Search results for: goodness-of-fit tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4497

Search results for: goodness-of-fit tests

267 Machine Learning and Internet of Thing for Smart-Hydrology of the Mantaro River Basin

Authors: Julio Jesus Salazar, Julio Jesus De Lama

Abstract:

the fundamental objective of hydrological studies applied to the engineering field is to determine the statistically consistent volumes or water flows that, in each case, allow us to size or design a series of elements or structures to effectively manage and develop a river basin. To determine these values, there are several ways of working within the framework of traditional hydrology: (1) Study each of the factors that influence the hydrological cycle, (2) Study the historical behavior of the hydrology of the area, (3) Study the historical behavior of hydrologically similar zones, and (4) Other studies (rain simulators or experimental basins). Of course, this range of studies in a certain basin is very varied and complex and presents the difficulty of collecting the data in real time. In this complex space, the study of variables can only be overcome by collecting and transmitting data to decision centers through the Internet of things and artificial intelligence. Thus, this research work implemented the learning project of the sub-basin of the Shullcas river in the Andean basin of the Mantaro river in Peru. The sensor firmware to collect and communicate hydrological parameter data was programmed and tested in similar basins of the European Union. The Machine Learning applications was programmed to choose the algorithms that direct the best solution to the determination of the rainfall-runoff relationship captured in the different polygons of the sub-basin. Tests were carried out in the mountains of Europe, and in the sub-basins of the Shullcas river (Huancayo) and the Yauli river (Jauja) with heights close to 5000 m.a.s.l., giving the following conclusions: to guarantee a correct communication, the distance between devices should not pass the 15 km. It is advisable to minimize the energy consumption of the devices and avoid collisions between packages, the distances oscillate between 5 and 10 km, in this way the transmission power can be reduced and a higher bitrate can be used. In case the communication elements of the devices of the network (internet of things) installed in the basin do not have good visibility between them, the distance should be reduced to the range of 1-3 km. The energy efficiency of the Atmel microcontrollers present in Arduino is not adequate to meet the requirements of system autonomy. To increase the autonomy of the system, it is recommended to use low consumption systems, such as the Ashton Raggatt McDougall or ARM Cortex L (Ultra Low Power) microcontrollers or even the Cortex M; and high-performance direct current (DC) to direct current (DC) converters. The Machine Learning System has initiated the learning of the Shullcas system to generate the best hydrology of the sub-basin. This will improve as machine learning and the data entered in the big data coincide every second. This will provide services to each of the applications of the complex system to return the best data of determined flows.

Keywords: hydrology, internet of things, machine learning, river basin

Procedia PDF Downloads 160
266 Impact of Chess Intervention on Cognitive Functioning of Children

Authors: Ebenezer Joseph

Abstract:

Chess is a useful tool to enhance general and specific cognitive functioning in children. The present study aims to assess the impact of chess on cognitive in children and to measure the differential impact of socio-demographic factors like age and gender of the child on the effectiveness of the chess intervention.This research study used an experimental design to study the impact of the Training in Chess on the intelligence of children. The Pre-test Post-test Control Group Design was utilized. The research design involved two groups of children: an experimental group and a control group. The experimental group consisted of children who participated in the one-year Chess Training Intervention, while the control group participated in extra-curricular activities in school. The main independent variable was training in chess. Other independent variables were gender and age of the child. The dependent variable was the cognitive functioning of the child (as measured by IQ, working memory index, processing speed index, perceptual reasoning index, verbal comprehension index, numerical reasoning, verbal reasoning, non-verbal reasoning, social intelligence, language, conceptual thinking, memory, visual motor and creativity). The sample consisted of 200 children studying in Government and Private schools. Random sampling was utilized. The sample included both boys and girls falling in the age range 6 to 16 years. The experimental group consisted of 100 children (50 from Government schools and 50 from Private schools) with an equal representation of boys and girls. The control group similarly consisted of 100 children. The dependent variables were assessed using Binet-Kamat Test of Intelligence, Wechsler Intelligence Scale for Children - IV (India) and Wallach Kogan Creativity Test. The training methodology comprised Winning Moves Chess Learning Program - Episodes 1–22, lectures with the demonstration board, on-the-board playing and training, chess exercise through workbooks (Chess school 1A, Chess school 2, and tactics) and working with chess software. Further students games were mapped using chess software and the brain patterns of the child were understood. They were taught the ideas behind chess openings and exposure to classical games were also given. The children participated in mock as well as regular tournaments. Preliminary analysis carried out using independent t tests with 50 children indicates that chess training has led to significant increases in the intelligent quotient. Children in the experimental group have shown significant increases in composite scores like working memory and perceptual reasoning. Chess training has significantly enhanced the total creativity scores, line drawing and pattern meaning subscale scores. Systematically learning chess as part of school activities appears to have a broad spectrum of positive outcomes.

Keywords: chess, intelligence, creativity, children

Procedia PDF Downloads 258
265 Strength Performance and Microstructure Characteristics of Natural Bonded Fiber Composites from Malaysian Bamboo

Authors: Shahril Anuar Bahari, Mohd Azrie Mohd Kepli, Mohd Ariff Jamaludin, Kamarulzaman Nordin, Mohamad Jani Saad

Abstract:

Formaldehyde release from wood-based panel composites can be very toxicity and may increase the risk of human health as well as environmental problems. A new bio-composites product without synthetic adhesive or resin is possible to be developed in order to reduce these problems. Apart from formaldehyde release, adhesive is also considered to be expensive, especially in the manufacturing of composite products. Natural bonded composites can be termed as a panel product composed with any type of cellulosic materials without the addition of synthetic resins. It is composed with chemical content activation in the cellulosic materials. Pulp and paper making method (chemical pulping) was used as a general guide in the composites manufacturing. This method will also generally reduce the manufacturing cost and the risk of formaldehyde emission and has potential to be used as an alternative technology in fiber composites industries. In this study, the natural bonded bamboo fiber composite was produced from virgin Malaysian bamboo fiber (Bambusa vulgaris). The bamboo culms were chipped and digested into fiber using this pulping method. The black liquor collected from the pulping process was used as a natural binding agent in the composition. Then the fibers were mixed and blended with black liquor without any resin addition. The amount of black liquor used per composite board was 20%, with approximately 37% solid content. The composites were fabricated using a hot press machine at two different board densities, 850 and 950 kg/m³, with two sets of hot pressing time, 25 and 35 minutes. Samples of the composites from different densities and hot pressing times were tested in flexural strength and internal bonding (IB) for strength performance according to British Standard. Modulus of elasticity (MOE) and modulus of rupture (MOR) was determined in flexural test, while tensile force perpendicular to the surface was recorded in IB test. Results show that the strength performance of the composites with 850 kg/m³ density were significantly higher than 950 kg/m³ density, especially for samples from 25 minutes hot pressing time. Strength performance of composites from 25 minutes hot pressing time were generally greater than 35 minutes. Results show that the maximum mean values of strength performance were recorded from composites with 850 kg/m³ density and 25 minutes pressing time. The maximum mean values for MOE, MOR and IB were 3251.84, 16.88 and 0.27 MPa, respectively. Only MOE result has conformed to high density fiberboard (HDF) standard (2700 MPa) in British Standard for Fiberboard Specification, BS EN 622-5: 2006. Microstructure characteristics of composites can also be related to the strength performance of the composites, in which, the observed fiber damage in composites from 950 kg/m³ density and overheat of black liquor led to the low strength properties, especially in IB test.

Keywords: bamboo fiber, natural bonded, black liquor, mechanical tests, microstructure observations

Procedia PDF Downloads 254
264 Nurturing Students' Creativity through Engagement in Problem Posing and Self-Assessment of Its Development

Authors: Atara Shriki, Ilana Lavy

Abstract:

In a rapidly changing technological society, creativity is considered as an engine of economic and social progress. No doubt the education system has a central role in nurturing all students’ creativity, however, it is normally not encouraged at school. The causes of this reality are related to a variety of circumstances, among them: external pressures to cover the curriculum and succeed in standardized tests that mostly require algorithmic thinking and implementation of rules; teachers’ tendency to teach similarly to the way they themselves were taught as school students; relating creativity to giftedness, and therefore avoid nurturing all students' creativity; lack of adequate learning materials and accessible tools for following and evaluating the development of students’ creativity; and more. Since success in academic studies requires, among other things, creativity, lecturers in higher education institutions should consider appropriate ways to nurture students’ creative thinking and assess its development. Obviously, creativity has a multifaceted nature, numerous definitions, various perspectives for studying its essence (e.g., process, personality, environment, and product), and several approaches aimed at evaluating and assessing creative expressions (e.g., cognitive, social-personal, and psychometric). In this framework, we suggest nurturing students’ creativity through engaging them in problem posing activities that are part of inquiry assignments. In order to assess the development of their creativity, we propose to employ a model that was designed for this purpose, based on the psychometric approach, viewing the posed problems as the “creative product”. The model considers four measurable aspects- fluency, flexibility, originality, and organization, as well as a total score of creativity that reflects the relative weights of each aspect. The scores given to learners are of two types: (1) Total scores- the absolute number of posed problems with respect to each of the four aspects, and a final score of creativity; (2) Relative scores- each absolute number is transformed into a number that relates to the relative infrequency of the posed problems in student’s reference group. Through converting the scores received over time into a graphical display, students can assess their progress both with respect to themselves and relative to their reference group. Course lecturers can get a picture of the strengths and weaknesses of each student as well as the class as a whole, and to track changes that occur over time in response to the learning environment they had generated. Such tracking may assist lecturers in making pedagogical decisions about emphases that should be put on one or more aspects of creativity, and about the students that should be given a special attention. Our experience indicates that schoolteachers and lecturers in higher education institutes find the combination of engaging learners in problem posing along with self-assessment of their progress through utilizing the graphical display of accumulating total and relative scores has the potential to realize most learners’ creative potential.

Keywords: creativity, problem posing, psychometric model, self-assessment

Procedia PDF Downloads 321
263 Effect of Copper Complexes on Human Colon Carcinoma Cell Line and Human Breast Carcinoma Cell Line

Authors: Katarína Koňariková, Georgios A. Perdikaris, Lucia Andrezálová, Zdeňka Ďuračková, Lucia Laubertová, Helena Gbelcová, Ingrid Žitňanová

Abstract:

Introduction: The continuous demand for new anti-cancer drugs has stimulated chemotherapeutic research based on the use of essential metalloelements with the aim to develop potential drugs with lower toxicity and higher antiproliferative activity against tumors. Copper(II) and its complexes play an important role as suitable species for antiproliferative tests. Objectives: The central objective of the current study was to investigate the potential in vitro anti-proliferative effects of N-salicylidene-L-glutamato copper (II) complexes and molecular mechanism of apoptosis induced by tested complexes. In our project we tested N-salicylidene-L-glutamato copper (II) complexes ZK1 - [Cu(N-salicylidene-L-glutamato)(H2O)2].H2O; MK0 - ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O); MK1 - [Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O; MK3 - transbis(ethanol)tetrakis(imidazol)Cu(II)(2+)bis(N-salicylidene-D,L-glutamato-N,O)-KO:KO´-(imidazol); MK5 - [Cu(N-salicylidene-D,L- glutamato)(2-methylimidazol] at concentration range 0.001-100 µmol/L against human colon carcinoma cell line HT-29 and human breast carcinoma cell line MCF-7. Methods: Viability was assessed by direct counting of 0.4% trypan blue dye-excluding cells after 24, 48 and 72 hour cultivations with or without copper complex and by MTT assay. To analyze the type of cell death and its mechanism induced by our copper complex we used different methods. To distinguish apoptosis from necrosis we used electrophoretic analysis, to study the activity of caspases 8 and 9 – luminometric analysis and caspase activity 3 colorimetric assay. Results: The observed anti-proliferative effect of the copper complexes appeared to be dose-, time- and cell line- dependent. Human colon carcinoma cells HT-29 appeared to be more sensitive to the complex MK0 ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O) than to ZK1 ([Cu(N-salicylidene-L-glutamato)(H2O)2].H2O) and MK1 ([Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O)). Human colon carcinoma cells HT-29 appeared to be more sensitive to the complex than human breast carcinoma cells MCF-7. IC50 decreased with time of incubation (24, 48 and 72h) for HT-29, but increased for MCF-7. By electrophoresis we found apoptotic cell death induced by our copper complexes in HT-29 at concentrations 1, 10, 50 and 100 µmol/L after 48h (ZK1) and 72h (MK0, MK1) and in MCF-7 we did not find apoptosis. We also studied molecular mechanism of apoptosis in HT-29 induced by copper complexes. We found active caspase 9 in HT-29 after ZK1 ([Cu(N-salicylidene-L-glutamato)(H2O)2].H2O) and MK1 ([Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O)) influence and active caspase 8 after MK0 ([Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O) influence. Conclusion: Our copper complexes showed cytotoxic activities against human colon carcinoma cells HT-29 and breast cancer cell line MCF-7 in vitro. Apoptosis was activated by mitochondrial pathway (intrinsic pathway) in case of ZK1 [Cu(N-salicylidene-L-glutamato)(H2O)2].H2O; MK1 [Cu(N-salicylidene-5-methyl-L-glutamato)(H2O)].H2O; MK3 - transbis(ethanol)tetrakis(imidazol)Cu(II)(2+)bis(N-salicylidene-D,L-glutamato-N,O)-KO:KO´-(imidazol) and MK5 - [Cu(N-salicylidene-D,L- glutamato)(2-methylimidazol] copper complexes and by death receptors (extrinsic pathway) in case of MK0 [Cu2(N-sal-D,L-glu)2(isoquinoline)2].2H2O copper complex in HT-29.

Keywords: apoptosis, copper complex, cancer, carcinoma cell line

Procedia PDF Downloads 293
262 Phytochemical Screening and in vitro Antibacterial and Antioxidant Potential of Microalgal Strain, Cymbella

Authors: S. Beekrum, B. Odhav, R. Lalloo, E. O. Amonsou

Abstract:

Marine microalgae are rich sources of the novel and biologically active metabolites; therefore, they may be used in the food industry as natural food ingredients and functional foods. They have several biological applications related with health benefits, among others. In the past decades, food scientists have been searching for natural alternatives to replace synthetic antioxidants. The use of synthetic antioxidants has decreased due to their suspected activity as promoters of carcinogenesis, as well as consumer rejection of synthetic food additives. The aim of the study focused on screening of phytochemicals from Cymbella biomass extracts, and to examine the in vitro antioxidant and antimicrobial potential. Cymbella biomass was obtained from CSIR (South Africa), and four different solvents namely methanol, acetone, n-hexane and water were used for extraction. To take into account different antioxidant mechanisms, seven different antioxidant assays were carried out. These include free radical scavenging (DPPH assay), Trolox equivalent antioxidant capacity (TEAC assay), radical cation (ABTS assay), superoxide anion radical scavenging, reducing power, determination of total phenolic compounds and determination of total flavonoid content. The total content of phenol and flavonoid in extracts were determined as gallic acid equivalent, and as rutin equivalent, respectively. The in vitro antimicrobial effect of extracts were tested against some pathogens (Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis, Salmonella enteritidis, Escherichia coli, Pseudomonas aeruginosa and Candida albicans), using the disc diffusion assay. Qualitative analyses of phytochemicals were conducted by chemical tests to screen for the presence of tannins, flavonoids, terpenoids, phenols, steroids, saponins, glycosides and alkaloids. The present investigation revealed that all extracts showed relatively strong antibacterial activity against most of the tested bacteria. The methanolic extract of the biomass contained a significantly high phenolic content of 111.46 mg GAE/g, and the hexane extract contained 65.279 mg GAE/g. Results of the DPPH assay showed that the biomass contained strong antioxidant capacity, 79% in the methanolic extract and 85% in the hexane extract. Extracts have displayed effective reducing power and superoxide anion radical scavenging. Results of this study have highlighted potential antioxidant activity in the methanol and hexane extracts. The obtained results of the phytochemical screening showed the presence of terpenoids, flavonoids, phenols and saponins. The use of Cymbella as a natural antioxidant source and a potential source of antibacterial compounds and phytochemicals in the food industry appears promising and should be investigated further.

Keywords: antioxidants, antimicrobial, Cymbella, microalgae, phytochemicals

Procedia PDF Downloads 456
261 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels

Authors: Ojas Chaudhari, Ali Nejad Ghafar, Giedrius Zirgulis, Marjan Mousavi, Tommy Ellison, Sandra Pousette, Patrick Fontana

Abstract:

In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.

Keywords: corrosion, durability, mortar, rock bolt

Procedia PDF Downloads 113
260 Developing a Tissue-Engineered Aortic Heart Valve Based on an Electrospun Scaffold

Authors: Sara R. Knigge, Sugat R. Tuladhar, Alexander Becker, Tobias Schilling, Birgit Glasmacher

Abstract:

Commercially available mechanical or biological heart valve prostheses both tend to fail long-term due to thrombosis, calcific degeneration, infection, or immunogenic rejection. Moreover, these prostheses are non-viable and do not grow with the patients, which is a problem for young patients. As a result, patients often need to undergo redo-operations. Tissue-engineered (TE) heart valves based on degradable electrospun fiber scaffolds represent a promising approach to overcome these limitations. Such scaffolds need sufficient mechanical properties to withstand the hydrodynamic stress of intracardiac hemodynamics. Additionally, the scaffolds should be colonized by autologous or homologous cells to facilitate the in vivo remodeling of the scaffolds to a viable structure. This study investigates how process parameters of electrospinning and degradation affect the mechanical properties of electrospun scaffolds made of FDA-approved, biodegradable polymer polycaprolactone (PCL). Fiber mats were produced from a PCL/tetrafluoroethylene solution by electrospinning. The e-spinning process was varied in terms of scaffold thickness, fiber diameter, fiber orientation, and fiber interconnectivity. The morphology of the fiber mats was characterized with a scanning electron microscope (SEM). The mats were degraded in different solutions (cell culture media, SBF, PBS and 10 M NaOH-Solution). At different time points of degradation (2, 4 and 6 weeks), tensile and cyclic loading tests were performed. Fresh porcine pericardium and heart valves served as a control for the mechanical assessment. The progression of polymer degradation was quantified by SEM and differential scanning calorimetry (DSC). Primary Human aortic endothelial cells (HAECs) and Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) were seeded on the fiber mats to investigate the cell colonization potential. The results showed that both the electrospinning parameters and the degradation significantly influenced the mechanical properties. Especially the fiber orientation has a considerable impact and leads to a pronounced anisotropic behavior of the scaffold. Preliminary results showed that the polymer became strongly more brittle over time. However, the embrittlement can initially only be detected in the mechanical test. In the SEM and DSC investigations, neither morphological nor thermodynamic changes are significantly detectable. Live/Dead staining and SEM imaging of the cell-seeded scaffolds showed that HAECs and iPSC-ECs were able to grow on the surface of the polymer. In summary, this study's results indicate a promising approach to the development of a TE aortic heart valve based on an electrospun scaffold.

Keywords: electrospun scaffolds, long-term polymer degradation, mechanical behavior of electrospun PCL, tissue engineered aortic heart valve

Procedia PDF Downloads 146
259 Stability Assessment of Underground Power House Encountering Shear Zone: Sunni Dam Hydroelectric Project (382 MW), India

Authors: Sanjeev Gupta, Ankit Prabhakar, K. Rajkumar Singh

Abstract:

Sunni Dam Hydroelectric Project (382 MW) is a run of river type development with an underground powerhouse, proposed to harness the hydel potential of river Satluj in Himachal Pradesh, India. The project is located in the inner lesser Himalaya between Dhauladhar Range in the south and the higher Himalaya in the north. The project comprises two large underground caverns, a Powerhouse cavern (171m long, 22.5m wide and 51.2m high) and another transformer hall cavern (175m long, 18.7m wide and 27m high) and the rock pillar between the two caverns is 50m. The highly jointed, fractured, anisotropic rock mass is a key challenge in Himalayan geology for an underground structure. The concern for the stability of rock mass increases when weak/shear zones are encountered in the underground structure. In the Sunni Dam project, 1.7m to 2m thick weak/shear zone comprising of deformed, weak material with gauge has been encountered in powerhouse cavern at 70m having dip direction 325 degree and dip amount 38 degree which also intersects transformer hall at initial reach. The rock encountered in the powerhouse area is moderate to highly jointed, pink quartz arenite belonging to the Khaira Formation, a transition zone comprising of alternate grey, pink & white quartz arenite and shale sequence and dolomite at higher reaches. The rock mass is intersected by mainly 3 joint sets excluding bedding joints and a few random joints. The rock class in powerhouse mainly varies from poor class (class IV) to lower order fair class (class III) and in some reaches, very poor rock mass has also been encountered. To study the stability of the underground structure in weak/shear rock mass, a 3D numerical model analysis has been carried out using RS3 software. Field studies have been interpreted and analysed to derive Bieniawski’s RMR, Barton’s “Q” class and Geological Strength Index (GSI). The various material parameters, in-situ characteristics have been determined based on tests conducted by Central Soil and Materials Research Station, New Delhi. The behaviour of the cavern has been studied by assessing the displacement contours, major and minor principal stresses and plastic zones for different stage excavation sequences. For optimisation of the support system, the stability of the powerhouse cavern with different powerhouse orientations has also been studied. The numerical modeling results indicate that cavern will not likely face stress governed by structural instability with the support system to be applied to the crown and side walls.

Keywords: 3D analysis, Himalayan geology, shear zone, underground power house

Procedia PDF Downloads 88
258 Compass Bar: A Visualization Technique for Out-of-View-Objects in Head-Mounted Displays

Authors: Alessandro Evangelista, Vito M. Manghisi, Michele Gattullo, Enricoandrea Laviola

Abstract:

In this work, we propose a custom visualization technique for Out-Of-View-Objects in Virtual and Augmented Reality applications using Head Mounted Displays. In the last two decades, Augmented Reality (AR) and Virtual Reality (VR) technologies experienced a remarkable growth of applications for navigation, interaction, and collaboration in different types of environments, real or virtual. Both environments can be potentially very complex, as they can include many virtual objects located in different places. Given the natural limitation of the human Field of View (about 210° horizontal and 150° vertical), humans cannot perceive objects outside this angular range. Moreover, despite recent technological advances in AR e VR Head-Mounted Displays (HMDs), these devices still suffer from a limited Field of View, especially regarding Optical See-Through displays, thus greatly amplifying the challenge of visualizing out-of-view objects. This problem is not negligible when the user needs to be aware of the number and the position of the out-of-view objects in the environment. For instance, during a maintenance operation on a construction site where virtual objects serve to improve the dangers' awareness. Providing such information can enhance the comprehension of the scene, enable fast navigation and focused search, and improve users' safety. In our research, we investigated how to represent out-of-view-objects in HMD User Interfaces (UI). Inspired by commercial video games such as Call of Duty Modern Warfare, we designed a customized Compass. By exploiting the Unity 3D graphics engine, we implemented our custom solution that can be used both in AR and VR environments. The Compass Bar consists of a graduated bar (in degrees) at the top center of the UI. The values of the bar range from -180 (far left) to +180 (far right), the zero is placed in front of the user. Two vertical lines on the bar show the amplitude of the user's field of view. Every virtual object within the scene is represented onto the compass bar as a specific color-coded proxy icon (a circular ring with a colored dot at its center). To provide the user with information about the distance, we implemented a specific algorithm that increases the size of the inner dot as the user approaches the virtual object (i.e., when the user reaches the object, the dot fills the ring). This visualization technique for out-of-view objects has some advantages. It allows users to be quickly aware of the number and the position of the virtual objects in the environment. For instance, if the compass bar displays the proxy icon at about +90, users will immediately know that the virtual object is to their right and so on. Furthermore, by having qualitative information about the distance, users can optimize their speed, thus gaining effectiveness in their work. Given the small size and position of the Compass Bar, our solution also helps lessening the occlusion problem thus increasing user acceptance and engagement. As soon as the lockdown measures will allow, we will carry out user-tests comparing this solution with other state-of-the-art existing ones such as 3D Radar, SidebARs and EyeSee360.

Keywords: augmented reality, situation awareness, virtual reality, visualization design

Procedia PDF Downloads 127
257 Liquefaction Phenomenon in the Kathmandu Valley during the 2015 Earthquake of Nepal

Authors: Kalpana Adhikari, Mandip Subedi, Keshab Sharma, Indra P. Acharya

Abstract:

The Gorkha Nepal earthquake of moment magnitude (Mw) 7.8 struck the central region of Nepal on April 25, 2015 with the epicenter about 77 km northwest of Kathmandu Valley . Peak ground acceleration observed during the earthquake was 0.18g. This motion induced several geotechnical effects such as landslides, foundation failures liquefaction, lateral spreading and settlement, and local amplification. An aftershock of moment magnitude (Mw) 7.3 hit northeast of Kathmandu on May 12 after 17 days of main shock caused additional damages. Kathmandu is the largest city in Nepal, have a population over four million. As the Kathmandu Valley deposits are composed mainly of sand, silt and clay layers with a shallow ground water table, liquefaction is highly anticipated. Extensive liquefaction was also observed in Kathmandu Valley during the 1934 Nepal-Bihar earthquake. Field investigations were carried out in Kathmandu Valley immediately after Mw 7.8, April 25 main shock and Mw 7.3, May 12 aftershock. Geotechnical investigation of both liquefied and non-liquefied sites were conducted after the earthquake. This paper presents observations of liquefaction and liquefaction induced damage, and the liquefaction potential assessment based on Standard Penetration Tests (SPT) for liquefied and non-liquefied sites. SPT based semi-empirical approach has been used for evaluating liquefaction potential of the soil and Liquefaction Potential Index (LPI) has been used to determine liquefaction probability. Recorded ground motions from the event are presented. Geological aspect of Kathmandu Valley and local site effect on the occurrence of liquefaction is described briefly. Observed liquefaction case studies are described briefly. Typically, these are sand boils formed by freshly ejected sand forced out of over-pressurized sub-strata. At most site, sand was ejected to agricultural fields forming deposits that varied from millimetres to a few centimeters thick. Liquefaction-induced damage to structures in these areas was not significant except buildings on some places tilted slightly. Boiled soils at liquefied sites were collected and the particle size distributions of ejected soils were analyzed. SPT blow counts and the soil profiles at ten liquefied and non-liquefied sites were obtained. The factors of safety against liquefaction with depth and liquefaction potential index of the ten sites were estimated and compared with observed liquefaction after 2015 Gorkha earthquake. The liquefaction potential indices obtained from the analysis were found to be consistent with the field observation. The field observations along with results from liquefaction assessment were compared with the existing liquefaction hazard map. It was found that the existing hazard maps are unrepresentative and underestimate the liquefaction susceptibility in Kathmandu Valley. The lessons learned from the liquefaction during this earthquake are also summarized in this paper. Some recommendations are also made to the seismic liquefaction mitigation in the Kathmandu Valley.

Keywords: factor of safety, geotechnical investigation, liquefaction, Nepal earthquake

Procedia PDF Downloads 324
256 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste

Authors: Maciej Szeląg

Abstract:

The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters

Procedia PDF Downloads 246
255 Threats to the Business Value: The Case of Mechanical Engineering Companies in the Czech Republic

Authors: Maria Reznakova, Michala Strnadova, Lukas Reznak

Abstract:

Successful achievement of strategic goals requires an effective performance management system, i.e. determining the appropriate indicators measuring the rate of goal achievement. Assuming that the goal of the owners is to grow the assets they invested in, it is vital to identify the key performance indicators, which contribute to value creation. These indicators are known as value drivers. Based on the undertaken literature search, a value driver is defined as any factor that affects the value of an enterprise. The important factors are then monitored by both financial and non-financial indicators. Financial performance indicators are most useful in strategic management, since they indicate whether a company's strategy implementation and execution are contributing to bottom line improvement. Non-financial indicators are mainly used for short-term decisions. The identification of value drivers, however, is problematic for companies which are not publicly traded. Therefore financial ratios continue to be used to measure the performance of companies, despite their considerable criticism. The main drawback of such indicators is the fact that they are calculated based on accounting data, while accounting rules may differ considerably across different environments. For successful enterprise performance management it is vital to avoid factors that may reduce (or even destroy) its value. Among the known factors reducing the enterprise value are the lack of capital, lack of strategic management system and poor quality of production. In order to gain further insight into the topic, the paper presents results of the research identifying factors that adversely affect the performance of mechanical engineering enterprises in the Czech Republic. The research methodology focuses on both the qualitative and the quantitative aspect of the topic. The qualitative data were obtained from a questionnaire survey of the enterprises senior management, while the quantitative financial data were obtained from the Analysis Major Database for European Sources (AMADEUS). The questionnaire prompted managers to list factors which negatively affect business performance of their enterprises. The range of potential factors was based on a secondary research – analysis of previously undertaken questionnaire surveys and research of studies published in the scientific literature. The results of the survey were evaluated both in general, by average scores, and by detailed sub-analyses of additional criteria. These include the company specific characteristics, such as its size and ownership structure. The evaluation also included a comparison of the managers’ opinions and the performance of their enterprises – measured by return on equity and return on assets ratios. The comparisons were tested by a series of non-parametric tests of statistical significance. The results of the analyses show that the factors most detrimental to the enterprise performance include the incompetence of responsible employees and the disregard to the customers‘ requirements.

Keywords: business value, financial ratios, performance measurement, value drivers

Procedia PDF Downloads 224
254 Devulcanization of Waste Rubber Using Thermomechanical Method Combined with Supercritical CO₂

Authors: L. Asaro, M. Gratton, S. Seghar, N. Poirot, N. Ait Hocine

Abstract:

Rubber waste disposal is an environmental problem. Particularly, many researches are centered in the management of discarded tires. In spite of all different ways of handling used tires, the most common is to deposit them in a landfill, creating a stock of tires. These stocks can cause fire danger and provide ambient for rodents, mosquitoes and other pests, causing health hazards and environmental problems. Because of the three-dimensional structure of the rubbers and their specific composition that include several additives, their recycling is a current technological challenge. The technique which can break down the crosslink bonds in the rubber is called devulcanization. Strictly, devulcanization can be defined as a process where poly-, di-, and mono-sulfidic bonds, formed during vulcanization, are totally or partially broken. In the recent years, super critical carbon dioxide (scCO₂) was proposed as a green devulcanization atmosphere. This is because it is chemically inactive, nontoxic, nonflammable and inexpensive. Its critical point can be easily reached (31.1 °C and 7.38 MPa), and residual scCO₂ in the devulcanized rubber can be easily and rapidly removed by releasing pressure. In this study thermomechanical devulcanization of ground tire rubber (GTR) was performed in a twin screw extruder under diverse operation conditions. Supercritical CO₂ was added in different quantities to promote the devulcanization. Temperature, screw speed and quantity of CO₂ were the parameters that were varied during the process. The devulcanized rubber was characterized by its devulcanization percent and crosslink density by swelling in toluene. Infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) were also done, and the results were related with the Mooney viscosity. The results showed that the crosslink density decreases as the extruder temperature and speed increases, and, as expected, the soluble fraction increase with both parameters. The Mooney viscosity of the devulcanized rubber decreases as the extruder temperature increases. The reached values were in good correlation (R= 0.96) with de the soluble fraction. In order to analyze if the devulcanization was caused by main chains or crosslink scission, the Horikx's theory was used. Results showed that all tests fall in the curve that corresponds to the sulfur bond scission, which indicates that the devulcanization has successfully happened without degradation of the rubber. In the spectra obtained by FTIR, it was observed that none of the characteristic peaks of the GTR were modified by the different devulcanization conditions. This was expected, because due to the low sulfur content (~1.4 phr) and the multiphasic composition of the GTR, it is very difficult to evaluate the devulcanization by this technique. The lowest crosslink density was reached with 1 cm³/min of CO₂, and the power consumed in that process was also near to the minimum. These results encourage us to do further analyses to better understand the effect of the different conditions on the devulcanization process. The analysis is currently extended to monophasic rubbers as ethylene propylene diene monomer rubber (EPDM) and natural rubber (NR).

Keywords: devulcanization, recycling, rubber, waste

Procedia PDF Downloads 389
253 Evaluation of Coupled CFD-FEA Simulation for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Ella Quigley, Kevin Tinkham

Abstract:

Fire performance is a crucial aspect to consider when designing cladding products, and testing this performance is extremely expensive. Appropriate use of numerical simulation of fire performance has the potential to reduce the total number of fire tests required when designing a product by eliminating poor-performing design ideas early in the design phase. Due to the complexity of fire and the large spectrum of failures it can cause, multi-disciplinary models are needed to capture the complex fire behavior and its structural effects on its surroundings. Working alongside Tata Steel U.K., the authors have focused on completing a coupled CFD-FEA simulation model suited to test Polyisocyanurate (PIR) based sandwich panel products to gain confidence before costly experimental standards testing. The sandwich panels are part of a thermally insulating façade system primarily for large non-domestic buildings. The work presented in this paper compares two coupling methodologies of a replicated physical experimental standards test LPS 1181-1, carried out by Tata Steel U.K. The two coupling methodologies that are considered within this research are; one-way and two-way. A one-way coupled analysis consists of importing thermal data from the CFD solver into the FEA solver. A two-way coupling analysis consists of continuously importing the updated changes in thermal data, due to the fire's behavior, to the FEA solver throughout the simulation. Likewise, the mechanical changes will also be updated back to the CFD solver to include geometric changes within the solution. For CFD calculations, a solver called Fire Dynamic Simulator (FDS) has been chosen due to its adapted numerical scheme to focus solely on fire problems. Validation of FDS applicability has been achieved in past benchmark cases. In addition, an FEA solver called ABAQUS has been chosen to model the structural response to the fire due to its crushable foam plasticity model, which can accurately model the compressibility of PIR foam. An open-source code called FDS-2-ABAQUS is used to couple the two solvers together, using several python modules to complete the process, including failure checks. The coupling methodologies and experimental data acquired from Tata Steel U.K are compared using several variables. The comparison data includes; gas temperatures, surface temperatures, and mechanical deformation of the panels. Conclusions are drawn, noting improvements to be made on the current coupling open-source code FDS-2-ABAQUS to make it more applicable to Tata Steel U.K sandwich panel products. Future directions for reducing the computational cost of the simulation are also considered.

Keywords: fire engineering, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 90
252 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 71
251 Screens Design and Application for Sustainable Buildings

Authors: Fida Isam Abdulhafiz

Abstract:

Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.

Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education

Procedia PDF Downloads 300
250 Bacterial Diversity in Vaginal Microbiota in Patients with Different Levels of Cervical Lesions Related to Human Papillomavirus Infection

Authors: Michelle S. Pereira, Analice C. Azevedo, Julliane D. Medeiros, Ana Claudia S. Martins, Didier S. Castellano-Filho, Claudio G. Diniz, Vania L. Silva

Abstract:

Vaginal microbiota is a complex ecosystem, composed by aerobic and anaerobic bacteria, living in a dynamic equilibrium. Lactobacillus spp. are predominant in vaginal ecosystem, and factors such as immunity and hormonal variations may lead to disruptions, resulting in proliferation of opportunistic pathogens. Bacterial vaginosis (BV) is a polymicrobial syndrome, caused by an increasing of anaerobic bacteria replacing Lactobacillus spp. Microorganisms such as Gardnerella vaginalis, Mycoplasma hominis, Mobiluncus spp., and Atopobium vaginae can be found in BV, which may also be associated to other infections such as by Human Papillomavirus (HPV). HPV is highly prevalent in sexually active women, and is considered a risk factor for development of cervical cancer. As long as few data is available on vaginal microbiota of women with HPV-associated cervical lesions, our objectives were to evaluate the diversity in vaginal ecosystem in these women. To all patients, clinical and socio-demographic data were collected after gynecological examination. This study was approved by the Ethics Committee from Federal University of Juiz de Fora, Minas Gerais, Brazil. Vaginal secretion and cervical scraping were collected. Gram-stained smears were evaluated to establish Nugent score for BV determination. Viral and bacterial DNA obtained was used as template for HPV genotyping (PCR) and bacterial fingerprint (REP-PCR). In total 31 patients were included (mean age 35 and 93.6% sexually active). The Nugent score showed that 38.7% were BV. From the medical records, Pap smear tests showed that 32.3% had low grade squamous epithelial lesion (LSIL), 29% had high grade squamous epithelial lesion (HSIL), 25.8% had atypical squamous cells of undetermined significance (ASC-US) and 12.9% with atypical squamous cells that would not exclude high-grade lesion (ASC-H). All participants were HPV+. HPV-16 was the most frequent (87.1%), followed by HPV-18 (61.3%). HPV-31, HPV-52 and HPV-58 were also detected. Coinfection HPV-16/HPV-18 was observed in 75%. In the 18-30 age group, HPV-16 was detected in 40%, and HPV-16/HPV-18 coinfection in 35%. HPV-16 was associated to 30% of ASC-H and 20% of HSIL patients. BV was observed in 50% of HPV-16+ participants and in 45% of HPV-16/HPV-18+. Fingerprints of bacterial communities showed clusters with low similarity suggesting high heterogeneity in vaginal microbiota within the sampled group. Overall, the data is worrisome once cervical-cancer highly risk-associated HPV-types were identified. The high microbial diversity observed may be related to the different levels of cellular lesions, and different physiological conditions of the participants (age, social behavior, education). Further prospective studies are needed to better address correlations and BV and microbial imbalance in vaginal ecosystems which would be related to the different cellular lesions in women with HPV infections. Supported by FAPEMIG, CNPq, CAPES, PPGCBIO/UFJF.

Keywords: human papillomavirus, bacterial vaginosis, bacterial diversity, cervical cancer

Procedia PDF Downloads 195
249 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)

Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula

Abstract:

This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.

Keywords: MINLP, mixed-integer non-linear programming, optimization, structures

Procedia PDF Downloads 47
248 Elaboration and Characterization of in-situ CrC- Ni(Al, Cr) Composites Elaborated from Ni and Cr₂AlC Precursors

Authors: A. Chiker, A. Benamor, A. Haddad, Y. Hadji, M. Hadji

Abstract:

Metal matrix composites (MMCs) have been of big interest for a few decades. Their major drawback lies in their enhanced mechanical performance over unreinforced alloys. They found ground in many engineering fields, such as aeronautics, aerospace, automotive, and other structural applications. One of the most used alloys as a matrix is nickel alloys, which meet the need for high-temperature mechanical properties; some attempts have been made to develop nickel base composites reinforced by high melt point and high modulus particulates. Among the carbides used as reinforcing particulates, chromium carbide is interesting for wear applications; it is widely used as a tribological coating material in high-temperature applications requiring high wear resistance and hardness. Moreover, a set of properties make it suitable for use in MMCs, such as toughness, the good corrosion and oxidation resistance of its three polymorphs -the cubic (Cr23C6), the hexagonal (Cr7C3), and the orthorhombic (Cr3C2)-, and it’s coefficient of thermal expansion that is almost equal to that of metals. The in-situ synthesis of CrC-reinforced Ni matrix composites could be achieved by the powder metallurgy route. To ensure the in-situ reactions during the sintering process, the use of phase precursors is necessary. Recently, new precursor materials have been proposed; these materials are called MAX phases. The MAX phases are thermodynamically stable nano-laminated materials displaying unusual and sometimes unique properties. These novel phases possess Mn+1AXn chemistry, where n is 1, 2, or 3, M is an early transition metal element, A is an A-group element, and X is C or N. Herein, the pressureless sintering method is used to elaborate Ni/Cr2AlC composites. Four composites were elaborated from 5, 10, 15 and 20 wt% of Cr2AlC MAX phase precursor which fully reacted with Ni-matrix at 1100 °C sintering temperature for 4 h in argon atmosphere. XRD results showed that Cr2AlC MAX phase was totally decomposed forming chromium carbide Cr7C3, and the released Al and Cr atoms diffused in Ni matrix giving rise to γ-Ni(Al,Cr) solid solution and γ’-Ni3(Al,Cr) intermetallic. Scanning Electron Microscopy (SEM) of the elaborated samples showed the presence of nanosized Cr7C3 reinforcing particles embedded in the Ni metal matrix, which have a direct impact on the tribological properties of the composites and their hardness. All the composites exhibited higher hardness than pure Ni; whereas adding 15 wt% of Cr2AlC gives the highest hardness (1.85 GPa). Using a ball-on-disc tribometer, dry sliding tests for the elaborated composites against 100Cr6 steel ball were studied under different applied loads. The microstructures and worn surface characteristics were then analyzed using SEM and Raman spectroscopy. The results show that all the composites exhibited better wear resistance compared to pure Ni, which could be explained by the formation of a lubricious tribo-layer during sliding and the good bonding between the Ni matrix and the reinforcing phases.

Keywords: composites, microscopy, sintering, wear

Procedia PDF Downloads 70
247 Effect of Electric Arc Furnace Coarse Slag Aggregate And Ground Granulated Blast Furnace Slag on Mechanical and Durability Properties of Roller Compacted Concrete Pavement

Authors: Amiya Kumar Thakur, Dinesh Ganvir, Prem Pal Bansal

Abstract:

Industrial by product utilization has been encouraged due to environment and economic factors. Since electric arc furnace slag aggregate is a by-product of steel industry and its storage is a major concern hence it can be used as a replacement of natural aggregate as its physical and mechanical property are comparable or better than the natural aggregates. The present study investigates the effect of partial and full replacement of natural coarse aggregate with coarse EAF slag aggregate and partial replacement of cement with ground granulated blast furnace slag (GGBFS) on the mechanical and durability properties of roller compacted concrete pavement (RCCP).The replacement level of EAF slag aggregate were at five levels (i.e. 0% ,25% ,50%,75% & 100%) and of GGBFS was (0 % & 30%).The EAF slag aggregate was stabilized by exposing to outdoor condition for several years and the volumetric expansion test using steam exposure device was done to check volume stability. Soil compaction method was used for mix proportioning of RCCP. The fresh properties of RCCP investigated were fresh density and modified vebe test was done to measure the consistency of concrete. For investigating the mechanical properties various tests were done at 7 and 28 days (i.e. Compressive strength, split tensile strength, flexure strength modulus of elasticity) and also non-destructive testing was done at 28 days (i.e. Ultra pulse velocity test (UPV) & rebound hammer test). The durability test done at 28 days were water absorption, skid resistance & abrasion resistance. The results showed that with the increase in slag aggregate percentage there was an increase in the fresh density of concrete and also slight increase in the vebe time but with the 30 % GGBFS replacement the vebe time decreased and the fresh density was comparable to 0% GGBFS mix. The compressive strength, split tensile strength, flexure strength & modulus of elasticity increased with the increase in slag aggregate percentage in concrete when compared to control mix. But with the 30 % GGBFS replacement there was slight decrease in mechanical properties when compared to 100 % cement concrete. In UPV test and rebound hammer test all the mixes showed excellent quality of concrete. With the increase in slag aggregate percentage in concrete there was an increase in water absorption, skid resistance and abrasion resistance but with the 30 % GGBFS percentage the skid resistance, water absorption and abrasion resistance decreased when compared to 100 % cement concrete. From the study it was found that the mix containing 30 % GGBFS with different percentages of EAF slag aggregate were having comparable results for all the mechanical and durability property when compared to 100 % cement mixes. Hence 30 % GGBFS can be used as cement replacement with 100 % EAF slag aggregate as natural coarse aggregate replacement.

Keywords: durability properties, electric arc furnace slag aggregate, GGBFS, mechanical properties, roller compacted concrete pavement, soil compaction method

Procedia PDF Downloads 147
246 Effect of Two Transactional Instructional Strategies on Primary School Pupils’ Achievement in English Language Vocabulary and Reading Comprehension in Ibadan Metropolis, Nigeria

Authors: Eniola Akande

Abstract:

Introduction: English vocabulary and reading comprehension are core to academic achievement in many school subjects. Deficiency in both accounts for dismal performance in internal and external examinations among primary school pupils in Ibadan Metropolis, Nigeria. Previous studies largely focused on factors influencing pupils’ achievement in English vocabulary and reading comprehension. In spite of what literature has shown, the problem still persists, implying the need for other kinds of intervention. This study was therefore carried out to determine the effect of two transactional strategies Picture Walk (PW) and Know-Want to Learn-Learnt (KWL) on primary four pupils’ achievement in English vocabulary and reading comprehension in Ibadan Metropolis. The moderating effects of gender and learning style were also examined. Methodology: The study was anchored on Rosenblatt’s Transactional Reading and Piaget’s Cognitive Development theories; pretest-posttest control group quasi-experimental design with 3x2x3 factorial matrix was adopted. Six public primary schools were purposively selected based on the availability of qualified English language teachers in Primary Education Studies. Six intact classes (one per school) with a total of 101 primary four pupils (48 males and 53 females) participated. The intact classes were randomly assigned to PW (27), KWL (44) and conventional (30) groups. Instruments used were English Vocabulary (r=0.83), Reading Comprehension (r=0.84) achievement tests, Pupils’ Learning Style Preference Scale (r=0.93) and instructional guides. Treatment lasted six weeks. Data were analysed using the Descriptive statistics, Analysis of Covariance and Bonferroni post-hoc test at 0.05 level of significance. The mean age was 8.86±0.84 years. Result: Treatment had a significant main effect on pupils’ reading comprehension (F(2,82)=3.17), but not on English vocabulary. Participants in KWL obtained the highest post achievement means score in reading comprehension (8.93), followed by PW (8.06) and control (7.21) groups. Pupils’ learning style had a significant main effect on pupils’ achievement in reading comprehension (F(2,82)=4.41), but not on English vocabulary. Pupils with preference for tactile learning style had the highest post achievement mean score in reading comprehension (9.40), followed by the auditory (7.43) and the visual learning style (7.37) groups. Gender had no significant main effect on English vocabulary and reading comprehension. There was no significant two-way interaction effect of treatment and gender on pupils’ achievement in English vocabulary and reading comprehension. The two-way interaction effect of treatment and learning style on pupils’ achievement in reading comprehension was significant (F(4,82)=3.37), in favour of pupils with tactile learning style in PW group. There was no significant two-way interaction effect of gender and learning style on pupils’ achievement in English vocabulary and reading comprehension. The three-way interaction effects were not significant on English vocabulary and reading comprehension. Conclusion: Picture Walk and Know-Want to learn-Learnt instructional strategies were effective in enhancing pupils’ achievement in reading comprehension but not on English vocabulary. Learning style contributed considerably to achievement in reading comprehension but not to English vocabulary. Primary school, English language teachers, should put into consideration pupils’ learning style when adopting both strategies in teaching reading comprehension for improved achievement in the subject.

Keywords: comprehension-based intervention, know-want to learn-learnt, learning style, picture walk, primary school pupils

Procedia PDF Downloads 145
245 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices

Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese

Abstract:

Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.

Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis

Procedia PDF Downloads 177
244 Elevated Celiac Antibodies and Abnormal Duodenal Biopsies Associated with IBD Markers: Possible Role of Altered Gut Permeability and Inflammation in Gluten Related Disorders

Authors: Manav Sabharwal, Ruda Rai Md, Candace Parker, James Ridley

Abstract:

Wheat is one of the most commonly consumed grains worldwide, which contains gluten. Nowadays, gluten intake is considered to be a trigger for GRDs, including Celiac disease (CD), a common genetic disease affecting 1% of the US population, non-celiac gluten sensitivity (NCGS) and wheat allergy. NCGS is being recognized as an acquired gluten-sensitive enteropathy that is prevalent across age, ethnic and geographic groups. The cause of this entity is not fully understood, and recent studies suggest that it is more common in participants with irritable bowel syndrome (IBS), with iron deficiency anemia, symptoms of fatigue, and has considerable overlap in symptoms with IBS and Crohn’s disease. However, these studies were lacking in availability of complete serologies, imaging tests and/or pan-endoscopy. We performed a prospective study of 745 adult patients who presented to an outpatient clinic for evaluation of chronic upper gastro-intestinal symptoms and subsequently underwent an upper endoscopic (EGD) examination as standard of care. Evaluation comprised of comprehensive celiac antibody panel, inflammatory bowel disease (IBD) serologic markers, duodenal biopsies and Small Bowel Video Capsule Endoscopy (VCE), when available. At least 6 biopsy specimens were obtained from the duodenum and proximal jejunum during EGD, and CD3+ Intraepithelial lymphocytes (IELs) and villous architecture were evaluated by a single experienced pathologist, and VCE was performed by a single experienced gastroenterologist. Of the 745 patients undergoing EGD, 12% (93/745) patients showed elevated CD3+ IELs in the duodenal biopsies. 52% (387/745) completed a comprehensive CD panel and 7.2% (28/387) were positive for at least 1 CD antibody (Tissue transglutaminase (tTG), being the most common antibody in 65% (18/28)). Of these patients, 18% (5/28) showed increased duodenal CD3+ IELs, but 0% showed villous blunting or distortion to meet criteria for CD. Surprisingly, 43% (12/28) were positive for at 1 IBD serology (ASCA, ANCA or expanded IBD panel (LabCorp)). Of these 28 patients, 29% (8/28) underwent a SB VCE, of which 100 % (8/8) showed significant jejuno-ileal mucosal lesions diagnostic for IBD. Findings of abnormal CD antibodies (7.2%, 28/387) and increased CD3+ IELs on duodenal biopsy (12%, 93/745) were observed frequently in patients with UGI symptoms undergoing EGD in an outpatient clinic. None met criteria for CD, and a high proportion (43%, 12/28) showed evidence of overlap with IBD. This suggests a potential causal link of acquired GRDs to underlying inflammation and gut mucosal barrier disruption. Further studies to investigate a role for abnormal antigen presentation of dietary gluten to gut associated lymphoid tissue as a cause are justified. This may explain a high prevalence of GRDs in the population and correlation with IBS, IBD and other gut inflammatory disorders.

Keywords: celiac, gluten sensitive enteropathy, lymphocitic enteritis, IBS, IBD

Procedia PDF Downloads 169
243 Basic Life Support Training in Rural Uganda: A Mixed Methods Study of Training and Attitudes towards Resuscitation

Authors: William Gallagher, Harriet Bothwell, Lowri Evans, Kevin Jones

Abstract:

Background: Worldwide, a third of adult deaths are caused by cardiovascular disease, a high proportion occurring in the developing world. Contributing to these poor outcomes are suboptimal assessments, treatments and monitoring of the acutely unwell patient. Successful training in trauma and neonates is recognised in the developing world but there is little literature supporting adult resuscitation. As far as the authors are aware no literature has been published on resuscitation training in Uganda since 2000 when a resuscitation training officer ran sessions in neonatal and paediatric resuscitation. The aim of this project was to offer training in Basic Life Support ( BLS) to staff and healthcare students based at Villa Maria Hospital in the Kalungu District, Central Uganda. This project was undertaken as a student selected component (SSC) offered by Swindon Academy, based at the Great Western Hospital, to medical students in their fourth year of the undergraduate programme. Methods: Semi-structured, informal interviews and focus groups were conducted with different clinicians in the hospital. These interviews were designed to focus on the level of training and understanding of BLS. A training session was devised which focused on BLS (excluding the use of an automatic external defribrillator) involving pre and post-training questionnaires and clinical assessments. Three training sessions were run for different cohorts: a pilot session for 5 Ugandan medical students, a second session for a group of 8 nursing and midwifery students and finally, a third was devised for physicians. The data collected was analysed in excel. Paired T-Tests determined statistical significance between pre and post-test scores and confidence before and after the sessions. Average clinical skill assessment scores were converted to percentages based on the area of BLS being assessed. Results: 27 participants were included in the analysis. 14 received ‘small group training’ whilst 13 received’ large group training’ 88% of all participants had received some form of resuscitation training. Of these, 46% had received theory training, 27% practical training and only 15% received both. 12% had received no training. On average, all participants demonstrated a significant increase of 5.3 in self-assessed confidence (p <0.05). On average, all participants thought the session was very useful. Analysis of qualitative date from clinician interviews in ongoing but identified themes identified include rescue breaths being considered the most important aspect resuscitation and doubts of a ‘good’ outcome from resuscitation. Conclusions: The results of this small study reflect the need for regular formal training in BLS in low resource settings. The active engagement and positive opinions concerning the utility of the training are promising as well as the evidence of improvement in knowledge.

Keywords: basic life support, education, resuscitation, sub-Saharan Africa, training, Uganda

Procedia PDF Downloads 150
242 The Combined Use of L-Arginine and Progesterone During the Post-breeding Period in Female Rabbits Increases the Weight of Their Fetuses

Authors: Diego F. Carrillo-González, Milena Osorio, Natalia M. Cerro, Yasser Y. Lenis

Abstract:

Introduction: mortality during the implantation and early embryonic development periods reach around 30% in different mammalian species. It has been described that progesterone (P4) and Arginine (Arg) play a beneficial role in establishing and maintaining early pregnancy in mammals. The combined effect between Arg and P4 on reproductive parameters in the rabbit species is not yet elucidated, to our best knowledge. Objective: to assess the effect of L-arginine and progesterone during the post-breeding period in female rabbits on the composition of the amniotic fluid, the placental structure, and the bone growth in their fetuses. Methods: crossbred female rabbits (n=16) were randomly distributed into four experimental groups (Ctrl, Arg, P4, and Arg+P4). In the control group, 0.9% saline solution was administered as a placebo, the Arg group was administered arginine (50 mg/kg BW) from day 4.5 to day 19 post-breeding, the P4 group was administered progesterone (Gestavec®, 1.5 mg/kg BW) from 24 hours to day 4 post-breeding and for the Arg+P4 group, an administration was performed under the same time and dose guidelines as the Arg and P4 treatments. Four females were sacrificed, and the amniotic fluid was collected and analyzed with rapid urine test strips, while the placenta and fetuses were processed in the laboratory to obtain histological plates. The percentage of deciduous, labyrinthine, and junctional zones was determined, and the length of the femur for each fetus was measured as an indicator of growth. Descriptive statistics were applied to identify the success rates for each of the tests. Afterwards, A one-way analysis of variance (ANOVA) was performed, and a comparison of means was conducted by Tukey's test. Results: a higher density (p<0.05) was observed in the amniotic fluid for fetuses in the control group (1022±2.5g/mL) compared to the P4 (1015±5.3g/mL) and Arg+P4 (1016±4,9g/mL) groups. Additionally, the density of amniotic fluid in the Arg group (1021±2.5g/mL) was higher (p<0.05) than in the P4 group. The concentration of protein, glucose, and ascorbic acid had no statistical difference between treatments (p>0.05). The histological analysis of the uteroplacental regions, a statistical difference (p<0,05) in the proportion of deciduous zone was found between the P4 group (9.6±2.6%) when compared with the Ctrl (28.15±12.3%), and Arg+P4 (26.3±4.9) groups. In the analysis of the fetuses, the weight was higher for the Arg group (2.69±0.18), compared to the other groups (p<0.05), while a shorter length was observed (p<0.05) in the fetuses for the Arg+P4 group (25.97±1.17). However, no difference (p>0.05) was found when comparing the length of the developing femurs between the experimental groups. Conclusion: the combination of L-arginine and progesterone allows a reduction in the density of amniotic fluid, without affecting the protein, energy, and antioxidant components. However, the use of L-arginine stimulates weight gain in fetuses, without affecting size, which could be used to improve production parameters in rabbit production systems. In addition, the modification in the deciduous zone could show a placental adaptation based on the fetal growth process, however more specific studies on the placentation process are required.

Keywords: arginine, progesterone, rabbits, reproduction

Procedia PDF Downloads 91
241 Diagnostic Yield of CT PA and Value of Pre Test Assessments in Predicting the Probability of Pulmonary Embolism

Authors: Shanza Akram, Sameen Toor, Heba Harb Abu Alkass, Zainab Abdulsalam Altaha, Sara Taha Abdulla, Saleem Imran

Abstract:

Acute pulmonary embolism (PE) is a common disease and can be fatal. The clinical presentation is variable and nonspecific, making accurate diagnosis difficult. Testing patients with suspected acute PE has increased dramatically. However, the overuse of some tests, particularly CT and D-dimer measurement, may not improve care while potentially leading to patient harm and unnecessary expense. CTPA is the investigation of choice for PE. Its easy availability, accuracy and ability to provide alternative diagnosis has lowered the threshold for performing it, resulting in its overuse. Guidelines have recommended the use of clinical pretest probability tools such as ‘Wells score’ to assess risk of suspected PE. Unfortunately, implementation of guidelines in clinical practice is inconsistent. This has led to low risk patients being subjected to unnecessary imaging, exposure to radiation and possible contrast related complications. Aim: To study the diagnostic yield of CT PA, clinical pretest probability of patients according to wells score and to determine whether or not there was an overuse of CTPA in our service. Methods: CT scans done on patients with suspected P.E in our hospital from 1st January 2014 to 31st December 2014 were retrospectively reviewed. Medical records were reviewed to study demographics, clinical presentation, final diagnosis, and to establish if Wells score and D-Dimer were used correctly in predicting the probability of PE and the need for subsequent CTPA. Results: 100 patients (51male) underwent CT PA in the time period. Mean age was 57 years (24-91 years). Majority of patients presented with shortness of breath (52%). Other presenting symptoms included chest pain 34%, palpitations 6%, collapse 5% and haemoptysis 5%. D Dimer test was done in 69%. Overall Wells score was low (<2) in 28 %, moderate (>2 - < 6) in 47% and high (> 6) in 15% of patients. Wells score was documented in medical notes of only 20% patients. PE was confirmed in 12% (8 male) patients. 4 had bilateral PE’s. In high-risk group (Wells > 6) (n=15), there were 5 diagnosed PEs. In moderate risk group (Wells >2 - < 6) (n=47), there were 6 and in low risk group (Wells <2) (n=28), one case of PE was confirmed. CT scans negative for PE showed pleural effusion in 30, Consolidation in 20, atelactasis in 15 and pulmonary nodule in 4 patients. 31 scans were completely normal. Conclusion: Yield of CT for pulmonary embolism was low in our cohort at 12%. A significant number of our patients who underwent CT PA had low Wells score. This suggests that CT PA is over utilized in our institution. Wells score was poorly documented in medical notes. CT-PA was able to detect alternative pulmonary abnormalities explaining the patient's clinical presentation. CT-PA requires concomitant pretest clinical probability assessment to be an effective diagnostic tool for confirming or excluding PE. . Clinicians should use validated clinical prediction rules to estimate pretest probability in patients in whom acute PE is being considered. Combining Wells scores with clinical and laboratory assessment may reduce the need for CTPA.

Keywords: CT PA, D dimer, pulmonary embolism, wells score

Procedia PDF Downloads 233
240 Improvement of Oxidative Stability of Edible Oil by Microencapsulation Using Plant Proteins

Authors: L. Le Priol, A. Nesterenko, K. El Kirat, K. Saleh

Abstract:

Introduction and objectives: Polyunsaturated fatty acids (PUFAs) omega-3 and omega-6 are widely recognized as being beneficial to the health and normal growth. Unfortunately, due to their highly unsaturated nature, these molecules are sensitive to oxidation and thermic degradation leading to the production of toxic compounds and unpleasant flavors and smells. Hence, it is necessary to find out a suitable way to protect them. Microencapsulation by spray-drying is a low-cost encapsulation technology and most commonly used in the food industry. Many compounds can be used as wall materials, but there is a growing interest in the use of biopolymers, such as proteins and polysaccharides, over the last years. The objective of this study is to increase the oxidative stability of sunflower oil by microencapsulation in plant protein matrices using spray-drying technique. Material and methods: Sunflower oil was used as a model substance for oxidable food oils. Proteins from brown rice, hemp, pea, soy and sunflower seeds were used as emulsifiers and microencapsulation wall materials. First, the proteins were solubilized in distilled water. Then, the emulsions were pre-homogenized using a high-speed homogenizer (Ultra-Turrax) and stabilized by using a high-pressure homogenizer (HHP). Drying of the emulsion was performed in a Mini Spray Dryer. The oxidative stability of the encapsulated oil was determined by performing accelerated oxidation tests with a Rancimat. The size of the microparticles was measured using a laser diffraction analyzer. The morphology of the spray-dried microparticles was acquired using environmental scanning microscopy. Results: Pure sunflower oil was used as a reference material. Its induction time was 9.5 ± 0.1 h. The microencapsulation of sunflower oil in pea and soy protein matrices significantly improved its oxidative stability with induction times of 21.3 ± 0.4 h and 12.5 ± 0.4 h respectively. The encapsulation with hemp proteins did not significantly change the oxidative stability of the encapsulated oil. Sunflower and brown rice proteins were ineffective materials for this application, with induction times of 7.2 ± 0.2 h and 7.0 ± 0.1 h respectively. The volume mean diameter of the microparticles formulated with soy and pea proteins were 8.9 ± 0.1 µm and 16.3 ± 1.2 µm respectively. The values for hemp, sunflower and brown rice proteins could not be obtained due to the agglomeration of the microparticles. ESEM images showed smooth and round microparticles with soy and pea proteins. The surfaces of the microparticles obtained with sunflower and hemp proteins were porous. The surface was rough when brown rice proteins were used as the encapsulating agent. Conclusion: Soy and pea proteins appeared to be efficient wall materials for the microencapsulation of sunflower oil by spray drying. These results were partly explained by the higher solubility of soy and pea proteins in water compared to hemp, sunflower, and brown rice proteins. Acknowledgment: This work has been performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE)) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investments for the Future (Investissements d’Avenir). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01.

Keywords: biopolymer, edible oil, microencapsulation, oxidative stability, release, spray-drying

Procedia PDF Downloads 137
239 The Effect of Political Characteristics on the Budget Balance of Local Governments: A Dynamic System Generalized Method of Moments Data Approach

Authors: Stefanie M. Vanneste, Stijn Goeminne

Abstract:

This paper studies the effect of political characteristics of 308 Flemish municipalities on their budget balance in the period 1995-2011. All local governments experience the same economic and financial setting, however some governments have high budget balances, while others have low budget balances. The aim of this paper is to explain the differences in municipal budget balances by a number of economic, socio-demographic and political variables. The economic and socio-demographic variables will be used as control variables, while the focus of this paper will be on the political variables. We test four hypotheses resulting from the literature, namely (i) the partisan hypothesis tests if left wing governments have lower budget balances, (ii) the fragmentation hypothesis stating that more fragmented governments have lower budget balances, (iii) the hypothesis regarding the power of the government, higher powered governments would resolve in higher budget balances, and (iv) the opportunistic budget cycle to test whether politicians manipulate the economic situation before elections in order to maximize their reelection possibilities and therefore have lower budget balances before elections. The contributions of our paper to the existing literature are multiple. First, we use the whole array of political variables and not just a selection of them. Second, we are dealing with a homogeneous database with the same budget and election rules, making it easier to focus on the political factors without having to control for the impact of differences in the political systems. Third, our research extends the existing literature on Flemish municipalities as this is the first dynamic research on local budget balances. We use a dynamic panel data model. Because of the two lagged dependent variables as explanatory variables, we employ the system GMM (Generalized Method of Moments) estimator. This is the best possible estimator as we are dealing with political panel data that is rather persistent. Our empirical results show that the effect of the ideological position and the power of the coalition are of less importance to explain the budget balance. The political fragmentation of the government on the other hand has a negative and significant effect on the budget balance. The more parties in a coalition the worse the budget balance is ceteris paribus. Our results also provide evidence of an opportunistic budget cycle, the budget balances are lower in pre-election years relative to the other years to try and increase the incumbents reelection possibilities. An additional finding is that the incremental effect of the budget balance is very important and should not be ignored like is being done in a lot of empirical research. The coefficients of the lagged dependent variables are always positive and very significant. This proves that the budget balance is subject to incrementalism. It is not possible to change the entire policy from one year to another so the actions taken in recent past years still have an impact on the current budget balance. Only a relatively small amount of research concerning the budget balance takes this considerable incremental effect into account. Our findings survive several robustness checks.

Keywords: budget balance, fragmentation, ideology, incrementalism, municipalities, opportunistic budget cycle, panel data, political characteristics, power, system GMM

Procedia PDF Downloads 299
238 Physicochemical-Mechanical, Thermal and Rheological Properties Analysis of Pili Tree (Canarium Ovatum) Resin as Aircraft Integral Fuel Tank Sealant

Authors: Mark Kennedy, E. Bantugon, Noruane A. Daileg

Abstract:

Leaks arising from aircraft fuel tanks is a protracted problem for the aircraft manufacturers, operators, and maintenance crews. It principally arises from stress, structural defects, or degraded sealants as the aircraft age. It can be ignited by different sources, which can result in catastrophic flight and consequences, exhibiting a major drain both on time and budget. In order to mitigate and eliminate this kind of problem, the researcher produced an experimental sealant having a base material of natural tree resin, the Pili Tree Resin. Aside from producing an experimental sealant, the main objective of this research is to analyze its physical, chemical, mechanical, thermal, and rheological properties, which is beneficial and effective for specific aircraft parts, particularly the integral fuel tank. The experimental method of research was utilized in this study since it is a product invention. This study comprises two parts, specifically the Optimization Process and the Characterization Process. In the Optimization Process, the experimental sealant was subjected to the Flammability Test, an important test and consideration according to 14 Code of Federal Regulation Appendix N, Part 25 - Fuel Tank Flammability Exposure and Reliability Analysis, to get the most suitable formulation. Followed by the Characterization Process, where the formulated experimental sealant has undergone thirty-eight (38) different standard testing including Organoleptic, Instrumental Color Measurement Test, Smoothness of Appearance Test, Miscibility Test, Boiling Point Test, Flash Point Test, Curing Time, Adhesive Test, Toxicity Test, Shore A Hardness Test, Compressive Strength, Shear Strength, Static Bending Strength, Tensile Strength, Peel Strength Test, Knife Test, Adhesion by Tape Test, Leakage Test), Drip Test, Thermogravimetry-Differential Thermal Analysis (TG-DTA), Differential Scanning Calorimetry, Calorific Value, Viscosity Test, Creep Test, and Anti-Sag Resistance Test to determine and analyze the five (5) material properties of the sealant. The numerical values of the mentioned tests are determined using product application, testing, and calculation. These values are then used to calculate the efficiency of the experimental sealant. Accordingly, this efficiency is the means of comparison between the experimental and commercial sealant. Based on the results of the different standard testing conducted, the experimental sealant exceeded all the data results of the commercial sealant. This result shows that the physicochemical-mechanical, thermal, and rheological properties of the experimental sealant are far more effective as an aircraft integral fuel tank sealant alternative in comparison to the commercial sealant. Therefore, Pili Tree possesses a new role and function: a source of ingredients in sealant production.

Keywords: Aircraft Integral Fuel Tank, Physicochemi-mechanical, Pili Tree Resin, Properties, Rheological, Sealant, Thermal

Procedia PDF Downloads 298