Search results for: fuzzy genetic network programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7518

Search results for: fuzzy genetic network programming

3288 Molecular Docking of Marrubiin in Candida Rugosa Lipase

Authors: Benarous Khedidja, Yousfi Mohamed

Abstract:

Infections caused by Candida species manifest in a number of diseases, including candidemia, vulvovaginal candidiasis, endocarditis, and peritonitis. These Candida species have been reported to have lipolytic activity by secretion of lipolytic enzymes such as esterases, lipases and phospholipases. These Extracellular hydrolytic enzymes seem to play an important role in Candida overgrowth. Candidiasis is commonly treated with antimycotics such as clotrimazole and nystatin, which bind to a major component of the fungal cell membrane (ergosterol). This binding forms pores in the membrane that lead to death of the fungus. Due to their secondary effects, scientists have thought of another treatment basing on lipase inhibition but we haven’t found any lipase inhibitors used as candidiasis treatment. In this work, we are interested to lipases inhibitors such as alkaloids as another candidiasis treatment. In the first part, we have proceeded to optimize the alkaloid structures and protein 3D structure using Hyperchem software. Secondly, we have docked inhibitors using Genetic algorithm with GOLD software. The results have shown ten possibilities of binding inhibitor to Candida rugosa lipase (CRL) but only one possibility has been accepted depending on the weakest binding energy.

Keywords: marrubiin, candida rugosa lipase, docking, gold

Procedia PDF Downloads 250
3287 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: classification, singing, spectral analysis, vocal emission, vocal register

Procedia PDF Downloads 308
3286 Genetic Variability and Principal Component Analysis in Eggplant (Solanum melongena)

Authors: M. R. Naroui Rad, A. Ghalandarzehi, J. A. Koohpayegani

Abstract:

Nine advanced cultivars and lines were planted in transplant trays on March, 2013. In mid-April 2014, nine cultivars and lines were taken from the seedling trays and were evaluated and compared in an experiment in form of a completely randomized block design with three replications at the Agricultural Research Station, Zahak. The results of the analysis of variance showed that there was a significant difference between the studied cultivars in terms of average fruit weight, fruit length, fruit diameter, ratio of fruit length to its diameter, the relative number of seeds per fruit, and each plant yield. The total yield of Sohrab and Y6 line with and an average of 41.9 and 36.7 t/ ha allocated the highest yield respectively to themselves. The results of simple correlation between the analyzed traits showed the final yield was affected by the average fruit weight due to direct and indirect effects of fruit weight and plant yield on the final yield. The genotypic and heritability values were high for fruit weight, fruit length and number of seed per fruit. The first two principal components accounted for 81.6% of the total variation among the characters describing genotypes.

Keywords: eggplant, principal component, variation, path analysis

Procedia PDF Downloads 237
3285 Application of Combined Cluster and Discriminant Analysis to Make the Operation of Monitoring Networks More Economical

Authors: Norbert Magyar, Jozsef Kovacs, Peter Tanos, Balazs Trasy, Tamas Garamhegyi, Istvan Gabor Hatvani

Abstract:

Water is one of the most important common resources, and as a result of urbanization, agriculture, and industry it is becoming more and more exposed to potential pollutants. The prevention of the deterioration of water quality is a crucial role for environmental scientist. To achieve this aim, the operation of monitoring networks is necessary. In general, these networks have to meet many important requirements, such as representativeness and cost efficiency. However, existing monitoring networks often include sampling sites which are unnecessary. With the elimination of these sites the monitoring network can be optimized, and it can operate more economically. The aim of this study is to illustrate the applicability of the CCDA (Combined Cluster and Discriminant Analysis) to the field of water quality monitoring and optimize the monitoring networks of a river (the Danube), a wetland-lake system (Kis-Balaton & Lake Balaton), and two surface-subsurface water systems on the watershed of Lake Neusiedl/Lake Fertő and on the Szigetköz area over a period of approximately two decades. CCDA combines two multivariate data analysis methods: hierarchical cluster analysis and linear discriminant analysis. Its goal is to determine homogeneous groups of observations, in our case sampling sites, by comparing the goodness of preconceived classifications obtained from hierarchical cluster analysis with random classifications. The main idea behind CCDA is that if the ratio of correctly classified cases for a grouping is higher than at least 95% of the ratios for the random classifications, then at the level of significance (α=0.05) the given sampling sites don’t form a homogeneous group. Due to the fact that the sampling on the Lake Neusiedl/Lake Fertő was conducted at the same time at all sampling sites, it was possible to visualize the differences between the sampling sites belonging to the same or different groups on scatterplots. Based on the results, the monitoring network of the Danube yields redundant information over certain sections, so that of 12 sampling sites, 3 could be eliminated without loss of information. In the case of the wetland (Kis-Balaton) one pair of sampling sites out of 12, and in the case of Lake Balaton, 5 out of 10 could be discarded. For the groundwater system of the catchment area of Lake Neusiedl/Lake Fertő all 50 monitoring wells are necessary, there is no redundant information in the system. The number of the sampling sites on the Lake Neusiedl/Lake Fertő can decrease to approximately the half of the original number of the sites. Furthermore, neighbouring sampling sites were compared pairwise using CCDA and the results were plotted on diagrams or isoline maps showing the location of the greatest differences. These results can help researchers decide where to place new sampling sites. The application of CCDA proved to be a useful tool in the optimization of the monitoring networks regarding different types of water bodies. Based on the results obtained, the monitoring networks can be operated more economically.

Keywords: combined cluster and discriminant analysis, cost efficiency, monitoring network optimization, water quality

Procedia PDF Downloads 353
3284 Design and Simulation of All Optical Fiber to the Home Network

Authors: Rahul Malhotra

Abstract:

Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This paper is targeted to show the simultaneous delivery of triple play service (data, voice and video). The comparative investigation and suitability of various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be accommodated decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 561
3283 U Slot Loaded Wearable Textile Antenna

Authors: Varsha Kheradiya, Ganga Prasad Pandey

Abstract:

The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.

Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network

Procedia PDF Downloads 97
3282 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 67
3281 Automated Irrigation System with Programmable Logic Controller and Photovoltaic Energy

Authors: J. P. Reges, L. C. S. Mazza, E. J. Braga, J. A. Bessa, A. R. Alexandria

Abstract:

This paper proposes the development of control and automation of irrigation system located sunflower harvest in the Teaching Unit, Research and Extension (UEPE), the Apodi Plateau in Limoeiro do Norte. The sunflower extraction, which in turn serves to get the produced oil from its seeds, animal feed, and is widely used in human food. Its nutritional potential is quite high what makes of foods produced from vegetal, very rich and healthy. The focus of research is to make the autonomous irrigation system sunflower crop from programmable logic control energized with alternative energy sources, solar photovoltaics. The application of automated irrigation system becomes interesting when it provides convenience and implements new forms of managements of the implementation of irrigated cropping systems. The intended use of automated addition to irrigation quality and consequently brings enormous improvement for production of small samples. Addition to applying the necessary and sufficient features of water management in irrigation systems, the system (PLC + actuators + Renewable Energy) will enable to manage the quantitative water required for each crop, and at the same time, insert the use of sources alternative energy. The entry of the automated collection will bring a new format, and in previous years, used the process of irrigation water wastage base and being the whole manual irrigation process.

Keywords: automation, control, sunflower, irrigation, programming, renewable energy

Procedia PDF Downloads 409
3280 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 161
3279 Application of Global Predictive Real Time Control Strategy to Improve Flooding Prevention Performance of Urban Stormwater Basins

Authors: Shadab Shishegar, Sophie Duchesne, Genevieve Pelletier

Abstract:

Sustainability as one of the key elements of Smart cities, can be realized by employing Real Time Control Strategies for city’s infrastructures. Nowadays Stormwater management systems play an important role in mitigating the impacts of urbanization on natural hydrological cycle. These systems can be managed in such a way that they meet the smart cities standards. In fact, there is a huge potential for sustainable management of urban stormwater and also its adaptability to global challenges like climate change. Hence, a dynamically managed system that can adapt itself to instability of the environmental conditions is desirable. A Global Predictive Real Time Control approach is proposed in this paper to optimize the performance of stormwater management basins in terms of flooding prevention. To do so, a mathematical optimization model is developed then solved using Genetic Algorithm (GA). Results show an improved performance at system-level for the stormwater basins in comparison to static strategy.

Keywords: environmental sustainability, optimization, real time control, storm water management

Procedia PDF Downloads 181
3278 Hormone Replacement Therapy (HRT) and Its Impact on the All-Cause Mortality of UK Women: A Matched Cohort Study 1984-2017

Authors: Nurunnahar Akter, Elena Kulinskaya, Nicholas Steel, Ilyas Bakbergenuly

Abstract:

Although Hormone Replacement Therapy (HRT) is an effective treatment in ameliorating menopausal symptoms, it has mixed effects on different health outcomes, increasing, for instance, the risk of breast cancer. Because of this, many symptomatic women are left untreated. Untreated menopausal symptoms may result in other health issues, which eventually put an extra burden and costs to the health care system. All-cause mortality analysis may explain the net benefits and risks of the HRT therapy. However, it received far less attention in HRT studies. This study investigated the impact of HRT on all-cause mortality using electronically recorded primary care data from The Health Improvement Network (THIN) that broadly represents the female population in the United Kingdom (UK). The study entry date for this study was the record of the first HRT prescription from 1984, and patients were followed up until death or transfer to another GP practice or study end date, which was January 2017. 112,354 HRT users (cases) were matched with 245,320 non-users by age at HRT initiation and general practice (GP). The hazards of all-cause mortality associated with HRT were estimated by a parametric Weibull-Cox model adjusting for a wide range of important medical, lifestyle, and socio-demographic factors. The multilevel multiple imputation techniques were used to deal with missing data. This study found that during 32 years of follow-up, combined HRT reduced the hazard ratio (HR) of all-cause mortality by 9% (HR: 0.91; 95% Confidence Interval, 0.88-0.94) in women of age between 46 to 65 at first treatment compared to the non-users of the same age. Age-specific mortality analyses found that combined HRT decreased mortality by 13% (HR: 0.87; 95% CI, 0.82-0.92), 12% (HR: 0.88; 95% CI, 0.82-0.93), and 8% (HR: 0.92; 95% CI, 0.85-0.98), in 51 to 55, 56 to 60, and 61 to 65 age group at first treatment, respectively. There was no association between estrogen-only HRT and women’s all-cause mortality. The findings from this study may help to inform the choices of women at menopause and to further educate the clinicians and resource planners.

Keywords: hormone replacement therapy, multiple imputations, primary care data, the health improvement network (THIN)

Procedia PDF Downloads 175
3277 Impact of Agricultural Infrastructure on Diffusion of Technology of the Sample Farmers in North 24 Parganas District, West Bengal

Authors: Saikat Majumdar, D. C. Kalita

Abstract:

The Agriculture sector plays an important role in the rural economy of India. It is the backbone of our Indian economy and is the dominant sector in terms of employment and livelihood. Agriculture still contributes significantly to export earnings and is an important source of raw materials as well as of demand for many industrial products particularly fertilizers, pesticides, agricultural implements and a variety of consumer goods, etc. The performance of the agricultural sector influences the growth of Indian economy. According to the 2011 Agricultural Census of India, an estimated 61.5 percentage of rural populations are dependent on agriculture. Proper Agricultural infrastructure has the potential to transform the existing traditional agriculture into a most modern, commercial and dynamic farming system in India through its diffusion of technology. The rate of adoption of modern technology reflects the progress of development in agricultural sector. The adoption of any improved agricultural technology is also dependent on the development of road infrastructure or road network. The present study was consisting of 300 sample farmers out which 150 samples was taken from the developed area and rest 150 samples was taken from underdeveloped area. The samples farmers under develop and underdeveloped areas were collected by using Multistage Random Sampling procedure. In the first stage, North 24 Parganas District have been selected purposively. Then from the district, one developed and one underdeveloped block was selected randomly. In the third phase, 10 villages have been selected randomly from each block. Finally, from each village 15 sample farmers was selected randomly. The extents of adoption of technology in different areas were calculated through various parameters. These are percentage area under High Yielding Variety Cereals, percentage area under High Yielding Variety pulses, area under hybrids vegetables, irrigated area, mechanically operated area, amount spent on fertilizer and pesticides, etc. in both developed and underdeveloped areas of North 24 Parganas District, West Bengal. The percentage area under High Yielding Variety Cereals in the developed and underdeveloped areas was 34.86 and 22.59. 42.07 percentages and 31.46 percentages for High Yielding Variety pulses respectively. In the case the area under irrigation it was 57.66 and 35.71 percent while for the mechanically operated area it was 10.60 and 3.13 percent respectively in developed and underdeveloped areas of North 24 Parganas district, West Bengal. It clearly showed that the extent of adoption of technology was significantly higher in the developed area over underdeveloped area. Better road network system helps the farmers in increasing his farm income, farm assets, cropping intensity, marketed surplus and the rate of adoption of new technology. With this background, an attempt is made in this paper to study the impact of Agricultural Infrastructure on the adoption of modern technology in agriculture in North 24 Parganas District, West Bengal.

Keywords: agricultural infrastructure, adoption of technology, farm income, road network

Procedia PDF Downloads 105
3276 Multiscale Process Modeling Analysis for the Prediction of Composite Strength Allowables

Authors: Marianna Maiaru, Gregory M. Odegard

Abstract:

During the processing of high-performance thermoset polymer matrix composites, chemical reactions occur during elevated pressure and temperature cycles, causing the constituent monomers to crosslink and form a molecular network that gradually can sustain stress. As the crosslinking process progresses, the material naturally experiences a gradual shrinkage due to the increase in covalent bonds in the network. Once the cured composite completes the cure cycle and is brought to room temperature, the thermal expansion mismatch of the fibers and matrix cause additional residual stresses to form. These compounded residual stresses can compromise the reliability of the composite material and affect the composite strength. Composite process modeling is greatly complicated by the multiscale nature of the composite architecture. At the molecular level, the degree of cure controls the local shrinkage and thermal-mechanical properties of the thermoset. At the microscopic level, the local fiber architecture and packing affect the magnitudes and locations of residual stress concentrations. At the macroscopic level, the layup sequence controls the nature of crack initiation and propagation due to residual stresses. The goal of this research is use molecular dynamics (MD) and finite element analysis (FEA) to predict the residual stresses in composite laminates and the corresponding effect on composite failure. MD is used to predict the polymer shrinkage and thermomechanical properties as a function of degree of cure. This information is used as input into FEA to predict the residual stresses on the microscopic level resulting from the complete cure process. Virtual testing is subsequently conducted to predict strength allowables. Experimental characterization is used to validate the modeling.

Keywords: molecular dynamics, finite element analysis, processing modeling, multiscale modeling

Procedia PDF Downloads 96
3275 Numerical Investigation of Beam-Columns Subjected to Non-Proportional Loadings under Ambient Temperature Conditions

Authors: George Adomako Kumi

Abstract:

The response of structural members, when subjected to various forms of non-proportional loading, plays a major role in the overall stability and integrity of a structure. This research seeks to present the outcome of a finite element investigation conducted by the use of finite element programming software ABAQUS to validate the experimental results of elastic and inelastic behavior and strength of beam-columns subjected to axial loading, biaxial bending, and torsion under ambient temperature conditions. The application of the rigorous and highly complicated ABAQUS finite element software will seek to account for material, non-linear geometry, deformations, and, more specifically, the contact behavior between the beam-columns and support surfaces. Comparisons of the three-dimensional model with the results of actual tests conducted and results from a solution algorithm developed through the use of the finite difference method will be established in order to authenticate the veracity of the developed model. The results of this research will seek to provide structural engineers with much-needed knowledge about the behavior of steel beam columns and their response to various non-proportional loading conditions under ambient temperature conditions.

Keywords: beam-columns, axial loading, biaxial bending, torsion, ABAQUS, finite difference method

Procedia PDF Downloads 183
3274 Effects of Obesity and Family History of Diabetes on the Association of Cholesterol Ester Transfer Protein Gene with High-Density Lipoprotein Cholesterol Levels in Korean Population

Authors: Jae Woong Sull

Abstract:

Lipid levels are related to the risk of cardiovascular diseases. Cholesterol ester transfer protein (CETP) gene is one of the candidate genes of cardiovascular diseases. A total of 2,304 persons were chosen from a Hospital (N=4,294) in South Korea. Female subjects with the CG/GG genotype had a 2.03 -fold (p=0.0001) higher risk of having abnormal HDL cholesterol levels (<40 mg/dL) than subjects with the CC genotype. Male subjects with the CG/GG genotype had a 1.34 -fold (p=0.0019) higher risk than subjects with the CC genotype. When analyzed by body mass index, the association with CETP was much stronger in male subjects with BMI>=25.69 (OR=1.55, 95% CI: 1.15-2.07, P=0.0037) than in male lean subjects. When analyzed by family history of diabetes, the association with CETP was much stronger in male subjects with positive family history of low physical activity (OR=4.82, 95% CI: 1.86-12.5, P=0.0012) than in male subjects with negative family history of diabetes. This study clearly demonstrates that genetic variants in CETP influence HDL cholesterol levels in Korean adults.

Keywords: CETP, diabetes, obesity, polymorphisms

Procedia PDF Downloads 147
3273 Evaluation of Genetic Diversity in Iranian Native Silkworm Bombyx mori Using RAPD (Random Amplification of Polymorphic DNA) Molecular Marker

Authors: Rouhollah Radjabi, Mojtaba Zarei, Elham Sanatgar, Hossein Shouhani

Abstract:

RAPD molecular markers in order to discrimination of the Iranian native Bombyx mori silkworm breeds were used. DNA extraction using phenol - chloroform was and the qualitative and quantitative measurements of extracted DNA and its dilution, the obtained bands on agarose gel 1.5 percent were marked and analyzed. Results showed that the bands are observed between 250-2500 bp and most bands have been observed as Gilani-orange, the lowest bands observed are Khorasani-lemon. Primer 3 with 100% polymorphism with the highest polymorphism and primer 2 with 61.5 polymorphism had the lowest percentage of polymorphism. Cluster analysis of races and placed them in three main groups, races Gilani - orange, Baghdad and Khorasani -pink if the first group, camel's thorn, Herati - yellow race was alone in the second group and Khorasani – lemon was alone in the third group. The greatest similarity between the races, between Khorasani- pink and Baghdad (0.64). RAPD markers have been determined different silkworm races based on various morphological or economic characteristics except geographic origin.

Keywords: silkworm, molecular marker, RAPD, Iran

Procedia PDF Downloads 435
3272 A Variable Neighborhood Search with Tabu Conditions for the Roaming Salesman Problem

Authors: Masoud Shahmanzari

Abstract:

The aim of this paper is to present a Variable Neighborhood Search (VNS) with Tabu Search (TS) conditions for the Roaming Salesman Problem (RSP). The RSP is a special case of the well-known traveling salesman problem (TSP) where a set of cities with time-dependent rewards and a set of campaign days are given. Each city can be visited on any day and a subset of cities can be visited multiple times. The goal is to determine an optimal campaign schedule consist of daily open/closed tours that visit some cities and maximizes the total net benefit while respecting daily maximum tour duration constraints and the necessity to return campaign base frequently. This problem arises in several real-life applications and particularly in election logistics where depots are not fixed. We formulate the problem as a mixed integer linear programming (MILP), in which we capture as many real-world aspects of the RSP as possible. We also present a hybrid metaheuristic algorithm based on a VNS with TS conditions. The initial feasible solution is constructed via a new matheuristc approach based on the decomposition of the original problem. Next, this solution is improved in terms of the collected rewards using the proposed local search procedure. We consider a set of 81 cities in Turkey and a campaign of 30 days as our largest instance. Computational results on real-world instances show that the developed algorithm could find near-optimal solutions effectively.

Keywords: optimization, routing, election logistics, heuristics

Procedia PDF Downloads 100
3271 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells

Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani

Abstract:

Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.

Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade

Procedia PDF Downloads 428
3270 An Investigation Enhancing E-Voting Application Performance

Authors: Aditya Verma

Abstract:

E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting.

Keywords: blockchain, parallel bft, consensus algorithms, performance

Procedia PDF Downloads 171
3269 Designing a Cricket Team Selection Method Using Super-Efficient DEA and Semi Variance Approach

Authors: Arnab Adhikari, Adrija Majumdar, Gaurav Gupta, Arnab Bisi

Abstract:

Team formation plays an instrumental role in the sports like cricket. Existing literature reveals that most of the works on player selection focus only on the players’ efficiency and ignore the consistency. It motivates us to design an improved player selection method based on both player’s efficiency and consistency. To measure the players’ efficiency measurement, we employ a modified data envelopment analysis (DEA) technique namely ‘super-efficient DEA model’. We design a modified consistency index based on semi variance approach. Here, we introduce a new parameter called ‘fitness index’ for consistency computation to assess a player’s fitness level. Finally, we devise a single performance score using both efficiency score and consistency score with the help of a linear programming model. To test the robustness of our method, we perform a rigorous numerical analysis to determine the all-time best One Day International (ODI) Cricket XI. Next, we conduct extensive comparative studies regarding efficiency scores, consistency scores, selected team between the existing methods and the proposed method and explain the rationale behind the improvement.

Keywords: decision support systems, sports, super-efficient data envelopment analysis, semi variance approach

Procedia PDF Downloads 401
3268 Exploring Public Opinions Toward the Use of Generative Artificial Intelligence Chatbot in Higher Education: An Insight from Topic Modelling and Sentiment Analysis

Authors: Samer Muthana Sarsam, Abdul Samad Shibghatullah, Chit Su Mon, Abd Aziz Alias, Hosam Al-Samarraie

Abstract:

Generative Artificial Intelligence chatbots (GAI chatbots) have emerged as promising tools in various domains, including higher education. However, their specific role within the educational context and the level of legal support for their implementation remain unclear. Therefore, this study aims to investigate the role of Bard, a newly developed GAI chatbot, in higher education. To achieve this objective, English tweets were collected from Twitter's free streaming Application Programming Interface (API). The Latent Dirichlet Allocation (LDA) algorithm was applied to extract latent topics from the collected tweets. User sentiments, including disgust, surprise, sadness, anger, fear, joy, anticipation, and trust, as well as positive and negative sentiments, were extracted using the NRC Affect Intensity Lexicon and SentiStrength tools. This study explored the benefits, challenges, and future implications of integrating GAI chatbots in higher education. The findings shed light on the potential power of such tools, exemplified by Bard, in enhancing the learning process and providing support to students throughout their educational journey.

Keywords: generative artificial intelligence chatbots, bard, higher education, topic modelling, sentiment analysis

Procedia PDF Downloads 87
3267 Emerging Trends of Geographic Information Systems in Built Environment Education: A Bibliometric Review Analysis

Authors: Kiara Lawrence, Robynne Hansmann, Clive Greentsone

Abstract:

Geographic Information Systems (GIS) are used to store, analyze, visualize, capture and monitor geographic data. Built environment professionals as well as urban planners specifically, need to possess GIS skills to effectively and efficiently plan spaces. GIS application extends beyond the production of map artifacts and can be applied to relate to spatially referenced, real time data to support spatial visualization, analysis, community engagement, scenarios, and so forth. Though GIS has been used in the built environment for a few decades, its use in education has not been researched enough to draw conclusions on the trends in the last 20 years. The study looks to discover current and emerging trends of GIS in built environment education. A bibliometric review analysis methodology was carried out through exporting documents from Scopus and Web of Science using keywords around "Geographic information systems" OR "GIS" AND "built environment" OR “geography” OR "architecture" OR "quantity surveying" OR "construction" OR "urban planning" OR "town planning" AND “education” between the years 1994 to 2024. A total of 564 documents were identified and exported. The data was then analyzed using VosViewer software to generate network analysis and visualization maps on the co-occurrence of keywords, co-citation of documents and countries and co-author network analysis. By analyzing each aspect of the data, deeper insight of GIS within education can be understood. Preliminary results from Scopus indicate that GIS research focusing on built environment education seems to have peaked prior to 2014 with much focus on remote sensing, demography, land use, engineering education and so forth. This invaluable data can help in understanding and implementing GIS in built environment education in ways that are foundational and innovative to ensure that students are equipped with sufficient knowledge and skills to carry out tasks in their respective fields.

Keywords: architecture, built environment, construction, education, geography, geographic information systems, quantity surveying, town planning, urban planning

Procedia PDF Downloads 22
3266 Optimization of Technical and Technological Solutions for the Development of Offshore Hydrocarbon Fields in the Kaliningrad Region

Authors: Pavel Shcherban, Viktoria Ivanova, Alexander Neprokin, Vladislav Golovanov

Abstract:

Currently, LLC «Lukoil-Kaliningradmorneft» is implementing a comprehensive program for the development of offshore fields of the Kaliningrad region. This is largely associated with the depletion of the resource base of land in the region, as well as the positive results of geological investigation surrounding the Baltic Sea area and the data on the volume of hydrocarbon recovery from a single offshore field are working on the Kaliningrad region – D-6 «Kravtsovskoye».The article analyzes the main stages of the LLC «Lukoil-Kaliningradmorneft»’s development program for the development of the hydrocarbon resources of the region's shelf and suggests an optimization algorithm that allows managing a multi-criteria process of development of shelf deposits. The algorithm is formed on the basis of the problem of sequential decision making, which is a section of dynamic programming. Application of the algorithm during the consolidation of the initial data, the elaboration of project documentation, the further exploration and development of offshore fields will allow to optimize the complex of technical and technological solutions and increase the economic efficiency of the field development project implemented by LLC «Lukoil-Kaliningradmorneft».

Keywords: offshore fields of hydrocarbons of the Baltic Sea, development of offshore oil and gas fields, optimization of the field development scheme, solution of multicriteria tasks in oil and gas complex, quality management in oil and gas complex

Procedia PDF Downloads 203
3265 Study of the Benefit Analysis Using Vertical Farming Method in Urban Renewal within the Older City of Taichung

Authors: Hsu Kuo-Wei, Tan Roon Fang, Chao Jen-chih

Abstract:

Cities face environmental challenges, including over-urbanization issues, air and water quality issues, lack of green space, excess heat capture, polluted storm water runoff and lack of ecological biodiversity. The vertical farming holds the condition of technology addressing these issues by enabling more food to be produced with finite less resources use and space. Most of the existing research regarding to technology Industry of agriculture between plant factory and vertical greening, which with high costs and high-technology. Relative research developed a sustainable model for construction and operation of the vertical farm in urban housing which aims to revolutionize our daily life of food production and urban development. However, those researches focused on quantitative analysis. This study utilized relative research for key variables of benefits of vertical farming. In the second stage, utilizes Fuzzy Delphi Method to obtain the critical factors of benefits of vertical farming using in Urban Renewal by interviewing the foregoing experts. Then, Analytic Hierarchy Process is applied to find the importance degree of each criterion as the measurable indices of the vertical farming method in urban renewal within the older city of Taichung.

Keywords: urban renewal, vertical farming, urban agriculture, benefit analysis, the older city of Taichung

Procedia PDF Downloads 471
3264 A Mathematical Framework for Expanding a Railway’s Theoretical Capacity

Authors: Robert L. Burdett, Bayan Bevrani

Abstract:

Analytical techniques for measuring and planning railway capacity expansion activities have been considered in this article. A preliminary mathematical framework involving track duplication and section sub divisions is proposed for this task. In railways, these features have a great effect on network performance and for this reason they have been considered. Additional motivations have also arisen from the limitations of prior models that have not included them.

Keywords: capacity analysis, capacity expansion, railways, track sub division, track duplication

Procedia PDF Downloads 363
3263 A CD40 Variant is Associated with Systemic Bone Loss Among Patients with Rheumatoid Arthritis

Authors: Rim Sghiri, Samia Al Shouli, Hana Benhassine, Nejla Elamri, Zahid Shakoor, Foued Slama, Adel Almogren, Hala Zeglaoui, Elyes Bouajina, Ramzi Zemni

Abstract:

Objectives: Little is known about genes predisposing to systemic bone loss (SBL) in rheumatoid arthritis (RA). Therefore, we examined the association between SBL and a variant of CD40 gene, which is known to play a critical role in both immune response and bone homeostasis among patients with RA. Methods: CD40 rs48104850 was genotyped in 176 adult RA patients. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA). Results: Low BMD was observed in 116 (65.9%) patients. Among them, 60 (34.1%) had low femoral neck (FN) Z score, 72 (40.9%) had low total femur (TF) Z score, and 105 (59.6%) had low lumbar spine (LS) Z score. CD40 rs4810485 was found to be associated with reduced TF Z score with the CD40 rs4810485 T allele protecting against reduced TF Z score (OR = 0.40, 95% CI = 0.23-0.68, p = 0.0005). This association was confirmed in the multivariate logistic regression analysis (OR=0.31, 95% CI= 0.16-0.59, p=3.84 x 10₋₄). Moreover, median FN BMD was reduced among RA patients with CD40 rs4810485 GG genotype compared to RA patients harbouring CD40 rs4810485 TT and GT genotypes (0.788± 0.136 versus 0.826± 0.146g/cm², p=0.001). Conclusion: This study, for the first time ever, demonstrated an association between a CD40 genetic variant and SBL among patients with RA.

Keywords: rheumatoid arthritis, CD40 gene, bone mineral density, systemic bone loss, rs48104850

Procedia PDF Downloads 464
3262 Disease Trajectories in Relation to Poor Sleep Health in the UK Biobank

Authors: Jiajia Peng, Jianqing Qiu, Jianjun Ren, Yu Zhao

Abstract:

Background: Insufficient sleep has been focused on as a public health epidemic. However, a comprehensive analysis of disease trajectory associated with unhealthy sleep habits is still unclear currently. Objective: This study sought to comprehensively clarify the disease's trajectory in relation to the overall poor sleep pattern and unhealthy sleep behaviors separately. Methods: 410,682 participants with available information on sleep behaviors were collected from the UK Biobank at the baseline visit (2006-2010). These participants were classified as having high- and low risk of each sleep behavior and were followed from 2006 to 2020 to identify the increased risks of diseases. We used Cox regression to estimate the associations of high-risk sleep behaviors with the elevated risks of diseases, and further established diseases trajectory using significant diseases. The low-risk unhealthy sleep behaviors were defined as the reference. Thereafter, we also examined the trajectory of diseases linked with the overall poor sleep pattern by combining all of these unhealthy sleep behaviors. To visualize the disease's trajectory, network analysis was used for presenting these trajectories. Results: During a median follow-up of 12.2 years, we noted 12 medical conditions in relation to unhealthy sleep behaviors and the overall poor sleep pattern among 410,682 participants with a median age of 58.0 years. The majority of participants had unhealthy sleep behaviors; in particular, 75.62% with frequent sleeplessness, and 72.12% had abnormal sleep durations. Besides, a total of 16,032 individuals with an overall poor sleep pattern were identified. In general, three major disease clusters were associated with overall poor sleep status and unhealthy sleep behaviors according to the disease trajectory and network analysis, mainly in the digestive, musculoskeletal and connective tissue, and cardiometabolic systems. Of note, two circularity disease pairs (I25→I20 and I48→I50) showed the highest risks following these unhealthy sleep habits. Additionally, significant differences in disease trajectories were observed in relation to sex and sleep medication among individuals with poor sleep status. Conclusions: We identified the major disease clusters and high-risk diseases following participants with overall poor sleep health and unhealthy sleep behaviors, respectively. It may suggest the need to investigate the potential interventions targeting these key pathways.

Keywords: sleep, poor sleep, unhealthy sleep behaviors, disease trajectory, UK Biobank

Procedia PDF Downloads 103
3261 Molecular and Genetic Characterization of Diacylglycerol Acyltransferase1 Gene in Sudanese Dairy Cattle Kenana and Butana

Authors: Safa Abusara Mohammed Ali, Mohammed Khair Abdallah, Gurdon A. Brockmann, M. Reissmann

Abstract:

The aim of the study was the characterization of DGAT1 variants in Sudanese dairy cattle breeds. In this study, we examined 94 Kenana and 91 Butana dairy cattle from two regions of Sudan. We genotyped the DGAT1 sequence variant AJ318490.1:g.10433/10434 AA>GC that leads to the Lysine – Alanine substitution at position 232 (K232A) in the protein and the VNTR polymorphism in the promoter region. Genotyping was performed by allele specific PCR and PCR fragment lengths determination, respectively. In both breeds, the DGAT1 Lysine variant (232K) that is associated with high fat and protein content as well as high fat yield in other breeds is the high frequent allele. The frequencies of the 232K allele were 96.3% and 84.6% in Kenana and Butana breeds, respectively. At the DGAT1 promoter VNTR locus, four alleles containing four to seven repeats of the 18 bp motif were found in both breeds. The highest frequent allele was the VNTR allele 3 containing five repeats with 60.4 % and 57.5 % in Kenana and Butana breeds, respectively. In conclusion, the two examined Sudanese dairy cattle breeds do not differ in allele frequencies at the DGAT1 locus.

Keywords: dairy cattle, DGAT1, Kenana, Butana.

Procedia PDF Downloads 124
3260 Association of Lipoprotein Lipase Gene (HindIII rs320) Polymorphisms with Moderate Hypertriglyceridemia Secondary to Metabolic Syndrome

Authors: Meryem Abi-Ayad, Biagio Arcidiacono, Eusebio Chiefari, Daniela Foti, Mohamed Benyoucef, Antonio Brunetti

Abstract:

Lipoprotein Lipase (LPL) is a key enzyme for lipid metabolism; its genetic polymorphism can be a candidate for modulating lipids parameters in metabolic syndrome. The objective of the present study was to determine whether lipoproteins lipase polymorphisMetS (LPL-HindIII) could be associated with moderate hypertriglyceridemia (secondary to metabolism syndrome). The polymorphism Hind III (rs320) was assessed by PCR-RFLP in 51 MetS patients and 17 healthy controls from the hospital in Tlemcen. The logistic regression analyses showed no significant association with Hind III genotype and hypertriglyceridemia (TG ≥ 1,5g/l or TG lower treatment) (P=0,455), metabolic syndrome (P=0,455), hypertension (P=0,802) and type 2 diabetes (P=0,144). In terms of plasma biomarkers, although not statistically significant, there was a difference in TG levels (P > 0,05), which was lowest among carriers of the homogenous mutant allele (H-). In this study, there was no association between the rare allele (H-) and disease protection, and between the frequent allele (H+) and disease prevalence (hypertriglyceridemia, metabolic syndrome, hypertension, type 2 diabetes).

Keywords: moderate secondary hypertriglyceridemia, metabolic syndrome, lipids, polymorphism lipoprotein lipase, HindIII(rs320)

Procedia PDF Downloads 326
3259 GRABTAXI: A Taxi Revolution in Thailand

Authors: Danuvasin Charoen

Abstract:

The study investigates the business process and business model of GRABTAXI. The paper also discusses how the company implemented strategies to gain competitive advantages. The data is derived from the analysis of secondary data and the in-depth interviews among staffs, taxi drivers, and key customers. The findings indicated that the company’s competitive advantages come from being the first mover, emphasising on the ease of use and tangible benefits of application, and using network effect strategy.

Keywords: taxi, mobile application, innovative business model, Thailand

Procedia PDF Downloads 301