Frederika Rentzeperis, Zuzanna Nowicka, Giada Fiandaca, Thomas Veith, Jack Farinhas, Noemi Andor
Abstract:
Resource limitations shape the outcome of competitions between genetically heterogeneous pre-malignant cells. One example of such heterogeneity is in the ploidy (DNA content) of pre-malignant cells. A whole-genome duplication (WGD) transforms a diploid cell into a tetraploid one and has been detected in 28-56% of human cancers. If a tetraploid subclone expands, it consistently does so early in tumor evolution, when cell density is still low, and competition for nutrients is comparatively weak – an observation confirmed for several tumor types. WGD+ cells need more resources to synthesize increasing amounts of DNA, RNA, and proteins. To quantify resource limitations and how they relate to ploidy, we performed a PAN cancer analysis of WGD, PET/CT, and MRI scans. Segmentation of >20 different organs from >900 PET/CT scans were performed with MOOSE. We observed a strong correlation between organ-wide population-average estimates of Oxygen and the average ploidy of cancers growing in the respective organ (Pearson R = 0.66; P= 0.001). In-vitro experiments using near-diploid and near-tetraploid lineages derived from a breast cancer cell line supported the hypothesis that DNA content influences Glucose- and Oxygen-dependent proliferation-, death- and migration rates. To model how subpopulations with variable DNA content compete in the resource-limited environment of the human brain, we developed a stochastic state-space model of the brain (S3MB). The model discretizes the brain into voxels, whereby the state of each voxel is defined by 8+ variables that are updated over time: stiffness, Oxygen, phosphate, glucose, vasculature, dead cells, migrating cells and proliferating cells of various DNA content, and treat conditions such as radiotherapy and chemotherapy. Well-established Fokker-Planck partial differential equations govern the distribution of resources and cells across voxels. We applied S3MB on sequencing and imaging data obtained from a primary GBM patient. We performed whole genome sequencing (WGS) of four surgical specimens collected during the 1ˢᵗ and 2ⁿᵈ surgeries of the GBM and used HATCHET to quantify its clonal composition and how it changes between the two surgeries. HATCHET identified two aneuploid subpopulations of ploidy 1.98 and 2.29, respectively. The low-ploidy clone was dominant at the time of the first surgery and became even more dominant upon recurrence. MRI images were available before and after each surgery and registered to MNI space. The S3MB domain was initiated from 4mm³ voxels of the MNI space. T1 post and T2 flair scan acquired after the 1ˢᵗ surgery informed tumor cell densities per voxel. Magnetic Resonance Elastography scans and PET/CT scans informed stiffness and Glucose access per voxel. We performed a parameter search to recapitulate the GBM’s tumor cell density and ploidy composition before the 2ⁿᵈ surgery. Results suggest that the high-ploidy subpopulation had a higher Glucose-dependent proliferation rate (0.70 vs. 0.49), but a lower Glucose-dependent death rate (0.47 vs. 1.42). These differences resulted in spatial differences in the distribution of the two subpopulations. Our results contribute to a better understanding of how genomics and microenvironments interact to shape cell fate decisions and could help pave the way to therapeutic strategies that mimic prognostically favorable environments.Keywords: tumor evolution, intra-tumor heterogeneity, whole-genome doubling, mathematical modeling
Procedia PDF Downloads 7423 Assessing Organizational Resilience Capacity to Flooding: Index Development and Application to Greek Small & Medium-Sized Enterprises
Authors: Antonis Skouloudis, Konstantinos Evangelinos, Walter Leal-Filho, Panagiotis Vouros, Ioannis Nikolaou
Abstract:
Organizational resilience capacity to extreme weather events (EWEs) has sparked a growth in scholarly attention over the past decade as an essential aspect in business continuity management, with supporting evidence for this claim to suggest that it retains a key role in successful responses to adverse situations, crises and shocks. Small and medium-sized enterprises (SMEs) are more vulnerable to face floods compared to their larger counterparts, so they are disproportionately affected by such extreme weather events. The limited resources at their disposal, the lack of time and skills all conduce to inadequate preparedness to challenges posed by floods. SMEs tend to plan in the short-term, reacting to circumstances as they arise and focussing on their very survival. Likewise, they share less formalised structures and codified policies while they are most usually owner-managed, resulting in a command-and-control management culture. Such characteristics result in them having limited opportunities to recover from flooding and quickly turnaround their operation from a loss making to a profit making one. Scholars frame the capacity of business entities to be resilient upon an EWE disturbance (such as flash floods) as the rate of recovery and restoration of organizational performance to pre-disturbance conditions, the amount of disturbance (i.e. threshold level) a business can absorb before losing structural and/or functional components that will alter or cease operation, as well as the extent to which the organization maintains its function (i.e. impact resistance) before performance levels are driven to zero. Nevertheless, while it seems to be accepted as an essential trait of firms effectively transcending uncertain conditions, research deconstructing the enabling conditions and/or inhibitory factors of SMEs resilience capacity to natural hazards is still sparse, fragmentary and mostly fuelled by anecdotal evidence or normative assumptions. Focusing on the individual level of analysis, i.e. the individual enterprise and its endeavours to succeed, the emergent picture from this relatively new research strand delineates the specification of variables, conceptual relationships or dynamic boundaries of resilience capacity components in an attempt to provide prescriptions for policy-making as well as business management. This study will present the development of a flood resilience capacity index (FRCI) and its application to Greek SMEs. The proposed composite indicator pertains to cognitive, behavioral/managerial and contextual factors that influence an enterprise’s ability to shape effective responses to meet flood challenges. Through the proposed indicator-based approach, an analytical framework is set forth that will help standardize such assessments with the overarching aim of reducing the vulnerability of SMEs to flooding. This will be achieved by identifying major internal and external attributes explaining resilience capacity which is particularly important given the limited resources these enterprises have and that they tend to be primary sources of vulnerabilities in supply chain networks, generating Single Points of Failure (SPOF).Keywords: Floods, Small & Medium-Sized enterprises, organizational resilience capacity, index development
Procedia PDF Downloads 19022 Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics
Authors: A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones
Abstract:
Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.Keywords: auto rickshaw, finite element analysis, injury risk level, LS-DYNA, pedestrian impact
Procedia PDF Downloads 19421 A Multivariate Exploratory Data Analysis of a Crisis Text Messaging Service in Order to Analyse the Impact of the COVID-19 Pandemic on Mental Health in Ireland
Authors: Hamda Ajmal, Karen Young, Ruth Melia, John Bogue, Mary O'Sullivan, Jim Duggan, Hannah Wood
Abstract:
The Covid-19 pandemic led to a range of public health mitigation strategies in order to suppress the SARS-CoV-2 virus. The drastic changes in everyday life due to lockdowns had the potential for a significant negative impact on public mental health, and a key public health goal is to now assess the evidence from available Irish datasets to provide useful insights on this issue. Text-50808 is an online text-based mental health support service, established in Ireland in 2020, and can provide a measure of revealed distress and mental health concerns across the population. The aim of this study is to explore statistical associations between public mental health in Ireland and the Covid-19 pandemic. Uniquely, this study combines two measures of emotional wellbeing in Ireland: (1) weekly text volume at Text-50808, and (2) emotional wellbeing indicators reported by respondents of the Amárach public opinion survey, carried out on behalf of the Department of Health, Ireland. For this analysis, a multivariate graphical exploratory data analysis (EDA) was performed on the Text-50808 dataset dated from 15th June 2020 to 30th June 2021. This was followed by time-series analysis of key mental health indicators including: (1) the percentage of daily/weekly texts at Text-50808 that mention Covid-19 related issues; (2) the weekly percentage of people experiencing anxiety, boredom, enjoyment, happiness, worry, fear and stress in Amárach survey; and Covid-19 related factors: (3) daily new Covid-19 case numbers; (4) daily stringency index capturing the effect of government non-pharmaceutical interventions (NPIs) in Ireland. The cross-correlation function was applied to measure the relationship between the different time series. EDA of the Text-50808 dataset reveals significant peaks in the volume of texts on days prior to level 3 lockdown and level 5 lockdown in October 2020, and full level 5 lockdown in December 2020. A significantly high positive correlation was observed between the percentage of texts at Text-50808 that reported Covid-19 related issues and the percentage of respondents experiencing anxiety, worry and boredom (at a lag of 1 week) in Amárach survey data. There is a significant negative correlation between percentage of texts with Covid-19 related issues and percentage of respondents experiencing happiness in Amárach survey. Daily percentage of texts at Text-50808 that reported Covid-19 related issues to have a weak positive correlation with daily new Covid-19 cases in Ireland at a lag of 10 days and with daily stringency index of NPIs in Ireland at a lag of 2 days. The sudden peaks in text volume at Text-50808 immediately prior to new restrictions in Ireland indicate an association between a rise in mental health concerns following the announcement of new restrictions. There is also a high correlation between emotional wellbeing variables in the Amárach dataset and the number of weekly texts at Text-50808, and this confirms that Text-50808 reflects overall public sentiment. This analysis confirms the benefits of the texting service as a community surveillance tool for mental health in the population. This initial EDA will be extended to use multivariate modeling to predict the effect of additional Covid-19 related factors on public mental health in Ireland.Keywords: COVID-19 pandemic, data analysis, digital health, mental health, public health, digital health
Procedia PDF Downloads 14320 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies
Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda
Abstract:
Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation
Procedia PDF Downloads 3219 Opportunities for Reducing Post-Harvest Losses of Cactus Pear (Opuntia Ficus-Indica) to Improve Small-Holder Farmers Income in Eastern Tigray, Northern Ethiopia: Value Chain Approach
Authors: Meron Zenaselase Rata, Euridice Leyequien Abarca
Abstract:
The production of major crops in Northern Ethiopia, especially the Tigray Region, is at subsistence level due to drought, erratic rainfall, and poor soil fertility. Since cactus pear is a drought-resistant plant, it is considered as a lifesaver fruit and a strategy for poverty reduction in a drought-affected area of the region. Despite its contribution to household income and food security in the area, the cactus pear sub-sector is experiencing many constraints with limited attention given to its post-harvest loss management. Therefore, this research was carried out to identify opportunities for reducing post-harvest losses and recommend possible strategies to reduce post-harvest losses, thereby improving production and smallholder’s income. Both probability and non-probability sampling techniques were employed to collect the data. Ganta Afeshum district was selected from Eastern Tigray, and two peasant associations (Buket and Golea) were also selected from the district purposively for being potential in cactus pear production. Simple random sampling techniques were employed to survey 30 households from each of the two peasant associations, and a semi-structured questionnaire was used as a tool for data collection. Moreover, in this research 2 collectors, 2 wholesalers, 1 processor, 3 retailers, 2 consumers were interviewed; and two focus group discussion was also done with 14 key farmers using semi-structured checklist; and key informant interview with governmental and non-governmental organizations were interviewed to gather more information about the cactus pear production, post-harvest losses, the strategies used to reduce the post-harvest losses and suggestions to improve the post-harvest management. To enter and analyze the quantitative data, SPSS version 20 was used, whereas MS-word were used to transcribe the qualitative data. The data were presented using frequency and descriptive tables and graphs. The data analysis was also done using a chain map, correlations, stakeholder matrix, and gross margin. Mean comparisons like ANOVA and t-test between variables were used. The analysis result shows that the present cactus pear value chain involves main actors and supporters. However, there is inadequate information flow and informal market linkages among actors in the cactus pear value chain. The farmer's gross margin is higher when they sell to the processor than sell to collectors. The significant postharvest loss in the cactus pear value chain is at the producer level, followed by wholesalers and retailers. The maximum and minimum volume of post-harvest losses at the producer level is 4212 and 240 kgs per season. The post-harvest loss was caused by limited farmers skill on-farm management and harvesting, low market price, limited market information, absence of producer organization, poor post-harvest handling, absence of cold storage, absence of collection centers, poor infrastructure, inadequate credit access, using traditional transportation system, absence of quality control, illegal traders, inadequate research and extension services and using inappropriate packaging material. Therefore, some of the recommendations were providing adequate practical training, forming producer organizations, and constructing collection centers.Keywords: cactus pear, post-harvest losses, profit margin, value-chain
Procedia PDF Downloads 13118 The Usefulness of Medical Scribes in the Emengecy Department
Authors: Victor Kang, Sirene Bellahnid, Amy Al-Simaani
Abstract:
Efficient documentation and completion of clerical tasks are pillars of efficient patient-centered care in acute settings such as the emergency department (ED). Medical scribes aid physicians with documentation, navigation of electronic health records, results gathering, and communication coordination with other healthcare teams. However, the use of medical scribes is not widespread, with some hospitals even continuing to discontinue their programs. One reason for this could be the lack of studies that have outlined concrete improvements in efficiency and patient and provider satisfaction in emergency departments before and after incorporating scribes. Methods: We conducted a review of the literature concerning the implementation of a medical scribe program and emergency department performance. For this review, a narrative synthesis accompanied by textual commentaries was chosen to present the selected papers. PubMed was searched exclusively. Initially, no date limits were set, but seeing as the electronic medical record was officially implemented in Canada in 2013, studies published after this date were preferred as they provided insight into the interplay between its implementation and scribes on quality improvement. Results: Throughput, efficiency, and cost-effectiveness were the most commonly used parameters in evaluating scribes in the Emergency Department. Important throughput metrics, specifically door-to-doctor and disposition time, were significantly decreased in emergency departments that utilized scribes. Of note, this was shown to be the case in community hospitals, where the burden of documentation and clerical tasks would fall directly upon the attending physician. Academic centers differ in that they rely heavily on residents and students; so the implementation of scribes has been shown to have limited effect on these metrics. However, unique to academic centers was the provider’s perception of incrased time for teaching was unique to academic centers. Consequently, providers express increased work satisfaction in relation to time spent with patients and in teaching. Patients, on the other hand, did not demonstrate a decrease in satisfaction in regards to the care that was provided, but there was no significant increase observed either. Of the studies we reviewed, one of the biggest limitations was the lack of significance in the data. While many individual studies reported that medical scribes in emergency rooms improved relative value units, patient satisfaction, provider satisfaction, and increased number of patients seen, there was no statistically significant improvement in the above criteria when compiled in a systematic review. There is also a clear publication bias; very few studies with negative results were published. To prove significance, data from more emergency rooms with scribe programs would need to be compiled which also includes emergency rooms who did not report noticeable benefits. Furthermore, most data sets focused only on scribes in academic centers. Conclusion: Ultimately, the literature suggests that while emergency room physicians who have access to medical scribes report higher satisfaction due to lower clerical burdens and can see more patients per shift, there is still variability in terms of patient and provider satisfaction. Whether or not this variability exists due to differences in training (in-house trainees versus contractors), population profile (adult versus pediatric), setting (academic versus community), or which shifts scribe work cannot be determined based on the studies that exist. Ultimately, more scribe programs need to be evaluated to determine whether these variables affect outcomes and prove whether scribes significantly improve emergency room efficiency.Keywords: emergency medicine, medical scribe, scribe, documentation
Procedia PDF Downloads 9017 Observing Teaching Practices Through the Lenses of Self-Regulated Learning: A Study Within the String Instrument Individual Context
Authors: Marija Mihajlovic Pereira
Abstract:
Teaching and learning a musical instrument is challenging for both teachers and students. Teachers generally use diverse strategies to resolve students' particular issues in a one-to-one context. Considering individual sessions as a supportive educational context, the teacher can play a decisive role in stimulating and promoting self-regulated learning strategies, especially with beginning learners. The teachers who promote self-controlling behaviors, strategic monitoring, and regulation of actions toward goals could expect their students to practice more qualitatively and consciously. When encouraged to adopt self-regulation habits, students' could benefit from greater productivity on a longer path. Founded on Bary Zimmerman's cyclical model that comprehends three phases - forethought, performance, and self-reflection, this work aims to articulate self-regulated and music learning. Self-regulated learning appeals to the individual's attitude in planning, controlling, and reflecting on their performance. Furthermore, this study aimed to present an observation grid for perceiving teaching instructions that encourage students' controlling cognitive behaviors in light of the belief that conscious promotion of self-regulation may motivate strategic actions toward goals in musical performance. The participants, two teachers, and two students have been involved in the social inclusion project in Lisbon (Portugal). The author and one independent inter-observer analyzed six video-recorded string instrument lessons. The data correspond to three sessions per teacher lectured to one (different) student. Violin (f) and violoncello (m) teachers hold a Master's degree in music education and approximately five years of experience. In their second year of learning an instrument, students have acquired reasonable skills in musical reading, posture, and sound quality until then. The students also manifest positive learning behaviors, interest in learning a musical instrument, although their study habits are still inconsistent. According to the grid's four categories (parent codes), in-class rehearsal frames were coded using MaxQda software, version 20, according to the grid's four categories (parent codes): self-regulated learning, teaching verbalizations, teaching strategies, and students' in-class performance. As a result, selected rehearsal frames qualitatively describe teaching instructions that might promote students' body and hearing awareness, such as "close the eyes while playing" or "sing to internalize the pitch." Another analysis type, coding the short video events according to the observation grid's subcategories (child codes), made it possible to perceive the time teachers dedicate to specific verbal or non-verbal strategies. Furthermore, a coding overlay analysis indicated that teachers tend to stimulate. (i) Forethought – explain tasks, offer feedback and ensure that students identify a goal, (ii) Performance – teach study strategies and encourage students to sing and use vocal abilities to ensure inner audition, (iii) Self-reflection – frequent inquiring and encouraging the student to verbalize their perception of performance. Although developed in the context of individual string instrument lessons, this classroom observation grid brings together essential variables in a one-to-one lesson. It may find utility in a broader context of music education due to the possibility to organize, observe and evaluate teaching practices. Besides that, this study contributes to cognitive development by suggesting a practical approach to fostering self-regulated learning.Keywords: music education, observation grid, self-regulated learning, string instruments, teaching practices
Procedia PDF Downloads 9816 The Distribution of Prevalent Supplemental Nutrition Assistance Program-Authorized Food Store Formats Differ by U.S. Region and Rurality: Implications for Food Access and Obesity Linkages
Authors: Bailey Houghtaling, Elena Serrano, Vivica Kraak, Samantha Harden, George Davis, Sarah Misyak
Abstract:
United States (U.S.) Department of Agriculture Supplemental Nutrition Assistance Program (SNAP) participants are low-income Americans receiving federal dollars for supplemental food and beverage purchases. Participants use a variety of (traditional/non-traditional) SNAP-authorized stores for household dietary purchases - also representing food access points for all Americans. Importantly consumers' food and beverage purchases from non-traditional store formats tend to be higher in saturated fats, added sugars, and sodium when compared to purchases from traditional (e.g., grocery/supermarket) formats. Overconsumption of energy-dense and low-nutrient food and beverage products contribute to high obesity rates and adverse health outcomes that differ in severity among urban/rural U.S. locations and high/low-income populations. Little is known about the SNAP-authorized food store format landscape nationally, regionally, or by urban-rural status, as traditional formats are currently used as the gold standard in food access research. This research utilized publicly available U.S. databases to fill this large literature gap and to provide insight into modes of food access for vulnerable U.S. populations: (1) SNAP Retailer Locator which provides a list of all authorized food stores in the U.S., and; (2) Rural-Urban Continuum Codes (RUCC) that categorize U.S. counties as urban (RUCC 1-3) or rural (RUCC 4-9). Frequencies were determined for the highest occurring food store formats nationally and within two regionally diverse U.S. states – Virginia in the east and California in the west. Store format codes were assigned (e.g., grocery, drug, convenience, mass merchandiser, supercenter, dollar, club, or other). RUCC was applied to investigate state-level differences in urbanity-rurality regarding prevalent food store formats and Chi Square test of independence was used to determine if food store format distributions significantly (p < 0.05) differed by region or rurality. The resulting research sample that represented highly prevalent SNAP-authorized food stores nationally included 41.25% of all SNAP stores in the U.S. (N=257,839), comprised primarily of convenience formats (31.94%) followed by dollar (25.58%), drug (19.24%), traditional (10.87%), supercenter (6.85%), mass merchandiser (1.62%), non-food store or restaurant (1.81%), and club formats (1.09%). Results also indicated that the distribution of prevalent SNAP-authorized formats significantly differed by state. California had a lower proportion of traditional (9.96%) and a higher proportion of drug (28.92%) formats than Virginia- 11.55% and 19.97%, respectively (p < 0.001). Virginia also had a higher proportion of dollar formats (26.11%) when compared to California (10.64%) (p < 0.001). Significant differences were also observed for rurality variables (p < 0.001). Prominently, rural Virginia had a significantly higher proportion of dollar formats (41.71%) when compared to urban Virginia (21.78%) and rural California (21.21%). Non-traditional SNAP-authorized formats are highly prevalent and significantly differ in distribution by U.S. region and rurality. The largest proportional difference was observed for dollar formats where the least nutritious consumer purchases are documented in the literature. Researchers/practitioners should investigate non-traditional food stores at the local level using these research findings and similar applied methodologies to determine how access to various store formats impact obesity prevalence. For example, dollar stores may be prime targets for interventions to enhance nutritious consumer purchases in rural Virginia while targeting drug formats in California may be more appropriate.Keywords: food access, food store format, nutrition interventions, SNAP consumers
Procedia PDF Downloads 14115 Older Consumer’s Willingness to Trust Social Media Advertising: An Australian Case
Authors: Simon J. Wilde, David M. Herold, Michael J. Bryant
Abstract:
Social media networks have become the hotbed for advertising activities, due mainly to their increasing consumer/user base, and secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel-specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. The purpose of this exploratory paper is to investigate the extent to which social media users trust social media advertising. Understanding this relationship will fundamentally assist marketers in better understanding social media interactions and their implications for society. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional different media, such as broadcast media and print media, and more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilised as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: Gen Z/Millennials Reliability = 4.90/7 vs Gen X/Boomers Reliability = 4.34/7; Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads, when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioural intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users, in an attempt to foster positive behavioural responses from within this large demographic group – whose engagement with social media sites continues to increase year on year.Keywords: social media advertising, trust, older consumers, online
Procedia PDF Downloads 8114 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform
Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis
Abstract:
For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring
Procedia PDF Downloads 13913 Consumer Preferences for Low-Carbon Futures: A Structural Equation Model Based on the Domestic Hydrogen Acceptance Framework
Authors: Joel A. Gordon, Nazmiye Balta-Ozkan, Seyed Ali Nabavi
Abstract:
Hydrogen-fueled technologies are rapidly advancing as a critical component of the low-carbon energy transition. In countries historically reliant on natural gas for home heating, such as the UK, hydrogen may prove fundamental for decarbonizing the residential sector, alongside other technologies such as heat pumps and district heat networks. While the UK government is set to take a long-term policy decision on the role of domestic hydrogen by 2026, there are considerable uncertainties regarding consumer preferences for ‘hydrogen homes’ (i.e., hydrogen-fueled appliances for space heating, hot water, and cooking. In comparison to other hydrogen energy technologies, such as road transport applications, to date, few studies have engaged with the social acceptance aspects of the domestic hydrogen transition, resulting in a stark knowledge deficit and pronounced risk to policymaking efforts. In response, this study aims to safeguard against undesirable policy measures by revealing the underlying relationships between the factors of domestic hydrogen acceptance and their respective dimensions: attitudinal, socio-political, community, market, and behavioral acceptance. The study employs an online survey (n=~2100) to gauge how different UK householders perceive the proposition of switching from natural gas to hydrogen-fueled appliances. In addition to accounting for housing characteristics (i.e., housing tenure, property type and number of occupants per dwelling) and several other socio-structural variables (e.g. age, gender, and location), the study explores the impacts of consumer heterogeneity on hydrogen acceptance by recruiting respondents from across five distinct groups: (1) fuel poor householders, (2) technology engaged householders, (3) environmentally engaged householders, (4) technology and environmentally engaged householders, and (5) a baseline group (n=~700) which filters out each of the smaller targeted groups (n=~350). This research design reflects the notion that supporting a socially fair and efficient transition to hydrogen will require parallel engagement with potential early adopters and demographic groups impacted by fuel poverty while also accounting strongly for public attitudes towards net zero. Employing a second-order multigroup confirmatory factor analysis (CFA) in Mplus, the proposed hydrogen acceptance model is tested to fit the data through a partial least squares (PLS) approach. In addition to testing differences between and within groups, the findings provide policymakers with critical insights regarding the significance of knowledge and awareness, safety perceptions, perceived community impacts, cost factors, and trust in key actors and stakeholders as potential explanatory factors of hydrogen acceptance. Preliminary results suggest that knowledge and awareness of hydrogen are positively associated with support for domestic hydrogen at the household, community, and national levels. However, with the exception of technology and/or environmentally engaged citizens, much of the population remains unfamiliar with hydrogen and somewhat skeptical of its application in homes. Knowledge and awareness present as critical to facilitating positive safety perceptions, alongside higher levels of trust and more favorable expectations for community benefits, appliance performance, and potential cost savings. Based on these preliminary findings, policymakers should be put on red alert about diffusing hydrogen into the public consciousness in alignment with energy security, fuel poverty, and net-zero agendas.Keywords: hydrogen homes, social acceptance, consumer heterogeneity, heat decarbonization
Procedia PDF Downloads 11412 The Use of Rule-Based Cellular Automata to Track and Forecast the Dispersal of Classical Biocontrol Agents at Scale, with an Application to the Fopius arisanus Fruit Fly Parasitoid
Authors: Agboka Komi Mensah, John Odindi, Elfatih M. Abdel-Rahman, Onisimo Mutanga, Henri Ez Tonnang
Abstract:
Ecosystems are networks of organisms and populations that form a community of various species interacting within their habitats. Such habitats are defined by abiotic and biotic conditions that establish the initial limits to a population's growth, development, and reproduction. The habitat’s conditions explain the context in which species interact to access resources such as food, water, space, shelter, and mates, allowing for feeding, dispersal, and reproduction. Dispersal is an essential life-history strategy that affects gene flow, resource competition, population dynamics, and species distributions. Despite the importance of dispersal in population dynamics and survival, understanding the mechanism underpinning the dispersal of organisms remains challenging. For instance, when an organism moves into an ecosystem for survival and resource competition, its progression is highly influenced by extrinsic factors such as its physiological state, climatic variables and ability to evade predation. Therefore, greater spatial detail is necessary to understand organism dispersal dynamics. Understanding organisms dispersal can be addressed using empirical and mechanistic modelling approaches, with the adopted approach depending on the study's purpose Cellular automata (CA) is an example of these approaches that have been successfully used in biological studies to analyze the dispersal of living organisms. Cellular automata can be briefly described as occupied cells by an individual that evolves based on proper decisions based on a set of neighbours' rules. However, in the ambit of modelling individual organisms dispersal at the landscape scale, we lack user friendly tools that do not require expertise in mathematical models and computing ability; such as a visual analytics framework for tracking and forecasting the dispersal behaviour of organisms. The term "visual analytics" (VA) describes a semiautomated approach to electronic data processing that is guided by users who can interact with data via an interface. Essentially, VA converts large amounts of quantitative or qualitative data into graphical formats that can be customized based on the operator's needs. Additionally, this approach can be used to enhance the ability of users from various backgrounds to understand data, communicate results, and disseminate information across a wide range of disciplines. To support effective analysis of the dispersal of organisms at the landscape scale, we therefore designed Pydisp which is a free visual data analytics tool for spatiotemporal dispersal modeling built in Python. Its user interface allows users to perform a quick and interactive spatiotemporal analysis of species dispersal using bioecological and climatic data. Pydisp enables reuse and upgrade through the use of simple principles such as Fuzzy cellular automata algorithms. The potential of dispersal modeling is demonstrated in a case study by predicting the dispersal of Fopius arisanus (Sonan), endoparasitoids to control Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in Kenya. The results obtained from our example clearly illustrate the parasitoid's dispersal process at the landscape level and confirm that dynamic processes in an agroecosystem are better understood when designed using mechanistic modelling approaches. Furthermore, as demonstrated in the example, the built software is highly effective in portraying the dispersal of organisms despite the unavailability of detailed data on the species dispersal mechanisms.Keywords: cellular automata, fuzzy logic, landscape, spatiotemporal
Procedia PDF Downloads 7711 Measuring the Biomechanical Effects of Worker Skill Level and Joystick Crane Speed on Forestry Harvesting Performance Using a Simulator
Authors: Victoria L. Chester, Usha Kuruganti
Abstract:
The forest industry is a major economic sector of Canada and also one of the most dangerous industries for workers. The use of mechanized mobile forestry harvesting machines has successfully reduced the incidence of injuries in forest workers related to manual labor. However, these machines have also created additional concerns, including a high machine operation learning curve, increased the length of the workday, repetitive strain injury, cognitive load, physical and mental fatigue, and increased postural loads due to sitting in a confined space. It is critical to obtain objective performance data for employers to develop appropriate work practices for this industry, however ergonomic field studies of this industry are lacking mainly due to the difficulties in obtaining comprehensive data while operators are cutting trees in the woods. The purpose of this study was to establish a measurement and experimental protocol to examine the effects of worker skill level and movement training speed (joystick crane speed) on harvesting performance using a forestry simulator. A custom wrist angle measurement device was developed as part of the study to monitor Euler angles during operation of the simulator. The device of the system consisted of two accelerometers, a Bluetooth module, three 3V coin cells, a microcontroller, a voltage regulator and an application software. Harvesting performance and crane data was provided by the simulator software and included tree to frame collisions, crane to tree collisions, boom tip distance, number of trees cut, etc. A pilot study of 3 operators with various skill levels was tested to identify factors that distinguish highly skilled operators from novice or intermediate operators. Dependent variables such as reaction time, math skill, past work experience, training movement speed (e.g. joystick control speeds), harvesting experience level, muscle activity, and wrist biomechanics were measured and analyzed. A 10-channel wireless surface EMG system was used to monitor the amplitude and mean frequency of 10 upper extremity muscles during pre and postperformance on the forestry harvest stimulator. The results of the pilot study showed inconsistent changes in median frequency pre-and postoperation, but there was the increase in the activity of the flexor carpi radialis, anterior deltoid and upper trapezius of both arms. The wrist sensor results indicated that wrist supination and pronation occurred more than flexion and extension with radial-ulnar rotation demonstrating the least movement. Overall, wrist angular motion increased as the crane speed increased from slow to fast. Further data collection is needed and will help industry partners determine those factors that separate skill levels of operators, identify optimal training speeds, and determine the length of training required to bring new operators to an efficient skill level effectively. In addition to effective and employment training programs, results of this work will be used for selective employee recruitment strategies to improve employee retention after training. Further, improved training procedures and knowledge of the physical and mental demands on workers will lead to highly trained and efficient personnel, reduced risk of injury, and optimal work protocols.Keywords: EMG, forestry, human factors, wrist biomechanics
Procedia PDF Downloads 14610 Modelling Farmer’s Perception and Intention to Join Cashew Marketing Cooperatives: An Expanded Version of the Theory of Planned Behaviour
Authors: Gospel Iyioku, Jana Mazancova, Jiri Hejkrlik
Abstract:
The “Agricultural Promotion Policy (2016–2020)” represents a strategic initiative by the Nigerian government to address domestic food shortages and the challenges in exporting products at the required quality standards. Hindered by an inefficient system for setting and enforcing food quality standards, coupled with a lack of market knowledge, the Federal Ministry of Agriculture and Rural Development (FMARD) aims to enhance support for the production and activities of key crops like cashew. By collaborating with farmers, processors, investors, and stakeholders in the cashew sector, the policy seeks to define and uphold high-quality standards across the cashew value chain. Given the challenges and opportunities faced by Nigerian cashew farmers, active participation in cashew marketing groups becomes imperative. These groups serve as essential platforms for farmers to collectively navigate market intricacies, access resources, share knowledge, improve output quality, and bolster their overall bargaining power. Through engagement in these cooperative initiatives, farmers not only boost their economic prospects but can also contribute significantly to the sustainable growth of the cashew industry, fostering resilience and community development. This study explores the perceptions and intentions of farmers regarding their involvement in cashew marketing cooperatives, utilizing an expanded version of the Theory of Planned Behaviour. Drawing insights from a diverse sample of 321 cashew farmers in Southwest Nigeria, the research sheds light on the factors influencing decision-making in cooperative participation. The demographic analysis reveals a diverse landscape, with a substantial presence of middle-aged individuals contributing significantly to the agricultural sector and cashew-related activities emerging as a primary income source for a substantial proportion (23.99%). Employing Structural Equation Modelling (SEM) with Maximum Likelihood Robust (MLR) estimation in R, the research elucidates the associations among latent variables. Despite the model’s complexity, the goodness-of-fit indices attest to the validity of the structural model, explaining approximately 40% of the variance in the intention to join cooperatives. Moral norms emerge as a pivotal construct, highlighting the profound influence of ethical considerations in decision-making processes, while perceived behavioural control presents potential challenges in active participation. Attitudes toward joining cooperatives reveal nuanced perspectives, with strong beliefs in enhanced connections with other farmers but varying perceptions on improved access to essential information. The SEM analysis establishes positive and significant effects of moral norms, perceived behavioural control, subjective norms, and attitudes on farmers’ intention to join cooperatives. The knowledge construct positively affects key factors influencing intention, emphasizing the importance of informed decision-making. A supplementary analysis using partial least squares (PLS) SEM corroborates the robustness of our findings, aligning with covariance-based SEM results. This research unveils the determinants of cooperative participation and provides valuable insights for policymakers and practitioners aiming to empower and support this vital demographic in the cashew industry.Keywords: marketing cooperatives, theory of planned behaviour, structural equation modelling, cashew farmers
Procedia PDF Downloads 859 Source of Professionalism and Knowledge among Sport Industry Professionals in India with Limited Sport Management Higher Education
Authors: Sandhya Manjunath
Abstract:
The World Association for Sport Management (WASM) was established in 2012, and its mission is "to facilitate sport management research, teaching, and learning excellence and professional practice worldwide". As the field of sport management evolves, it have seen increasing globalization of not only the sport product but many educators have also internationalized courses and curriculums. Curricula should reflect globally recognized issues and disseminate specific intercultural knowledge, skills, and practices, but regional disparities still exist. For example, while India has some of the most ardent sports fans and events in the world, sport management education programs and the development of a proper curriculum in India are still in their nascent stages, especially in comparison to the United States and Europe. Using the extant literature on professionalization and institutional theory, this study aims to investigate the source of knowledge and professionalism of sports managers in India with limited sport management education programs and to subsequently develop a conceptual framework that addresses any gaps or disparities across regions. This study will contribute to WASM's (2022) mission statement of research practice worldwide, specifically to fill the existing disparities between regions. Additionally, this study may emphasize the value of higher education among professionals entering the workforce in the sport industry. Most importantly, this will be a pioneer study highlighting the social issue of limited sport management higher education programs in India and improving professional research practices. Sport management became a field of study in the 1980s, and scholars have studied its professionalization since this time. Dowling, Edwards, & Washington (2013) suggest that professionalization can be categorized into three broad categories of organizational, systemic, and occupational professionalization. However, scant research has integrated the concept of professionalization with institutional theory. A comprehensive review of the literature reveals that sports industry research is progressing in every country worldwide at its own pace. However, there is very little research evidence about the Indian sports industry and the country's limited higher education sport management programs. A growing need exists for sports scholars to pursue research in developing countries like India to develop theoretical frameworks and academic instruments to evaluate the current standards of qualified professionals in sport management, sport marketing, venue and facilities management, sport governance, and development-related activities. This study may postulate a model highlighting the value of higher education in sports management. Education stakeholders include governments, sports organizations and their representatives, educational institutions, and accrediting bodies. As these stakeholders work collaboratively in developed countries like the United States and Europe and developing countries like India, they simultaneously influence the professionalization (i.e., organizational, systemic, and occupational) of sport management education globally. The results of this quantitative study will investigate the current standards of education in India and the source of knowledge among industry professionals. Sports industry professionals will be randomly selected to complete the COSM survey on PsychData and rate their perceived knowledge and professionalism on a Likert scale. Additionally, they will answer questions involving their competencies, experience, or challenges in contributing to Indian sports management research. Multivariate regression will be used to measure the degree to which the various independent variables impact the current knowledge, contribution to research, and professionalism of India's sports industry professionals. This quantitative study will contribute to the limited academic literature available to Indian sports practitioners. Additionally, it shall synthesize knowledge from previous work on professionalism and institutional knowledge, providing a springboard for new research that will fill the existing knowledge gaps. While a further empirical investigation is warranted, our conceptualization contributes to and highlights India's burgeoning sport management industry.Keywords: sport management, professionalism, source of knowledge, higher education, India
Procedia PDF Downloads 698 Using the UK as a Case Study to Assess the Current State of Large Woody Debris Restoration as a Tool for Improving the Ecological Status of Natural Watercourses Globally
Authors: Isabelle Barrett
Abstract:
Natural watercourses provide a range of vital ecosystem services, notably freshwater provision. They also offer highly heterogeneous habitat which supports an extreme diversity of aquatic life. Exploitation of rivers, changing land use and flood prevention measures have led to habitat degradation and subsequent biodiversity loss; indeed, freshwater species currently face a disproportionate rate of extinction compared to their terrestrial and marine counterparts. Large woody debris (LWD) encompasses the trees, large branches and logs which fall into watercourses, and is responsible for important habitat characteristics. Historically, natural LWD has been removed from streams under the assumption that it is not aesthetically pleasing and is thus ecologically unfavourable, despite extensive evidence contradicting this. Restoration efforts aim to replace lost LWD in order to reinstate habitat heterogeneity. This paper aims to assess the current state of such restoration schemes for improving fluvial ecological health in the UK. A detailed review of the scientific literature was conducted alongside a meta-analysis of 25 UK-based projects involving LWD restoration. Projects were chosen for which sufficient information was attainable for analysis, covering a broad range of budgets and scales. The most effective strategies for river restoration encompass ecological success, stakeholder engagement and scientific advancement, however few projects surveyed showed sensitivity to all three; for example, only 32% of projects stated biological aims. Focus tended to be on stakeholder engagement and public approval, since this is often a key funding driver. Consequently, there is a tendency to focus on the aesthetic outcomes of a project, however physical habitat restoration does not necessarily lead to direct biodiversity increases. This highlights the significance of rivers as highly heterogeneous environments with multiple interlinked processes, and emphasises a need for a stronger scientific presence in project planning. Poor scientific rigour means monitoring is often lacking, with varying, if any, definitions of success which are rarely pre-determined. A tendency to overlook negative or neutral results was apparent, with unjustified focus often put on qualitative results. The temporal scale of monitoring is typically inadequate to facilitate scientific conclusions, with only 20% of projects surveyed reporting any pre-restoration monitoring. Furthermore, monitoring is often limited to a few variables, with biotic monitoring often fish-focussed. Due to their longer life cycles and dispersal capability, fish are usually poor indicators of environmental change, making it difficult to attribute any changes in ecological health to restoration efforts. Although the potential impact of LWD restoration may be positive, this method of restoration could simply be making short-term, small-scale improvements; without addressing the underlying symptoms of degradation, for example water quality, the issue cannot be fully resolved. Promotion of standardised monitoring for LWD projects could help establish a deeper understanding of the ecology surrounding the practice, supporting movement towards adaptive management in which scientific evidence feeds back to practitioners, enabling the design of more efficient projects with greater ecological success. By highlighting LWD, this study hopes to address the difficulties faced within river management, and emphasise the need for a more holistic international and inter-institutional approach to tackling problems associated with degradation.Keywords: biological monitoring, ecological health, large woody debris, river management, river restoration
Procedia PDF Downloads 2167 Identifying the Conservation Gaps in Poorly Studied Protected Area in the Philippines: A Study Case of Sibuyan Island
Authors: Roven Tumaneng, Angelica Kristina Monzon, Ralph Sedricke Lapuz, Jose Don De Alban, Jennica Paula Masigan, Joanne Rae Pales, Laila Monera Pornel, Dennis Tablazon, Rizza Karen Veridiano, Jackie Lou Wenceslao, Edmund Leo Rico, Neil Aldrin Mallari
Abstract:
Most protected area management plans in the Philippines, particularly the smaller and more remote islands suffer from insufficient baseline data, which should provide the bases for formulating measureable conservation targets and appropriate management interventions for these protected areas. Attempts to synthesize available data particularly on cultural and socio-economic characteristic of local peoples within and outside protected areas also suffer from the lack of comprehensive and detailed inventories, which should be considered in designing adaptive management interventions to be used for those protected areas. Mt Guiting-guiting Natural Park (MGGNP) located in Sibuyan Island is one of the poorly studied protected areas in the Philippines. In this study, we determined the highly biologically important areas of the protected area using Maximum Entropy approach (MaxEnt) from environmental predictors (i.e., topographic, bioclimatic,land cover, and soil image layers) derived from global remotely sensed data and point occurrence data of species of birds and trees recorded during field surveys on the island. A total of 23 trigger species of birds and trees was modeled and stacked to generate species richness maps for biological high conservation value areas (HCVAs). Forest habitat change was delineated using dual-polarised L-band ALOS-PALSAR mosaic data at 25 meter spatial resolution, taken at two acquisition years 2007 and 2009 to provide information on forest cover ad habitat change in the island between year 2007 and 2009. Determining the livelihood guilds were also conducted using the data gathered from171 household interviews, from which demographic and livelihood variables were extracted (i.e., age, gender, number of household members, educational attainment, years of residency, distance from forest edge, main occupation, alternative sources of food and resources during scarcity months, and sources of these alternative resources).Using Principal Component Analysis (PCA) and Kruskal-Wallis test, the diversity and patterns of forest resource use by people in the island were determined with particular focus on the economic activities that directly and indirectly affect the population of key species as well as to identify levels of forest resource use by people in different areas of the park.Results showed that there are gaps in the area occupied by the natural park, as evidenced by the mismatch of the proposed HCVAs and the existing perimeters of the park. We found out that subsistence forest gathering was the possible main driver for forest degradation out of the eight livelihood guilds that were identified in the park. Determining the high conservation areas and identifyingthe anthropogenic factors that influence the species richness and abundance of key species in the different management zone of MGGNP would provide guidance for the design of a protected area management plan and future monitoring programs. However, through intensive communication and consultation with government stakeholders and local communities our results led to setting conservation targets in local development plans and serve as a basis for the reposition of the boundaries and reconfiguration of the management zones of MGGNP.Keywords: conservation gaps, livelihood guilds, MaxEnt, protected area
Procedia PDF Downloads 4076 Human Behaviour During an Earthquake: Descriptive Analysis on Indoor Video Recordings
Authors: Mazlum Çelik, Burcu Gürkan Ercan, Ahmet Ayaz, Hilal Yakut İpekoğlu, Furkan Baltacı, Mustafa Kurtoğlu, Bilge Kalkavan, Sinem Küçükyılmaz, Hikmet Çağrı Yardımcı, Şeyma Sevgican, Cemile Gökçe Elkovan, Bilal Çayır, Mehmet Emin Düzcan
Abstract:
The earthquake research literature generally examines emotional, cognitive, and behavioral responses after an earthquake. Studies concerning the behavioral responses to earthquakes reveal that after the earthquake, people either flee in a panic or do not act according to the stereotype that they act irrationally and anti-socially and sometimes give rational and adaptive reactions. However, the rareness of research dealing with human behavior experiencing the earthquake moment makes it necessary to pay particular attention to these behavior patterns. In this direction, this study aims to examine human behavior indoors in case of rising earthquake intensity. In Turkey, located on geography in the earthquake zone, devastating earthquakes took place, such as in "Istanbul" with a magnitude of 7.4 in 1999 and in "Elazığ" with a magnitude of 6.8 in 2020. Occurred recently, the "Kahramanmaraş" earthquake affected 11 provinces, with a magnitude of 7.7 and 7.6 in 2023. In addition, there is expected to be a devastating earthquake in Istanbul, experts warn. For this reason, it is essential to understand human behavior for disaster risk. Management and pre-disaster preparedness to be effective and efficient and to take realistic measures to protect human life. Mazlum Çelik, Burcu Gürkan Ercan, Ahmet Ayaz, Hilal Yakut İpekoğlu, Furkan Baltacı, Mustafa Kurtoğlu, Bilge Kalkavan, Sinem Küçükyılmaz, Hikmet Çağrı Yardımcı, Şeyma Sevgican, Cemile Gökçe Elkovan, Bilal Çayır, Mehmet Emin Düzcan. In this study, which is currently part of a project supported by The Scientific and Technological Council of Turkey (TUBITAK), the indoor recordings during the earthquakes in Elazig on January 24, 2020, and in İzmir on October 30, 2020, are examined, and the people's behavior during the earthquake is analyzed. In this direction, video recordings taken from the YouTube archives of İzmir and Elazığ Disaster and Emergency Management Presidency (AFAD) Directorates and metropolitan municipalities are examined. The researchers have created an observation form in line with the information in the relevant literature to classify people's behavior during an earthquake. It is intended to determine the behavioral patterns by classifying according to the form and video analysis of the people heading toward the door, remaining stable, taking protective measures, turning to people, and engaging in "other" behaviors outside of these behaviors during the earthquake. A total of 60 video analyzes are carried out from Elazığ and İzmir. The descriptive statistic has been used with the SPSS 23.0 package program in the data analysis. It is found that in the event of an increase in the severity of the earthquake, unlike Elazığ, in İzmir, protective action is preferred to the act of remaining stable. In addition, it is observed that with the increase in the earthquake's intensity, women attempt to take more protective action while men head toward the door. In contrast, a rise is observed in the behavior of young people heading toward the door and taking protective actions, while there is a decrease in their behavior directing to people. These findings, unlike the literature, reveal that human behavior during earthquakes cannot be reduced to a single behavior pattern, such as drop-cover-hold-on. The results show that it is necessary to understand the behaviors of individuals during the earthquake and to develop practical policy proposals for combating earthquakes by considering sociocultural, geographical, and demographic variables.Keywords: descriptive analysis, earthquake, human behaviour, disaster policy.
Procedia PDF Downloads 1035 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 7